
Recursive Hashing Functions for n-Grams

JONATHAN D. COHEN
National Security Agency

Many indexing, retrieval, and comparison methods are based on counting or cataloguing
n-grams in streams of symbols. The fastest method of implementing such operations is
through the use of hash tables. Rapid hashing of consecutive n-grams is best done using a
recursive hash function, in which the hash value of the current n-gram is derived from the
hash value of its predecessor. This article generalizes recursive hash functions found in the
literature and proposes new methods offering superior performance. Experimental results
demonstrate substantial speed improvement over conventional approaches, while retaining
near-ideal hash value distribution.

Categories and Subject Descriptors: E.2 [Data]: Data Storage Representations—hash-table
representations; G.2.1 [Discrete Mathematics]: Combinatorics—recurrences and difference
equations; G.3 [Mathematics of Computing]: Probability And Statistics—probabilistic algo-
rithms; H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing—
indexing methods; H.3.3 [Information Storage and Retrieval]: Information Storage; H.3.3
[Information Storage and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: Hashing, hashing functions, n-grams, recursive hashing

1. INTRODUCTION

This article concerns itself with the rapid cataloguing, counting, or re-
trieval of n-grams. As such, it is necessarily about quickly recording or
retrieving information. This section first introduces n-grams, then dis-
cusses hashing (the most rapid method of information storage and retriev-
al), then combines the two.

1.1 n-Grams

Given a sequence of symbols S 5 (s1, s2, . . . , sN1(n21)), an n-gram of the
sequence is an n-long subsequence of consecutive symbols. The ith n-gram
of S is the sequence (si, si11, . . . , si1n21). Note that there are N such
n-grams in S.

Author’s address: National Security Agency, 9800 Savage Road, Fort Meade, MD 20755-6000;
email: jdcohen@afterlife.ncsc.mil.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 1046-8188/97/0700–0291 $03.50

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997, Pages 291–320.

The literature discloses a wide variety of n-gram applications. When the
symbols are letters of text, n-grams have been used for text compression to
save space and accelerate searches [Shannon 1951; Schuegraf and Heaps
1973; Barton et al. 1974; Lynch 1977; Wisniewski 1987], language recogni-
tion [Schmitt 1990; Damashek 1995], topic recognition and abstracting
[Damashek 1995; Cohen 1995], spelling error detection and correction
[McElwain and Evens 1962; Morris and Cherry 1975; Zamora et al. 1981;
Angell et al. 1983], optical character recognition [Vossler and Branston
1964; Thomas and Kassler 1967; Cornew 1968; Hussain and Donaldson
1974; Neuhoff 1975; Hanson et al. 1976; Shinghal et al. 1978; Hull and
Srihari 1982], string searching [Harrison 1971; Karp and Rabin 1987;
Gonnet and Baeza-Yates 1990; Kotamarti and Tharp 1990], approximate
string matching [Ukkonen 1992; Kim and Shawe-Taylor 1992], typing
prediction [Darragh et al. 1990], and information retrieval [Burnett et al.
1979; Willet 1979; de Heer 1982; D’Amore and Mah 1985; Cavnar 1993;
Pearce 1994; Damashek 1995].

When the symbols are words, n-grams have been exploited for word
recognition in speech [Paeseler and Ney 1989; Pietra et al. 1992; Wright et
al. 1992] and word categorization [Nakamura and Shikano 1989].

Sequences of phoneme symbols have been analyzed by n-grams to guess
missing phonemes [Yannakoudakis and Hutton 1992].

Other n-gram references and applications may be found in the reviews of
Suen [1979] and Kukich [1992].

For ease of discussion, this article will assume that the symbols repre-
sent characters, though no limitation will result from this assumption. The
symbol sequence S will represent a text “document.” It will also be assumed
that one is interested in examining all n-grams in S for some n.

1.2 Hashing

The central concern of this article is the storage and retrieval of informa-
tion about a document’s n-grams. As in other information systems, the
information is represented as a collection of records, and each record is
identified by a unique key. In this case a record’s key is an n-gram.

Of the many record storage and retrieval schemes, the fastest method is
to build a table in memory consisting of sequentially addressed “buckets”
and use each record key to directly identify the bucket address for the
corresponding record. Suppose that the keys are drawn from a universe U
and the table has B buckets. Then as long as uU u # B, the keys can be
mapped directly to bucket addresses in some prearranged manner.

If uU u . B, but the number of keys that will actually occur in the records
at hand does not exceed B, one may choose to map the keys from U to the
bucket addresses using a hash function h. Hash functions, as the name
suggests, are designed to pseudorandomly map a large domain to a smaller

292 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

range;1 in this case they map U to the integers 0, 1, . . . , B 2 1. A record
with key k is mapped to address h(k); k is said to be hashed to h(k). The
table addressed by a hash function is known as a hash table.2 If the hash
function is chosen well, and the data are cooperative, the likelihood that
two distinct keys will map to the same address is small. In the event that
such collisions do occur, various methods are available to resolve them, at
little added expense.

Even if the number of keys exceeds the number of available buckets, this
scheme is still effective: each key is hashed to an address in the hash table,
which then serves as the entry point into a data structure capable of
holding the multiple records of differing keys that hashed to that position.

The speed of addressing into the table does not depend on the size of the
table, but only on the speed of the hash function calculation. On the other
hand, the time needed to catalogue multiple records hashed to a single
table bucket (by collision handling) increases at least linearly with the
number catalogued there, so it happens that collision resolution time,
averaged over all buckets, is minimized by choosing a hash function that is
most uniform in its distribution over bucket addresses.

The literature of hash functions and collision resolution schemes is
extensive. A tutorial is offered by Cormen et al. [1990]. More detailed
analysis and an overview of early activity can be found in the classic work
by Knuth [1973]. Comprehensive citations to the literature and detailed
algorithms have been compiled by Gonnet and Baeza-Yates [1991]. A
performance comparison of several hashing techniques is offered by Lum et
al. [1971].

1.3 Hashing of n-Grams

Some of the most effective uses of character n-grams have relied on
counting the various n-grams in a document under examination. (See, for
example, D’Amore and Mah [1985], Pearce [1994], Damashek [1995], and
Cohen [1995].) For even modest n, the possible number of such n-grams can
be enormous, but the number actually encountered in a text document is
relatively small. (A typical number of unique five-grams present in a large
English-language document is 2 3 105, less than 2% of the five-gram
universe.) This n-gram counting is most efficiently implemented by a hash
table: each n-gram is directly taken as a key, is hashed to a table address,
and (after possible collision resolution) an accumulator at that address is
advanced. For such uses, which are often interactive, speed of counting
(and therefore hashing) is of paramount importance.

As a motivating example, Damashek [1995] uses n-gram counting for
interactive information categorization and retrieval. In his method, each
document is represented by an n-gram spectrum, that is, by a vector

1The literature discusses another type of hash function designed to encrypt its input, which is
used for tasks such as password protection. Such functions will not be considered here.
2The term “scatter table” has also been used, but is largely obsolete. In early literature, hash
functions were known as “key-to-address transformations.”

Recursive Hashing Functions for n-Grams • 293

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

containing the counts of every n-gram present in the document; n is chosen
in advance. The resulting vectors are compared to recognize similarity
among the respective documents. Damashek uses a hash table to form and
record the n-gram counts, and the table itself serves as the n-gram vector.
In practice, collisions in his counting may be ignored, so that the table need
not carry any information other than the counts. The work needed to form a
representation of the document is dominated by the hashing operation.

The use of overlapping n-grams as keys offers an unusual opportunity for
rapid hash function calculation. Assuming that the n-grams are processed
in order of occurrence, each n-gram is similar to its predecessor, and this
redundancy can be exploited. Consider hashing of the ith n-gram Si 5 (si,
si11, . . . , si1n21). For a good hash function, the hash value h(Si), should
depend on every one of the n symbols and should treat each of these
symbols differently. But n 2 1 of those same symbols were used to calculate
h(Si21): the new n-gram only introduces si1n21, drops si21, and “slides”
the others over. A natural question is whether there is a form of h that
would permit more efficient recursive calculation of the hash function, that
is, whether one could write

h~Si! 5 f~h~Si21!, si1n21, si21!,

for some function f and get a savings of time.
Such a recursive approach has been described by Karp and Rabin [1987]

and Gonnet and Baeza-Yates [1990]. This article presents a generalization
of the earlier work to arbitrary linear recursion, offers several new linearly
recursive hash functions, and evaluates their performance. (The issue of
collision handling will not be addressed directly.) Results of performance
experiments are presented, verifying that recursive hashing of every n-
gram in a sequence can be achieved at a speed that is independent of n and
well in excess of the speed realized by conventional hashing and that use of
these hash functions does not come at the expense of uniformity.

The primary contributions of the present work are the formulation of a
general framework of linear recursion for hashing n-grams, the introduc-
tion of new linearly recursive methods that are faster than previous
approaches, and the validation of their performance in an experiment.

A few concepts from abstract algebra are used as motivation in succeed-
ing sections. Readers uncomfortable with such discussions may consult the
Appendix.

2. LINEARLY RECURSIVE HASH FUNCTIONS

This section proposes a general form of linearly recursive hash functions.
Subsequent sections give specific realizations.

Before beginning, the problem will be relaxed slightly. The hash function
will be decomposed into a truly recursive function followed by a nearly
trivial “address” function that maps the result of the recursive part into the

294 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

appropriate address format. The recursive part will be denoted by H and
will obey

H~Si! 5 f~H~Si21!, si1n21, si21!.

The total hash function will then be

h~Si! 5 A@H~Si!#,

where the address function A produces a result confined to the integers
{0, 1, . . . , B 2 1}. The address function will either be trivial or extremely
simple.

The recursive calculation of H(Si) must introduce the new symbol si1n21
and drop the old symbol si21. The idea behind choosing a linear recursion
is that the contribution of each symbol will be independent of contributions
by other symbols, so that the influence of the old symbol will be known and
can be removed n steps later.

A function that is amenable to easy linear recursion is

H~Si! 5 O
j50

n21

rn2j21T~si1j!, (1)

where computation is over some ring R; r [R is some constant; and T
maps the symbols into R. The constant r will be referred to as the radix.
The transformation T may be trivial, since the symbols s1, s2, . . . ,
sN1(n21) can be interpreted mathematically in natural ways. For example,
if computation is being done over the integers, the symbols (usually bytes)
have obvious ordinal values. Other transformations will be nearly as
simple. The address function A will serve to map from R to the integers {0,
1, . . . , B 2 1}.

A recursive formulation of Eq. (1) is

H~S1! 5 O
i51

n

rn2iT~si!

H~Si! 5 rH~Si21! 1 T~si1n21! 2 rnT~si21!, 1 , i # N.

(2)

This is the proposed form of H for hashing successive n-grams. By varying
ring R, transformation T, and radix r, this form encompasses a surprising
variety of hashing methods, some of which will be described below.

The composite function rnT(s) in Eq. (2) may be combined into a single
function T9(s) 5 rnT(s). It will be convenient to do so in a few of the
descriptions below.

An observation about the choice of ring is appropriate. A common cause
of nonuniformity in hashed values can be traced to a bias in the frequency

Recursive Hashing Functions for n-Grams • 295

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

of keys that are regularly spaced, that is, by keys separated by multiples of
some value in the ring. (As an integer example, keys of odd value may
predominate over keys of even value.) Such biases present a problem only
when the hash function preserves them. This can be avoided by choosing an
appropriate ring. As discussed in the Appendix (Section A.5), it is sufficient
that the ring be an integral domain3 for the methods outlined below; a field
is desirable.

For any choice of implementation, the questions to be answered will be

(1) How is the computation carried out?
(2) Is the computation fast?
(3) Does the hash function yield a nearly uniform distribution?

In the succeeding sections various methods will be presented, and for
each method the questions above will be addressed.

2.1 Hashing by Prime Integer Division

One standard, venerable, and highly regarded hash method is hashing by
(integer) division. (The first public description of hashing, offered by
Dumey in 1956, describes this approach.) In this method, the key, viewed
as an integer, is reduced modulo the number of table buckets B. When
accommodating textual keys, the integer representation is formed (either
explicitly or implicitly) by treating each character as a digit in a radix r
number, for some r. The radix is at least as large as the number of
characters in the alphabet. For hashing the ith n-gram using this method,
one might choose the numeric key

ki 5 O
j50

n21

rn2j21Ord~si1j!,

summed over the integers, where Ord(z) returns the ordinal value of the
symbol in its argument. Note that if one is using characters as they are
usually represented in a computer—one character to a byte—then a typical
string is already in this form, with r 5 256. To minimize the size of the key,
one usually chooses to use a smaller radix, equal to the number of letters in
the alphabet.

If this sum is taken instead over the ring R 5 Z/B, that is, the integers
modulo B, then the sum above is the integer division hash value:

h~Si! 5 O
j50

n21

rn2j21Ord~si1j!.

3See Appendix Section A.1 for a definition of integral domain.

296 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

But this is in the form of Eq. (1) and may be implemented recursively,
according to Eq. (2), by

h~S1! 5 O
i51

n

rn2iOrd~si!

h~Si! 5 rh~Si21! 1 Ord~si1n21! 2 rnOrd~si21!, 1 , i # N.

In this case, the address function is the identity map and has been
omitted.4 Thus, a standard nonrecursive method of hashing strings may be
implemented recursively for hashing n-grams efficiently.5

In keeping with the observation that the ring should be an integral
domain, B should be a prime. To match usual table sizes, one is likely to
pick B to be the largest prime smaller than some power of 2.

Some nonrecursive hashing functions of this nature in current use are
reviewed and evaluated in McKenzie et al. [1990]. Recursive hashing by
prime integer division was first described by Karp and Rabin [1987] as part
of a string-matching algorithm.

An implementation of recursive hashing by integer division is illustrated
in Table I. The first n-gram is hashed directly; the remainder are recur-
sively hashed. Note that execution time of the main loop will not depend
upon n.

Two cautions are in order here. First, one must take care that none of the
computations overflow. If the word sizes are insufficient or the radix too
large to guarantee that overflow will not occur, then tests and corrections
to avoid overflow or additional modulo functions must be performed.
Second, the modulo function must return positive values. Some computer
implementations of the MOD function produce negative results for negative
arguments. This can be corrected by checking for a negative result and
adding the modulus if necessary.

Not surprisingly, experimentation shows that poor performance results
when the radix is smaller than the biggest difference between symbol
ordinal values. The presentation above presumed that the symbols have
ordinal values covering a contiguous range. If not, they may be mapped to
such a range (by modifying T) to permit the smallest radix choice.

Experimental evaluation of speed and uniformity are presented in later
sections.

4There is some mathematical sloppiness here. Where convenient, the author is treating
elements of Z/B as simple integers rather than entire cosets. The smallest nonnegative
member of the coset is used for the address.
5By “recursive,” the author means only that the hash value for a given key is derived from its
predecessors. Many hash functions are recursive in another sense: the hash value for a single
key is recursively calculated, with each ineration including more of the key.

Recursive Hashing Functions for n-Grams • 297

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

2.2 Hashing by Power-of-2 Integer Division

Evaluation of the modulo function found in hashing by prime integer
division slows the processing considerably. Gonnet and Baeza-Yates [1990]
offer a variation of hashing by integer division in which the modulo
function may be eliminated completely, simply by choosing a modulus equal
to a power of 2. In this scheme, overflows may be ignored, and the final
address is obtained simply by masking unwanted high-order bits. The radix
is chosen for long cycle length.6 For example the choices 27 or 259 will do.

An implementation of recursive hashing by power-of-2 integer division is
illustrated in Table II. The first n-gram is hashed directly; the remainder
are recursively hashed.

The ring in this case is not an integral domain, since the modulus is
composite. In fact, any biases in the data spaced by powers of 2 will be
reflected in the hash distribution. In particular, if the number of characters
with odd ordinal values differs substantially from those with even ordinal
values, distribution of the hash values will suffer.

Experimental evaluation of speed and uniformity is presented in later
sections.

6Given radix r, the sequence r1 mod B, r2 mod B, r3 mod B, . . . will repeat. The cycle length
is the number of values assumed in one such cycle. The cycle length is also equal to the
smallest i . 0 such that ri mod B 5 0. The radix is chosen so that this cycle is as long as
possible.

Table I. Implementation of Integer Division Hashing by Recursion

RadixToTheN :5 (Radix ˆ NgramLength) mod B; { For removing old symbol }

HashValue :5 0; { Make initial value }
for i :5 1 to NgramLength do

begin
HashValue :5 Radix * HashValue 1 Ord(S[i]);
HashValue :5 HashValue mod B;

end;

: { Use the value }

for OldIndex :5 1 to N 2 1 do { Make all other values }
begin

NewIndex :5 OldIndex 1 NgramLength;

HashValue :5 Radix * HashValue; { Multiply by radix }
HashValue :5 HashValue 1 Ord(S[NewIndex]); { Include new symbol }

{ Remove old symbol }
HashValue :5 HashValue 2 RadixToTheN * Ord(S[OldIndex]);
HashValue :5 HashValue mod B; { Reduce by modulus }

: { Use the value }

end;

The symbols are in the vector S. The MOD function is assumed to return a number in {0, 1, . . .
B 2 1}, where B is the number of hash table buckets. See cautions in the text.

298 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

2.3 Hashing by Cyclic Polynomials

The implementation of recursive integer division hashing using prime
moduli requires integer addition and multiplication7 and calculation of a
MOD function, the combination of which may be slow. Moreover, if overflow
is possible, its remedy requires even more time. If hashing by power-of-2
division is done, then integer addition and multiplication are still required,
and the nonprime modulus may lead to distribution skew. An attempt to
deal with these problems leads to another realization.

Consider operating over R 5 GF(2)[x]/(xw 1 1), the ring consisting of
polynomials in x whose coefficients are binary (drawn from the Galois field
of characteristic 2), reduced modulo the polynomial xw 1 1.8 (See the
Appendix.) The integer w is chosen equal to the computer’s word size, that
is, w is the number of bits in each word. The polynomials are represented
by w-bit words as one would suppose: the ith bit is the coefficient of xi, i 5
0, 1, . . . , w 2 1. There is a one-to-one correspondence between elements
in GF(2)[x]/(xw 1 1) and binary values that can be accommodated by a
word of size w.

7Karp and Rabin [1987] point out that multiplication can be reduced to shifting if the radix is
a power of 2. While this will result in some speed improvement, it is likely to worsen
distribution.
8See Appendix Section A.2 for a definition of the Galois field of two elements, Section A.3 for a
discussion of a ring modulo an element, and Section A.4 for a discussion of polynomial rings.

Table II. Implementation of Recursive Power-of-2 Integer Division Hashing

RadixToTheN :5 (Radix ˆ NgramLength) mod B; { For removing old symbol }
AddressMask :5 B 2 1; { Mask }

HashWord :5 0; { Make initial value }
for i :5 1 to NgramLength do

begin
HashWord :5 Radix * HashWord 1 Ord(S[i]);
HashWord :5 HashWord mod B;

end;
HashValue :5 BAND(HashWord, AddressMask); { Drop high order bits }

: { Use the value }

for OldIndex :5 1 to N 2 1 do { Make all other values }
begin

NewIndex :5 OldIndex 1 NgramLength;

HashWord :5 Radix * HashValue; { Multiply by radix }
HashWord :5 HashWord 1 Ord(S[NewIndex]); { Include new symbol }

{ Remove old symbol }
HashWord :5 HashWord 2 RadixToTheN * Ord(S[OldIndex]);

HashValue :5 BAND(HashWord, AddressMask); { Drop high bits }

: { Use the value }

end;

The symbols are in the vector S. B is the number of hash table buckets and must be a power of
2. BAND performs a bitwise AND. Overflows are ignored.

Recursive Hashing Functions for n-Grams • 299

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

Addition of two such polynomials is performed by an exclusive-or of the
corresponding words. And for any polynomial q [R and any integer D, the
multiplication xDq is implemented in the computer as a barrel shift on the
word representing q, as shown below. The simplicity of these operations
compels one to consider hashing in GF(2)[x]/(xw 1 1), using the recursion

H~S1! 5 O
i51

n

xD~n2i!T~si!

H~Si! 5 xDH~Si21! 1 T~si1n21! 1 xnDT~si21!, 1 , i # N.

This is Eq. (2) with r 5 xD. (Note that addition and subtraction are the
same in this ring.)

In this ring, since everything is reduced modulo xw 1 1, the polynomial
xw 1 1 is equal to the zero polynomial; in other words xw 1 1 5 0, or xw 5
1. Consider an arbitrary member q [R with q(x) 5 qw21xw21 1
qw22xw22 1 . . . 1 q0. Then

xq~ x! 5 qw21xw 1 qw22xw21 1 · · · 1 q0x

5 qw22xw21 1 qw23xw22 1 · · · 1 q0x 1 qw21.

So multiplication by x amounts to a barrel shift of the word holding the
coefficients. Hence the name “cyclic polynomials.”

The elements that have not yet been defined are the transformations T
and A and the choice of D. First, consider the address transformation A.
The polynomials represented by binary words have obvious interpretations
as integer addresses; however, the number of polynomials, 2w, will (likely)
be larger than the number of hash buckets, B. By choosing B 5 2t, t # w,
the bucket addresses can be obtained from H simply by masking (ignoring)
the upper w 2 t bits. The address function consists of this masking.

The symbol transformation is a lookup table containing “random” ele-
ments of GF(2)[x]/(xw 1 1), indexed by the ordinal value of its argument.
In the author’s practice, the table consists of words whose contents are
filled from a computer’s random-number generator. In this manner, each
symbol’s contribution is scattered across the word, changing about half of
the bits, on average. (One could propose many strategies for filling these
words, some of which would undoubtedly be better.) Note that for removing
the contribution of the old symbol, the transformation T may be combined
with its multiplication by xnD to form a new transformation

T9~s! 5 xnDT~s!.

T9 may also be precomputed and be implemented by a lookup table.
The method of hashing by cyclic polynomials was suggested to the author

by J. M. Kubina (private communication, 1993).

300 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

Table III shows an implementation of hashing by cyclic polynomials, as
described just above. At initialization, lookup tables for transformations T
and T9 are built. Also, an address mask is established to remove the
high-order bits for the address transformation.

Note that the expensive integer functions have been avoided, as well as
concerns about overflows. One might be concerned, however, with the cost
of table lookups.

The choice of D, the number of bits shifted at each step of recursion, was
examined experimentally. While no choice was clearly superior, some
choices were clearly bad, such as the choice of 8 for a word size of 32 bits.
The choice D 5 1 was found to be as good as any and was used to produce
the results presented later in this article.

At least three causes for concern may arise here. First, the capricious
choice of table lookup words implementing T is worrisome. Clearly, there
are bad choices possible. Experiment suggests that this concern is unwar-

Table III. Implementation of Recursive Hashing by Cyclic Polynomials

for i :5 0 to MaxSymbolOrd do { Symbol transformation table }
TransformationT[i] :5 RandomWord;

for i :5 0 to MaxSymbolOrd do { Table to remove old symbol }
TransformationTPrime[i] :5 BROTL(TransformationT[i], Delta*NgramLength);

AddressMask :5 B 2 1; { Mask; B must be power of 2 }

HashWord :5 0; { Make initial value }
for i :5 1 to NgramLength do

begin
HashWord :5 BROTL(HashWord, Delta); { Multiply by radix }

{ Include new symbol }
HashWord :5 BXOR(HashWord, TransformationT[Ord(S[i])]);

end;

HashValue :5 BAND(HashWord, AddressMask); { Drop high order bits }

: { Use the value }

for OldIndex :5 1 to N 2 1 do { Make all other values }
begin

NewIndex :5 OldIndex 1 NgramLength;

HashWord :5 BROTL(HashWord, Delta); { Multiply by radix }

{ Include new symbol }
HashWord :5 BXOR(HashWord, TransformationT[Ord(S[NewIndex])]);

{ Remove old symbol }
HashWord :5 BXOR(HashWord, TransformationTPrime[Ord(S[OldIndex])]);

HashValue :5 BAND(HashWord, AddressMask); { Drop high order bits }

: { Use the value }

end;

The symbols are in the vector S. The number of hash table buckets, B, must be a power of 2.
The function BROTL implements a left barrel shift; BXOR performs a bitwise exclusive-or;
and BAND performs a bitwise AND. RandomWord is a function that returns a new random
word with each call. For most applications, MaxSymbolOrd will equal 255.

Recursive Hashing Functions for n-Grams • 301

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

ranted. (Conversely, a nearly limitless family of hash functions can be had,
each member of which is identified with a different choice of T.) Second, the
polynomial xw 1 1 is composite, so that the ring is not an integral domain.
As the Appendix points out (Section A.5), for most implementations the
lack of an integral domain here does not matter. Finally, one may note that
the recursion has a cycle length of c 5 w/GCD(w, D), so that if an n-gram
consists of c symbols followed by those same c symbols, the hash value will
be zero. This last concern applies only to long n-grams.

Experimental performance measurement of this approach is described in
later sections.

Before going on, one may note that a nonrecursive version of this method
of hashing has appeared in Pryor et al. [1993].

2.4 Hashing by General Polynomial Division

Hashing by cyclic polynomials overcomes the objections to hashing by
integer division, but it is more restrictive than necessary. This section
introduces, by analogy to integer division, a generalized polynomial divi-
sion scheme which is nearly as fast, permits use of any polynomial, and
may be computed over an integral domain.

In this approach, symbols are again represented by polynomials of binary
coefficients, but they are reduced modulo a general polynomial p. The ring
of computation is, then, R 5 GF(2)[x]/p(x). If p is irreducible, R is an
integral domain.9 Let B 5 2t, and let the degree of p be d, with d $ t. The
2d elements of R have an obvious one-to-one representation in binary
words of d bits; words of w . d bits with the w 2 d high-order bits set to
zero will also serve. In this representation, the ith bit is the coefficient of
xi, i 5 0, 1, . . . , d 2 1.

The recursion radix is chosen to be the polynomial x; the computer
implementation of multiplication by x in this ring is extremely simple and
fast. Let p(x) 5 xd 1 pd21xd21 1 pd22xd22 1 . . . 1 p0 and consider an
arbitrary member q [R with q(x) 5 qd21xd21 1 qd22xd22 1 . . . 1 q0.
Then, since p(x) 5 0 in this ring, it follows that xd 5 pd21xd21 1
pd22xd22 1 . . . 1 p0, so that

xq~ x! 5 Hqd22xd21 1 qd23xd22 1 · · · 1 q0x,
~qd22 1 pd21! xd21 1 ~qd23 1 pd22! xd22 1 · · · 1 p0,

qd21 5 0
qd21 5 1

.

As an example, consider the case p 5 x3 1 x 1 1, q 5 x2 1 1. Using the
fact that x3 5 x 1 1 in this ring, one finds that

xq 5 x~ x2 1 1! 5 x3 1 x 5 ~ x 1 1! 1 x 5 1.

So multiplication by x amounts to a shift (no carry) of the word holding the
coefficients, and, depending upon a test of one bit, a possible exclusive-or
with a word representing the polynomial p.

9See Appendix Section A.5.

302 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

The recursion to be implemented for this case is

H~S1! 5 O
i51

n

xn2iT~si!

H~Si! 5 xH~Si21! 1 T~si1n21! 1 xnT~si21!, 1 , i # N,

leaving only the issues of input and address transformation. Just as for the
cyclic polynomials example, the bucket address h(Si) is obtained from
H(Si) by taking the lower t bits of the word representing the polynomial
H(Si). This is done simply by masking.

Also as for hashing by cyclic polynomials, symbol transformation is
performed by consulting a lookup table containing “random” elements of
GF(2)[x]/p(x), indexed by the ordinal value of its argument. To remove the
contribution of the old symbol, the transformation T may be combined with
multiplication by xn to form a new transformation

T9~s! 5 xnT~s!.

T9 may also be precomputed and be implemented by a lookup table.
An implementation of hashing by polynomial division is illustrated in

Table IV. Without change, this implementation is suitable for any power-
of-2 table size up through 219 and any word size greater than or equal to 20
bits. Other polynomials may be chosen for different applications.

The author chose p(x) to be a primitive polynomial of degree 19 drawn
from Peterson [1961]:

p~ x! 5 x19 1 x18 1 x17 1 x16 1 x12 1 x7 1 x6 1 x5 1 x3 1 x 1 1.

This polynomial has 11 nonzero coefficients, causing about half of the bits
to change state each time the polynomial is added in.

The author chose to build the table for T by using p(x) to define a
recursion. Given some seed polynomial u (x) Þ 0, T assigns to each symbol
s the polynomial

T~s! 5 x ~n11!Ord~s!u ~ x!.

The example of Table IV employs a seed of u (x) 5 xd 1 xd21 1 xd22 1 . . .
1 1. Alternatively, T may be produced by repeated calls to a random-word
generator.

Any polynomial accommodated by the word size may be used in this
method. Indeed, this approach makes practical a (nonrecursive) hash
function proposed by Hanan and Palermo [1963] and Schay and Raver
[1963]. Their suggestion was to regard the key and hash value as vectors of
polynomial coefficients (as done here), letting the hash value be the
remainder after division by the generating polynomial of a Bose-
Chaudhuri-Hocquenghem (BCH) code (see Berlekamp [1984] for a complete

Recursive Hashing Functions for n-Grams • 303

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

discussion of BCH codes). In this setting, the hash value would correspond
to the syndrome of the key codeword. BCH codes enjoy a minimum-distance
property whose manifestation in this application is that any distinct keys
differing in fewer than some number of bits (polynomial coefficients)

Table IV. Implementation of Recursive Hashing by Polynomial Division

Polynomial :5 $F10EB; { Modulus polynomial (in hex) }
PolyDegree :5 19; { Degree of modulus polynomial }
AddressMask :5 B 2 1; { Mask; B must be power of 2 }

HashWord :5 21; { Symbol transformation tables }
for i :5 0 to MaxSymbolOrd do

for j :5 0 to NgramLength do
begin

HashWord :5 BSL(HashWord, 1); { Multiply by radix }
if BTST(HashWord, PolyDegree) then

HashWord :5 BXOR(HashWord, Polynomial);
if j 5 1 then { Record in tables }

TransformationT[i] :5 HashWord
else if j 5 NgramLength then

TransformationTPrime[i] :5 HashWord;
end;

HashWord :5 0; { Make initial value }
for i :5 1 to NgramLength do

begin
HashWord :5 BSL(HashWord, 1); { Multiply by radix }
if BTST(HashWord, PolyDegree) then

HashWord :5 BXOR(HashWord, Polynomial);
{ Include new symbol }

HashWord :5 BXOR(HashWord, TransformationT[Ord(S[i])]);
end;

HashValue :5 BAND(HashWord, AddressMask); { Drop high order bits }

: { Use the value }

for OldIndex :5 1 to N 2 1 do { Make all other values }
begin

NewIndex :5 OldIndex 1 NgramLength;

HashWord :5 BSL(HashWord, 1); { Multiply by radix }
if BTST(HashWord, PolyDegree) then

HashWord :5 BXOR(HashWord, Polynomial);
{ Include new symbol }

HashWord :5 BXOR(HashWord, TransformationT[Ord(S[NewIndex])]);
{ Remove old symbol }

HashWord :5 BXOR(HashWord, TransformationTPrime[Ord(S[OldIndex])]);

HashValue :5 BAND(HashWord, AddressMask); { Drop high order bits }

: { Use the value }

end;

The symbols are in the vector S. The number of hash table buckets, B, must be a power of 2.
The function BSL implements a left shift with no carry; BXOR performs a bitwise exclusive-or;
BTST tests a single bit (returning true if the bit is 1); and BAND performs a bitwise AND. For
most applications, MaxSymbolOrd will equal 255. The polynomial here is primitive. As an
alternative, the input transformation may be made from calls to a random number generator
as in Table III.

304 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

produce different hash values. The idea was to break up “clusters” of
similar key values, sending them to different table buckets. Their proposal
seems to have remained unpopular because the computation was not
amenable to fast-software implementation. Recursive hashing of n-grams
offers another (and practical) approach to BCH hashing, since computation
is just as fast as for any other choice of modulus polynomial.

As for hashing by cyclic polynomials, one may be concerned with the
choice of “random” input transformation polynomials for input transforma-
tion. Experiment suggests that this is not a critical issue.

Some performance measures of this method are provided in the following
sections.

2.5 Self-Annihilating Recursive Methods

The approach of methods outlined above has been to introduce a symbol, let
its contribution be multiplied by the radix n times, and then remove the
symbol’s contribution. For special cases of ring and radix, one may arrange
things such that the contribution of each symbol vanishes after n itera-
tions, so that no removal of its contribution is needed. A substantial
improvement in computation speed may result.

This self-annihilation is guaranteed if rn 5 0 in R. Moreover, if ri Þ 0 for
i , n, then this scheme will directly implement hashing of n-grams
without n appearing explicitly in the recursion. Calculation of the hash
values is done by the simpler procedure

H~S1! 5 O
i51

n

rn2iT~si!

H~Si! 5 rH~Si21! 1 T~si1n21!, 1 , i # N.

The fact that the radix must be a zero divisor precludes R being an integral
domain. One can, however, find choices of r, n, and R for which self-
annihilating recursion appears to work well.

Example 2.5.1. A modification of hashing by cyclic polynomials offers
self-annihilating recursion for the special case n 5 2L, for any integer L.
Assume that the word size is w 5 2D. Then in R 5 GF(2)[x]/(xw 1 1), the
radix choice of r 5 1 1 xw/n will do, since rn 5 (1 1 x2D2L

)2L

5 1 1 xw 5
0 and ri Þ 0 for i , n. Table V illustrates an implementation of this
approach. Note that this should be faster than the method outlined in
Table III, since the symbol stream and lookup table are consulted only once
per iteration, rather than twice.

Results of using self-annihilating recursion are presented at the end of
Sections 3.1.2 and 3.2.

3. PERFORMANCE MEASUREMENT EXPERIMENTS

Two objective measures of a hash function’s performance are speed of
computation and uniformity of resulting address distribution. This section

Recursive Hashing Functions for n-Grams • 305

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

describes experiments to measure both and presents the results of those
experiments.

3.1 Nonuniformity Experiments

3.1.1 A Nonuniformity Statistic in Two Guises. This section describes
and justifies a commonly used statistic for measuring nonuniformity. The
goal is to develop a sensitive indication of nonuniformity whose behavior
can be characterized in the “random” case, that is, when the hash function
randomly produces an output, uniform over the table addresses, regardless
of its input. Given this characterization, one can assess the significance of
each result.

Suppose that an experiment to evaluate the performance of hash function
h consists of examining h(k1), h(k2), . . . , h(kN), where each of the N keys
is unique. Let the hash function assume values 0, 1, . . . , B 2 1, where B is
the number of hash table “bins.” The counts C 5 {C0, C1, . . . , CB21} give

Table V. Implementation of Self-Annihilating Recursive Hashing by Cyclic Polynomials

for i :5 0 to MaxSymbolOrd do { Symbol transformation table }
TransformationT[i] :5 RandomWord;

AddressMask :5 B 2 1; { Mask; B must be power of 2 }

HashWord :5 0; { Make initial value }
for i :5 1 to NgramLength do

begin
{ Multiply by radix }

HashWord :5 BXOR(HashWord, BROTL(HashWord, Delta));
{ Include new symbol }

HashWord :5 BXOR(HashWord, TransformationT[Ord(S[i])]);
end;

HashValue :5 BAND(HashWord, AddressMask); { Drop high order bits }

: { Use the value }

{ Make all other values }
for NewIndex :5 NgramLength 1 1 to NgramLength 1 N 2 1 do

begin
{ Multiply by radix }

HashWord :5 BXOR(HashWord, BROTL(HashWord, Delta));
{ Include new symbol }

HashWord :5 BXOR(HashWord, TransformationT[Ord(S[NewIndex])]);

HashValue :5 BAND(HashWord, AddressMask); { Drop high order bits }

: { Use the value }
end;

The symbols are in the vector S. The number of hash table buckets, B, must be a power of 2.
Both NgramLength and the word size W must be powers of 2. The shift DELTA is equal to
W/NgramLength. The function BROTL implements a left barrel shift; BXOR performs a
bitwise exclusive-or; and BAND performs a bitwise AND. RandomWord is a function that
returns a new random word with each call. For most applications, MaxSymbolOrd will equal
255.

306 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

the number of times each hash address is produced in the experiment, that
is,

Ci 5 O
j51

N

I$h~kj! 5 i%,

where I{ } is the indicator function, which assumes a value of 1 when its
argument is true and zero otherwise. The ratio

a 5 N/B

is the table’s so-called “load factor.”
Assume for now the hypothesis that the hash function assigns to each

key a random address, so that the probability of assigning any particular
key to any particular address is 1/B, and each such assignment is indepen-
dent. This is the “uniform hashing” model introduced in Peterson [1957].
Under these assumptions, C is multinomial with E{Ci} 5 N/B 5 a.

The counts may be regarded as entries in a contingency table. A standard
statistic for evaluating hypotheses of structure in contingency tables is the
Pearson x2 statistic (see, for example, Bishop et al. [1975, Ch. 4], or Bickel
and Doksum [1977, Ch. 8]). It is based on the maximum-likelihood esti-
mates Ê{Ci} of the table means, under the hypothesis being examined10

and is given by

x2 5 O
i50

B21 ~Ci 2 Ê$Ci%!
2

Ê$Ci%
5

1

a
O
i50

B21

~Ci 2 a!2.

The Pearson x2 does not actually have a chi-squared distribution, though it
is approximately so with B 2 1 degrees of freedom. The approximation
becomes better with larger a; a .. 1 is recommended for measuring
significance in the general case. Regardless of a, E{x2} 5 B 2 1 and Var{x2} 5
2(B 2 1). Moreover, for large B, x2 is well approximated as normal. These
considerations suggest the uniformity statistic

U 5
x2 2 ~B 2 1!

Î2~B 2 1!
.

For the uniform-hashing assumption, U has unit variance and zero mean
and, with appropriately large a and B, is approximately normal.

To examine a candidate hash function h with respect to the set of distinct
keys {k1, k2, . . . , kN}, the hash values h(k1), h(k2), . . . , h(kN) are
determined; the associated counts C 5 {C0, C1, . . . , CB21} are formed;

10The hypothesis under test assumes all of the means equal to the load factor, so that the
maximum-likelihood “estimates” of the means degenerate to a, requiring no estimating at all.

Recursive Hashing Functions for n-Grams • 307

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

and the statistic U is produced from the counts. A value near zero indicates
performance comparable with uniform hashing. A large positive value
corresponds to a more nonuniform distribution; a large negative value
indicates uniformity in excess of that expected by random assignment.11

The nonuniformity statistic may also be interpreted as a measure of
excess time needed to handle table collisions. Suppose that each table
bucket is an independent linked list. The work required to construct one of
those lists having m items is proportional to m(m 1 1). To construct all of
the lists in the table takes work proportional to

W 5 O
i50

B21

Ci ~Ci 1 1! 5 a~x2 1 N 1 B!.

On the other hand, the expected work required to construct all lists for the
uniform-hashing case is

W0 5 EH O
i50

B21

Ci ~Ci 1 1!J U uniform
hashing

5 a@~B 2 1! 1 N 1 B#.

The excess fractional work required for hash function h, relative to uniform
hashing, is

v 5
W

W0

2 1 5
Î2~B 2 1!

2~B 2 1! 1 N 1 1
U <

Î2 U

ÎB~2 1 a!
.

So extra work is proportional to distribution nonuniformity U; the propor-
tionality constant depends upon hash table size and loading.

Both U and v report the same measurement x2. U is a very sensitive
measure for revealing small differences between hashing distributions and
is characterized in the uniform case; v keeps the difference between
hashing distributions in perspective, since it is normalized to the total
work. Both of these numbers will be reported in uniformity tests.

3.1.2 Nonuniformity Tests. This section applies the proposed hashing
functions to samples of text in an effort to measure hash uniformity. Two
samples of text were used. The first, labeled hereafter as “English,”
consisted of a concatenation of 144 pages of Time, Newsweek, and Science
News, obtained by optical character recognition. The combined length of
these documents was on the order of 587,000 characters. The second,
hereafter called “Japanese,” was a concatenation of 431 documents drawn
from the DARPA Tipster Japanese joint venture database, for a total size of

11Operationally, the smaller the uniformity statistic is, the better. Practically, though, large
negative values, indicating superflatness, suggest a dependency on the key distribution that
one would not want to count on.

308 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

approximately 384,000 bytes. The Japanese documents were in their origi-
nal form: shifted JIS format, two bytes per character. To process the
Japanese data, each byte was treated as a different symbol, so that each
three-gram, for example, held one and a half Japanese characters.12

Four methods of recursive hashing were examined. Prime integer divi-
sion was carried out using a radix of 27 for the English text and 257 for the
Japanese text. The choice of 27 accommodated English alphabetic charac-
ters and space (lowercase letters were mapped to uppercase); the space
character’s ordinal value was mapped to be adjacent to the alphabet,
coming right after “Z.” The choice of 257 permitted the use of all Japanese
codes. It was quickly observed that the more obvious radix choice of 256
caused great nonuniformity, while 257 worked quite well. Hashing by
power-of-2 integer division used the radix 27 for English and the radix 259
for Japanese. Both choices give maximum cycle length.

Hashing by cyclic polynomials employed the algorithm shown in Table
III, with Delta 5 1. Computation was carried out with a word size of 32
bits.

Hashing by polynomial division was conducted using the algorithm
illustrated in Table IV and employing the primitive polynomial modulus
given there.

For each method of hashing, three table sizes were tried: 8192 (8K),
32,768 (32K), and 131,072 (128K), offering a range of table loading. In the
case of hashing by prime integer division, the table sizes were chosen to be
the largest primes less than these nominal sizes.

For each table size and hashing method, all valid n-grams were counted
for n 5 3, 4, 5, 6, and 10. For the English data, valid n-grams were those
that consisted only of characters of the alphabet and the space character.
All Japanese n-grams were considered valid. The range 3 # n # 6 covers
most of the work in the literature; the value n 5 10 was included to see if
behavior changed for larger sizes.

12Breaking up characters this way may strike one as a mistake, but processing done in this
fashion has been very successful. See Damashek [1995] and Cohen [1995] for details.

Table VI. Nonuniformity Score U and Excess Fractional Work v for 3-Grams in English
Text

Method

Nominal Table Size

8K 32K 128K

Prime integer division 217.1 (29.7%) 224.2 (28.6%) 212.1 (22.3%)
Power-of-2 integer division 217.9 (210.1%) 224.2 (28.6%) 212.1 (22.3%)
Cyclic polynomials 10.8 (10.5%) 22.7 (20.9%) 20.9 (20.2%)
Polynomial division 11.9 (11.1%) 20.4 (20.1%) 22.5 (20.5%)

The excess work factor is in parentheses. The text sample consisted of 549,665 valid n-grams,
of which 6194 were unique. The table size for prime integer division was equal to the largest
prime less than the nominal size.

Recursive Hashing Functions for n-Grams • 309

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

Results of the uniformity tests appear in Tables VI through XV. For each
test, the tables report the standardized nonuniformity statistic U and
excess fractional work factor v. The varying choices of n-gram length and
table size resulted in load factors ranging from 0.047 to 34.4.

As the tables show, the hash functions did a good job on the whole. Even
the largest nonuniformity score resulted in an excess work factor of only
7.3%. While the integer division methods often returned the flattest distri-
butions, they were also the most erratic and responsible for the least
uniform results.13 Hashing by cyclic polynomials and polynomial division
worked equally well on English and Japanese; hashing by integer division
worked (suspiciously) well on English, about the same as the other methods
on long Japanese n-grams, and badly on short Japanese n-grams in big
tables.

A summary of the nonuniformity measurements is offered in Table XVI.
As remarked earlier, integer division exhibited the most erratic behavior,
often outscoring the other methods, but occasionally doing relatively badly.
Integer division by a power of 2 turned in the best mean behavior. Hashing
by cyclic polynomials worked slightly better than hashing by polynomial
division. Both, however, were even performers, operating near the “ideal” of
uniform hashing.

The author discovered that U was very sensitive. Minor errors in
implementation or measurement caused drastic changes in the statistic.
This suggests that the good scores shown above are all that much more
significant.

It should be pointed out that the numbers above are dependent upon the
choice of data. Indeed, given any hashing function, an adversary may
always choose data that will result in an appalling distribution of hash
values. The numbers are also a function of the parameters of the algo-

13It is the author’s belief that the erratic behavior of the integer division methods stems from
the fact that such hashing is more a “folding” than a randomization. Successive keys are
mapped to successive addresses until the modulus is reached, whereupon the addresses “fold”
over. It is easy to see how such a scheme could result in a very flat distribution or in a bad one,
depending on the key distribution.

Table VII. Nonuniformity Score U and Excess Fractional Work v for 4-Grams in English
Text

Method

Nominal Table Size

8K 32K 128K

Prime integer division 25.7 (21.7%) 22.6 (20.7%) 28.4 (21.5%)
Power-of-2 integer division 25.0 (21.5%) 14.9 (11.3%) 210.2 (21.8%)
Cyclic polynomials 21.3 (20.4%) 22.4 (20.7%) 22.1 (20.4%)
Polynomial division 11.6 (10.5%) 12.8 (10.8%) 10.7 (10.1%)

The excess work factor is in parentheses. The text sample consisted of 535,428 valid n-grams,
of which 27,310 were unique. The table size for prime integer division was equal to the largest
prime less than the nominal size.

310 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

rithms (the radix and modulus for integer division, the polynomial for
polynomial division) and the “random” polynomials selected for the two
polynomial methods. The author conducted many more experiments on
different data and with different choices of parameters. In particular, a
variety of polynomials were tried in testing the polynomial division method.
The results presented are representative. Runs with different choices
resulted in similar results that were different only in the details. Such
variation makes the choice of a clear “winner” between integer division and
cyclic polynomials on the basis of uniformity difficult.

Table VIII. Nonuniformity Score U and Excess Fractional Work v for 5-Grams in English
Text

Method

Nominal Table Size

8K 32K 128K

Prime integer division 27.0 (21.0%) 24.9 (20.9%) 23.4 (20.5%)
Power-of-2 integer division 25.2 (20.8%) 25.3 (21.0%) 28.2 (21.3%)
Cyclic polynomials 21.8 (20.3%) 20.4 (20.1%) 11.6 (10.2%)
Polynomial division 11.4 (10.2%) 13.4 (10.6%) 12.9 (10.4%)

The excess work factor is in parentheses. The text sample consisted of 521,661 valid n-grams,
of which 71,291 were unique. The table size for prime integer division was equal to the largest
prime less than the nominal size.

Table IX. Nonuniformity Score U and Excess Fractional Work v for 6-Grams in English
Text

Method

Nominal Table Size

8K 32K 128K

Prime integer division 23.7 (20.3%) 22.4 (20.3%) 21.8 (20.2%)
Power-of-2 integer division 22.9 (20.3%) 23.0 (20.4%) 22.3 (20.3%)
Cyclic polynomials 22.5 (20.2%) 21.3 (20.2%) 21.7 (20.2%)
Polynomial division 20.4 (20.0%) 10.9 (10.1%) 20.3 (20.0%)

The excess work factor is in parentheses. The text sample consisted of 508,091 valid n-grams,
of which 134,011 were unique. The table size for prime integer division was equal to the
largest prime less than the nominal size.

Table X. Nonuniformity Score U and Excess Fractional Work v for 10-Grams in English
Text

Method

Nominal Table Size

8K 32K 128K

Prime integer division 20.9 (20.0%) 20.7 (20.0%) 10.6 (10.0%)
Power-of-2 integer division 21.3 (20.0%) 20.4 (20.0%) 10.2 (10.0%)
Cyclic polynomials 11.0 (10.0%) 11.3 (10.1%) 11.3 (10.1%)
Polynomial division 10.5 (10.0%) 10.6 (10.0%) 10.3 (10.0%)

The excess work factor is in parentheses. The text sample consisted of 549,665 valid n-grams,
of which 339,633 were unique. The table size for prime integer division was equal to the
largest prime less than the nominal size.

Recursive Hashing Functions for n-Grams • 311

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

Some experiments were also conducted with self-annihilating recursive
hashing by cyclic polynomials. Two examples are reported here, both
involving a word size of 32 bits and a table size of 32KB buckets. The test
files were the same used to generate the results in Tables VI through XVI.
Nonuniformity is given in Table XVII. As the table shows, this implemen-
tation resulted in nonuniformity that was in excess of that shown in Tables
VI through XV, but is probably tolerable for most applications.

Table XII. Nonuniformity Score U and Excess Fractional Work v for 4-Grams in Japanese
Text

Method

Nominal Table Size

8K 32K 128K

Prime integer division 23.9 (20.6%) 22.3 (20.4%) 126.9 (14.1%)
Power-of-2 integer division 21.2 (20.2%) 12.2 (10.4%) 19.8 (11.5%)
Cyclic polynomials 11.0 (10.2%) 21.4 (20.3%) 22.6 (20.4%)
Polynomial division 10.4 (10.1%) 21.3 (20.3%) 22.2 (20.3%)

The excess work factor is in parentheses. The text sample consisted of 384,116 valid n-grams,
of which 70,183 were unique. The table size for prime integer division was equal to the largest
prime less than the nominal size.

Table XIII. Nonuniformity Score U and Excess Fractional Work v for 5-Grams in Japanese
Text

Method

Nominal Table Size

8K 32K 128K

Prime integer division 21.3 (20.1%) 21.1 (20.2%) 13.6 (10.5%)
Power-of-2 integer division 11.0 (10.1%) 10.7 (10.1%) 10.9 (10.1%)
Cyclic polynomials 20.1 (20.0%) 10.8 (10.1%) 10.9 (10.1%)
Polynomial division 11.6 (10.1%) 20.3 (20.0%) 20.6 (20.1%)

The excess work factor is in parentheses. The text sample consisted of 383,685 valid n-grams,
of which 117,715 were unique. The table size for prime integer division was equal to the
largest prime less than the nominal size.

Table XI. Nonuniformity Score U and Excess Fractional Work v for 3-Grams in Japanese
Text

Method

Nominal Table Size

8K 32K 128K

Prime integer division 24.9 (21.3%) 23.7 (21.0%) 142.0 (17.3%)
Power-of-2 integer division 24.7 (21.2%) 22.3 (20.6%) 23.5 (20.6%)
Cyclic polynomials 20.1 (20.0%) 20.9 (20.2%) 22.0 (20.3%)
Polynomial division 10.3 (10.1%) 20.6 (20.2%) 21.9 (20.3%)

The excess work factor is in parentheses. The text sample consisted of 384,547 valid n-grams,
of which 30,574 were unique. The table size for prime integer division was equal to the largest
prime less than the nominal size.

312 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

3.2 Time Tests

Hashing by recursion was motivated by a desire for rapid processing. It is
appropriate, then, to show that recursion does result in a speed improve-
ment over direct hashing. Also germane is a speed comparison of the
recursive methods.

To study hashing speed, the author timed the period needed to hash
every n-gram present in the English text sample described in the previous
section. For this test, the hash values were not used, nor was any filtering
done to ignore n-grams containing invalid characters. In this way, the test
measured only the speed of hashing. Five methods of hashing were exam-
ined: four recursive methods and a nonrecursive standard. The nonrecur-

Table XIV. Nonuniformity Score U and Excess Fractional Work v for 6-Grams in Japanese
Text

Method

Nominal Table Size

8K 32K 128K

Prime integer division 20.4 (20.0%) 21.2 (20.0%) 10.7 (10.1%)
Power-of-2 integer division 10.6 (10.0%) 10.7 (10.1%) 10.3 (10.0%)
Cyclic polynomials 21.7 (20.1%) 20.8 (20.1%) 20.2 (20.0%)
Polynomial division 20.8 (20.1%) 10.2 (10.0%) 11.1 (10.1%)

The excess work factor is in parentheses. The text sample consisted of 383,252 valid n-grams,
of which 163,800 were unique. The table size for prime integer division was equal to the
largest prime less than the nominal size.

Table XV. Nonuniformity Score U and Excess Fractional Work v for 10-Grams in Japanese
Text

Method

Nominal Table Size

8K 32K 128K

Prime integer division 10.8 (10.0%) 11.0 (10.1%) 10.7 (10.1%)
Power-of-2 integer division 11.0 (10.0%) 11.3 (10.1%) 10.1 (10.0%)
Cyclic polynomials 10.8 (10.0%) 21.0 (20.1%) 10.7 (10.1%)
Polynomial division 11.1 (10.0%) 11.5 (10.1%) 11.1 (10.1%)

The excess work factor is in parentheses. The text sample consisted of 381,530 valid n-grams,
of which 163,800 were unique. The table size for prime integer division was equal to the
largest prime less than the nominal size.

Table XVI. Summary of Nonuniformity Statistics Reported in Tables VI–XV

Statistic

Method

Prime Integer
Division

Power-of-2
Integer Division

Cyclic
Polynomials

Polynomial
Division

Mean 21.2 22.8 20.6 0.4
Standard Deviation 11.4 6.6 1.4 1.4
Minimum 224.2 224.2 22.7 22.5
Maximum 42.0 9.8 1.6 3.4

Each of these numbers was derived from 30 entries in the previous tables.

Recursive Hashing Functions for n-Grams • 313

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

sive method was hashing by integer division, the most often used method of
hashing.

Timing results are given in Table XVIII. Two n-gram lengths were tried.
Note that a longer n-gram resulted in slower processing using the nonre-
cursive method, but did not change the speed of recursive methods. Most
striking about the results is the promised speed improvement of recursion
over the nonrecursive method, even when hashing by integer division.

Of particular interest is comparison with previously reported recursive
hashing methods. The method of Karp and Rabin [1987], recursive prime
integer division, is about 2.5 times slower than hashing by recursive cyclic
polynomials. The faster method of Gonnet and Baeza-Yates [1990] using
division by powers of 2 still takes about 50% longer than hashing by
recursive cyclic polynomials.

Each of the tests of self-annihilating recursive hashing by cyclic polyno-
mials reported in the previous section ran at a relative speed of 11.3. The
work avoided by self-annihilation resulted in a 50% speed improvement.

4. DISCUSSION AND CONCLUSIONS

The use of recursion for computing each hash value from its predecessor
offers great improvement in speed when hashing consecutive n-grams. This
speed comes at virtually no expense: experiments on recursive algorithms
indicate hashing uniformity on a par with the “ideal” of uniform hashing.

Applications of n-gram counting to language sorting, topic sorting, infor-
mation storage and retrieval, string searching, and other indexing and
comparison operations can benefit greatly from this speed improvement.
Particularly affected are real-time interactive uses.

Several methods for recursive hashing are available. Of the four princi-
pal methods outlined here, hashing by prime integer division is the slowest;
hashing by power-of-2 integer division is the next slowest. While power-of-2
integer division produced the best mean uniformity, the integer division
methods are the most erratic in distribution, often giving the flattest
distributions, but occasionally producing the poorest ones. Hashing by both
cyclic polynomials and general polynomial division result in near-uniform
distributions and fastest processing. Hashing by cyclic polynomials holds a
slight edge in uniformity and in speed over polynomial division (7%),

Table XVII. Nonuniformity Score U and Excess Fractional Work v for Self-Annihilating
Recursive Hashing by Cyclic Polynomials

r n Text Sample U(v)

1 1 x8 4 English 4.6 (1.3%)
1 1 x8 4 Japanese 9.3 (1.8%)
1 1 x4 8 English 24.1 (1.9%)
1 1 x4 8 Japanese 9.3 (0.8%)

The radix, n-gram length, and text sample are as given. This data come from implementing
the algorithm pictured in Table V. The excess work factor is in parentheses. The number of
table buckets was 32K.

314 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

though polynomial division is more general and is more suited to longer
n-grams. For special cases, self-annihilating methods offer even more
speed.

Recursive hashing by polynomial division or cyclic polynomials offers the
most rapid processing, without sacrificing near-ideal hash value distribu-
tion.

In closing, one may note that recursive hashing may also be implemented
inexpensively in hardware, especially by either of the polynomial methods.

APPENDIX

A. SOME MATHEMATICAL DEFINITIONS AND OBSERVATIONS

This appendix offers a few preliminaries for the reader who finds the
mathematical terms in the body of the article to be unfamiliar.

A.1 Rings and Integral Domains

A ring R is a nonempty set of elements with two operations on those
elements, denoted 1 and 3, which obey several properties. Each of the two
operations maps any pair of set elements into an element of the set. The
operation 1 is associative and commutative; the operation 3 is associative
and distributes over 1, that is, for any a, b, c [R, a 3 (b 1 c) 5 a 3
b 1 a 3 c and (b 1 c) 3 a 5 b 3 a 1 c 3 a. With respect to 1, there is
an identity element 0 such that a 1 0 5 a for every a [R. Further, each
element a [R has an inverse 2a such that a 1 (2a) 5 0. It follows from
this definition that a 3 0 5 0 for every a [R.

For the ring examples found in the body of this article, the operations 1
and 3 correspond to common addition and multiplication. The integers Z
are a ring with respect to the usual addition and multiplication.

An integral domain is a commutative ring that possesses no zero divisors;
that is, the multiplication operation is commutative, and the multiplication
of two nonzero elements of the ring produces a nonzero result.

Table XVIII. Relative Measured Speed Required to Hash 587,524 n-grams of English Text

Method

Relative Speed

5-grams 10-grams

Nonrecursive integer division 1.0 0.5
Recursive prime integer division 3.0 3.0
Recursive power-of-2 integer division 4.9 5.0
Recursive polynomial division 7.2 7.2
Recursive cyclic polynomials 7.7 7.7

The standard—nonrecursive integer division applied to 5-grams—took 6.56 seconds on a
Macintosh Quadra 950.

Recursive Hashing Functions for n-Grams • 315

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

A.2 Fields

A field F is a special ring which possesses a multiplicative identity 1, is
commutative with respect to multiplication, and has a multiplicative in-
verse for each nonzero element. In other words, for every a, b [F, we have
a 3 b 5 b 3 a and a 3 1 5 a; if a Þ 0, then there exists a21 [F with
a 3 a21 5 1. One of the simplest fields is the Galois field of two elements,
denoted GF(2). Its elements may be labeled as 0 and 1; the operations are
multiplication and addition defined by the tables

1 0 1
0 0 1
1 1 0

and
3 0 1
0 0 0
1 0 1

.

The definition of a field precludes the possibility of zero divisors, that is,
it is not possible to find a, b [F, a Þ 0, b Þ 0 with a 3 b 5 0. Otherwise,
one could write a 5 a 3 1 5 a 3 (b 3 b21) 5 (a 3 b) 3 b21 5 0 3
b21 5 0, a contradiction. Thus, a field is also an integral domain.

A.3 Cosets in Rings

Given a ring R and an element r [R, one may form a new ring R9 5 R/r,
in which the elements of R9 are subsets of R. For each such subset, called a
coset, its members differ by multiples of the “modulus” r. Consider, for
example, Z/5, the integers modulo 5. The coset containing 2 also contains 7,
102, and 23. The usual notation uses a bar over an element to represent
the coset containing that element, so that the coset containing 2 can be
indicated by 2# . Note that 2# 5 7# . One may get sloppy and drop the overbars,
provided that no confusion results. Further, one may choose to represent a
coset by the “smallest” member of that coset, provided that “smallest”
makes sense in the ring at hand. In the body of the article, the author took
the informal route, leaving out the coset notation and choosing to represent
each coset by the smallest element.

A.4 Polynomial Rings

By adjoining the indeterminant x to a ring, one can form a ring of
polynomials in x having coefficients in the original ring. (By “adjoining,”
one means to include all finite sums and products of the new quantity.) For
example, R 5 GF(2)[x] is a new ring consisting of all polynomials in x
whose coefficients are confined to 0 and 1. Elements of this ring are added
and multiplied as polynomials normally are, with the computations of
coefficients done according to the rules given above for GF(2) (the equiva-
lent result is obtained by treating the coefficients as if they were integers,
reducing the results modulo 2), e.g., (1 1 x 1 x3) 1 (1 1 x) 5 x3 and (1 1
x 1 x3)(1 1 x) 5 1 1 x2 1 x3 1 x4.

Given a polynomial p [R, one can form a new ring R9 5 R/p consisting
of cosets of polynomials, with members of the same coset differing by
multiples of p. Each coset is usually represented by its member of mini-

316 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

mum degree, so that each polynomial is represented by its residue modulo
p. For example, the ring GF(2)[x]/1 1 x2 consists of four members
(cosets): 0# , 1# , x# , and 1 1 x. Note that in this ring 1 1 x2 5 0# . The overbars
are usually dropped.

A.5 Implications of Reducibility for Hashing

If factorization in the ring R makes sense, one may talk about r [R being
either irreducible or reducible (composite). If r is composite, then R9 5 R/r
cannot be an integral domain. For if r can be factored nontrivially as r 5
ab, then a# , b# [R9 are such that a# 3 b# 5 0, that is, the ring has zero
divisors. As examples, note that while Z/5 is an integral domain, Z/6 is not:
2# 3 3# 5 0# .

In each case presented in this article, keys are represented by elements
of the ring R and are hashed by “reducing” them to elements of R9 5 R/r.
Suppose that the keys are biased with respect to multiples of some ring
element a; that is, suppose that there exists a [R such that the keys are
distributed unequally between the sets SD 5 {am 1 D u m [R}. (For an
integer example, suppose that there are very few keys of odd value. Then
significantly more of the keys will be found in the set S0 5 {2m 1 0 u m [
Z} than in S1 5 {2m 1 1 u m [Z}.)

If it happens that a divides r, then for each D, all of the elements in SD

will be mapped to the same element in R9. Hence, a poor distribution of
keys among the sets {SD} can easily result in a bad distribution of hash
values. (It will not do so always, since multiple sets hashing to each value
may wash out such biases.)

To avoid such key biases being reflected in the hash value distribution, it
is sufficient to insist that r be irreducible, that is, that R9 be an integral
domain.

In hashing using cyclic polynomials, it was pointed out that computation
is done over a ring that is not an integral domain. It turns out, however,
that this is not likely to be a problem for most implementations. In most
cases, w 5 2m for some m, so that xw 1 1 5 (x 1 1)w, and so the only risk
is that polynomials divisible by x 1 1 will not be balanced by polynomials
that are not divisible by x 1 1. Each of these categories is half of the 2w

elements of R9 5 GF(2)[x]/(xw 1 1): the even density polynomials and the
odd density polynomials, respectively. But in practice one will only use the
lower t , w bits (coefficients) for the hash value, and, over these bits, the
two sets are indistinguishable.

ACKNOWLEDGMENTS

The idea of recursive hashing was suggested to the author by Jeff Kubina,
as was a variant of cyclic polynomial hashing. The author would like to
thank Jeff M. Kubina, Marc Damashek, Steve Huffman, Claudia Pearce,
and Suzanne Banghart for reviewing the article.

Recursive Hashing Functions for n-Grams • 317

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

REFERENCES

ANGELL, R. C., FREUND, G. E., AND WILLET, P. 1983. Automatic spelling correction using
trigram similarity measure, Inf. Process. Manage. 19, 4, 255–261.

BARTON, I. J., CREASY, S. E., LYNCH, M. F., AND SNELL, M. J. 1974. An information-theoretic
approach to text searching in direct access systems. Commun. ACM 17, 6 (June), 345–350.

BERLEKAMP, E. R. 1984. Algebraic Coding Theory. Aegean Park Press, Laguna Hills, Calif.
BICKEL, P. J. AND DOKSUM, K. A. 1977. Mathematical Statistics. Holden-Day, San Francisco,

Calif.
BISHOP, Y. M. M., FIENBERG, S. E., AND HOLLAND, P. W. 1975. Discrete Multivariate Analy-

sis: Theory and Practice. MIT Press, Cambridge, Mass.
BURNETT, J. E., COOPER, D., LYNCH, M. F., WILLETT, P., AND WYCHERLEY, M. 1979. Document

retrieval experiments using indexing vocabularies of varying size. I. Variety generation
symbols assigned to the fronts of index terms. J. Doc. 35, 3 (Sept.), 197–206.

CAVNAR, W. B. 1993. N-gram-based text filtering for TREC-2. In Proceedings of TREC-2:
Text Retrieval Conference 2, D. Harman, Ed. National Bureau of Standards, Gaithersburg,
Md.

COHEN, J. D. 1995. Highlights: Language- and domain-independent automatic indexing
terms for abstracting. J. Am. Soc. Inf. Sci. 46 (Apr.), 162–174. See vol. 47, issue 3, p. 260 for
erratum.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1990. Introduction to Algorithms. MIT
Press, Cambridge, Mass.

CORNEW, R. W. 1968. A statistical method of spelling correction. Inf. Control 12, 79–93.
DAMASHEK, M. 1995. Gauging similarity with n-grams: Language-independent categoriza-

tion of text. Science 267, 10 (Feb.), 843–848.
D’AMORE, R. J. AND MAH, C. P. 1985. One-time complete indexing of text: Theory and

practice. 1985. In Proceedings of the 8th International ACM Conference on Research and
Development in Information Retrieval. ACM, New York, 155–164.

DARRAGH, J. J., WITTEN, I. H., AND JAMES, M. L. 1990. The reactive keyboard: A predictive
typing aid. Computer 23, 11 (Nov.), 41–49.

DE HEER, T. 1982. The application of the concept of homeosemy to natural language
information retrieval. Inf. Process. Manage. 18, 5, 229–236.

DUMEY, A. I. 1956. Indexing for rapid random access memory systems. Comput. Autom. 5,
12 (Dec.), 6–9.

GONNET, G. H. AND BAEZA-YATES, R. A. 1990. An analysis of the Karp-Rabin string matching
algorithm. Inf. Process. Lett. 34, 271–274.

GONNET, G. H. AND BAEZA-YATES, R. 1991. Handbook of Algorithms and Data Structures in
C and Pascal. Addison-Wesley, Wokingham, U.K.

HANAN, M. AND PALERMO, F. P. 1963. An application of coding theory to a file address
problem. IBM J. Res. Devel. 7 (Apr.), 127–129.

HANSON, A. R., RISEMAN, E. M., AND FISHER, E. 1976. Context in word recognition. Pattern
Recog. 8, 35–45.

HARRISON, M. C. 1971. Implementation of the substring test for hashing. Commun. ACM
14, 12 (Dec.), 777–779.

HULL, J. J. AND SRIHARI, S. N. 1982. Experiments in text recognition with binary n-gram
and Viterbi algorithms. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 5 (Sept.), 520–530.

HUSSAIN, A. B. S. AND DONALDSON, R. W. 1974. Suboptimal sequential decision schemes
with on-line feature ordering. IEEE Trans. Comput. C-23, 6, 582–590.

KARP, R. M. AND RABIN, M. O. 1987. Efficient randomized pattern-matching algorithms.
IBM J. Res. Devel. 31, 2 (Mar.), 249–260.

KIM, J. Y. AND SHAWE-TAYLOR, J. 1992. An approximate string-matching algorithm. Theoret.
Comput. Sci. 92, 107–117.

KNUTH, D. E. 1973. The Art of Computer Programming. Vol. 3, Sorting and Searching.
Addison-Wesley, Reading, Mass.

KOTAMARTI, U. AND THARP, A. L. 1990. Accelerated text searching through signature trees.
J. Am. Soc. Inf. Sci. 41, 2 (Mar.), 79–86.

318 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

KUKICH, K. 1992. Techniques for automatically correcting words in text. ACM Comput.
Surv. 24, 4 (Dec.), 377–439.

LUM, V. Y., YUEN, P. S. T., AND DODD, M. 1971. Key-to-address transform techniques: A
fundamental performance study on large existing formatted files. Commun. ACM 14, 4
(Apr.), 228–239.

LYNCH, M. F. 1977. Variety generation—A reinterpretation of Shannon’s mathematical
theory of communication, and its implications for information science. J. Am. Soc. Inf. Sci.
28, 1 (Jan.), 19–25.

MCELWAIN, C. K. AND EVENS, M. B. 1962. The degarbler—A program for correcting ma-
chine-read morse code. Inf. Control 5, 368–384.

MCKENZIE, B. J., HARRIES, R., AND BELL, T. 1990. Selecting a hashing algorithm. Softw.
Pract. Exper. 20, 2 (Feb.), 209–224.

MORRIS, R. AND CHERRY, L. L. 1975. Computer detection of typographical errors. IEEE
Trans. Prof. Commun. PC-18 (Mar.), 54–64.

NAKAMURA, M. AND SHIKANO, K. 1989. A study of English word category prediction based on
neural networks. In ICASSP-89: International Conference on Acoustics, Speech, and Signal
Processing. Vol. 2. IEEE, New York, 731–734.

NEUHOFF, D. L. 1975. The Viterbi algorithm as an aid in text recognition. IEEE Trans. Inf.
Theory IT-21 (Mar.), 222–226.

PAESELER, A. AND NEY, H. 1989. Continuous-speech recognition using a stochastic language
model. In ICASSP-89: International Conference on Acoustics, Speech, and Signal Processing
2. IEEE, New York, 719–722.

PEARCE, C. E. 1994. A dynamic hypertext environment through n-gram analysis. Ph.D.
dissertation, Univ. of Maryland Baltimore County, Baltimore, Md.

PETERSON, W. W. 1957. Addressing for random-access storage. IBM J. Res. Devel. 1 (Apr.),
130–146.

PETERSON, W. W. 1961. Error-Correcting Codes. John Wiley & Sons, New York.
PIETRA, S. D., PIETRA, V. D., MERCER, R. L., AND ROUKOS, S. 1992. Adaptive language model-

ing using minimum discriminant estimation. In ICASSP-92: International Conference on
Acoustics, Speech, and Signal Processing. Vol. 1. IEEE, New York, 633–636.

PRYOR, D. V., THISTLE, M. R., AND SHIRAZI, N. 1993. Text searching on Splash 2. In Proceed-
ings of the IEEE Workshop on FPGAs for Custom Computing Machines. IEEE Computer
Society Press, Los Alamitos, Calif., 172–177.

SCHAY, G. AND RAVER, N. 1963. A method for key-to-address transformation. IBM J. Res.
Devel. 7 (Apr.), 121–126.

SCHMITT, J. C. 1990. Trigram-based method of language identification. U.S. Patent No.
5,062,143. U.S. Patent Office, Washington, D.C.

SCHUEGRAF, E. J. AND HEAPS, H. S. 1973. Selection of equifrequent word fragments for
information retrieval. Inf. Storage Retrieval. 9, 697–711.

SHANNON, C. E. 1951. Prediction and entropy of printed english. Bell System Tech. J. 30
(Jan.), 50–64.

SHINGHAL, R., ROSENBERG, D., AND TOUSSAINT, G. T. 1978. A simplified heuristic version of a
recursive Bayes algorithm for using context in text recognition. IEEE Trans. Syst. Man
Cyber. SMC-8, 5 (May), 412–414.

SUEN, C. Y. 1979. n-gram statistics for natural language understanding and text process-
ing. IEEE Trans. Patt. Anal. Mach. Intell. PAMI-1, 2 (Apr.), 164–172.

THOMAS, R. B. AND KASSLER, M. 1967. Character recognition in context. Inf. Control 10,
43–64.

UKKONEN, E. 1992. Approximate string-matching with q-grams and maximal matches.
Theor. Comput. Sci. 92, 191–211.

VOSSLER, C. M. AND BRANSTON, N. M. 1964. The use of context for correcting garbled English
text. In Proceedings of the 19th National Conference of the ACM. ACM, New York,
D2.4-1–D2.4-13.

WILLET, P. 1979. Document retrieval experiments using indexing vocabularies of varying
size. II. Hashing, truncation, digram and trigram encoding of index terms. J. Doc. 35, 4
(Dec.), 296–305.

Recursive Hashing Functions for n-Grams • 319

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

WISNIEWSKI, J. L. 1987. Effective text compression with simultaneous digram and trigram
encoding. J. Inf. Sci. 13, 159–164.

WRIGHT, J. H., JONES, G. J. F., AND WRIGLEY, E. N. 1992. Hybrid grammar-bigram speech
recognition system with first-order dependence model. In ICASSP-92: International Confer-
ence on Acoustics, Speech, and Signal Processing. Vol. 1. IEEE, New York, 169–172.

YANNAKOUDAKIS, E. J. AND HUTTON, P. J. 1992. An assessment of n-phoneme statistics in
phoneme guessing algorithms which aim to incorporate phonotactic constraints. Speech
Commun. 11, 6 (Dec.), 581–602.

ZAMORA, E. M., POLLOCK, J. J., AND ZAMORA, A. 1981. The use of trigram analysis for
spelling error detection. Inf. Process. Manage. 17, 6, 305–316.

Received April 1995; revised December 1995; accepted November 1996

320 • Jonathan D. Cohen

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

