CROSS-LANGUAGE INFORMATION RETRIEVAL (CLIR)
 James Mayfield
 May 2, 2022
 CMSC 476/676

Outline

Introduction

CLIR Evaluation
Attributes of Non-English Text
Crossing the Language Barrier Other Techniques
Conclusions

Our Problem

 Huge document collection Must use automated methods

An information need is not a query Must infer information need behind analyst's query

Goal: find documents that satisfy information need

Analyst speaks English
Must span language barrier
Documents written in foreign language (e.g., Chinese)

Read documents in Chinese

Formulate Chinese query

Approach 2

Translate every document into English

$$
\begin{aligned}
& \text { Formulate } \\
& \text { English query }
\end{aligned}
$$

Read documents in English Use English query to find translated documents

Read documents

Search \& Multilinguality

- Official Languages
- EU: 23, India: 22, UN: 6, Switzerland: 4, Belgium: 3
- National Security
- DoD National Language Service Corps: Chinese, Hausa, Hindi, Indonesian, Marshallese, Russian, Somali, Swahili, Thai, and Vietnamese
- E-Commerce
- "To reach 80% of the world's Internet users, a Web site needs to support a minimum of 10 languages" - Byte Level Research, 2007
- "One-fourth of Hispanics must be served in Spanish if retailers want their business." - Forrester Research, 2008

Serving All Beneficiaries

Social Security
official social security website

E. Accessibility Contact Us FAQs Español © Other Languages Sign In

Home
Numbers \& Cards

Social Security Information in Other Languages

Related Information

2015 Social Security Administration Language Access Plan \&
Free Interpreter Services
Your Payments While You Are Outside The United States \&, Publication No. 05-10137 (English \&, French \&, German \&, Greek \&, Italian \&, \& Spanish \&)

If you had difficulty receiving services due to a language barrier issue, please contact the Regional Communications Director for your state

Outline

Introduction
CLIR Evaluation
Attributes of Non-English Text
Crossing the Language Barrier Other Techniques
Conclusions

Evaluation of CLIR Search Quality

- CLIR at Text REtrieval Conference (TREC)
- Spanish and Chinese monolingual, bilingual (TREC 4-6)
- French, German, \& Italian bilingual, multilingual (TREC 6-8)
- Chinese (TREC-9)
- Arabic (TREC 2001 \& TREC 2002)
- No CLIR at TREC 2003-2021
- New at TREC 2022: NeuCLIR track

Cross-Language Evaluation Forum

- Patterned after TREC
- Focus on European languages
- Bulgarian, Czech, Dutch, English, Finnish, French, German, Hungarian, Italian, Portuguese, Russian, Spanish, Swedish (added Farsi in 2008)
- Tasks
- Monolingual \& Bilingual Retrieval
- Cross-Language Spoken Document Retrieval
- Human-interactive CLIR
- Question Answering
- Web Retrieval
- Cross-Language Image Search

CLEF Ad Hoc Test Sets (2000 - 2007)

	\#docs	size	00	01	02	03	04	05	06	07	
Bulgarian (BG)	69 k	213 MB						49	50	50	149
Czech (CS)	82 k	178 MB								50	50
Dutch (NL)	190 k	540 MB		50	50	56					156
English (EN)	170 k	580 MB	33	47	42	54	42	50	49	50	367
Finnish (FI)	55 k	137 MB			30	45	45				120
French (FR)	178 k	470 MB	34	49	50	52	49	50	49		333
German (DE)	295 k	660 MB	37	49	50	56					192
Hungarian (HU)	50 k	105 MB						50	48	50	148
Italian (IT)	157 k	363 MB	34	47	49	51					181
Portuguese (PT)	107 k	340 MB					46	50	50		146
Russian (RU)	17 k	68 MB				28	34				62
Spanish (ES)	453 k	1086 MB		49	50	57					156
Swedish (SV)	143 k	352 MB			49	53					102

TREC Spin-offs

- Europe (CLEF)

O 2000 - present

- Japan (NTCIR)

O 1999-present

- India (FIRE)

O 2008-present

- Russia (ROMIP)

O 2003-2014

Forum for Information $\mathbf{R e t r i e v a l ~} E_{\text {valuation }}$ (FIRE)
$5^{\text {th }} \cdot 7^{\text {th }}$ December 2014
Indian Statistical Institute, Bangalore
РОМИП
С \quad Е \quad M \quad И \quad H \quad A \quad P

TREC 2022 NeuCLIR Track

- English Queries
- Chinese, Russian, and Persian Documents
- neuclir.github.io/

- Easy-to-use baseline system: "Patapsco"
- Provides basic CLIR with evaluation
- github.com/hltcoe/patapsco
- Call for participation: trec.nist.gov/pubs/call2022.html

Outline

Introduction
CLIR Evaluation
Attributes of Non-English Text
Characters
Words
Subwords
Crossing the Language Barrier Other Techniques
Conclusions

Characters

Characters, Code Points, Glyphs and Encodings

- Upper-case-A, lower-case-e and dollar-sign are characters (abstract atomic data elements)
- Code Points are integers that represent characters
- ASCII values are code points
- Unicode is a particular standard mapping from code points to characters O Unicode is a superset of ASCII
- Glyphs are graphical representations of characters
- A $, \mathbf{A}, \mathcal{H}$, and \mathscr{A} are different glyphs for an upper-case-A
- An encoding is a way to map a sequence of code points onto a sequence of bytes (suitable for storage on disk, for example)

- UTF-8 is a common encoding of Unicode

Unicode

- Universal set of code points
- Most common encoding: UTF-8
- Features and issues
- Normalization
- Look-alike characters
- Parallel code blocks
- Handy tools:
apps.timwhitlock.info/unicode/inspect
shapecatcher.com/

Other Encodings

There are scores of encodings beyond UTF-8 that can still be found on the Internet

- UTF-16, UTF-32 - Unicode encodings
- ASCII
- ISO8859-1 (Latin-1) - ASCII variants
- -2 through -16
- EBCDIC - IBM mainframes
- CP-437 - IBM PC
- -720 through -822
- Windows-1252 - Windows encodings
- -1250-1258
- MacOS Roman

- GBT-2312 - Simplified Chinese
- GBK, GB-18030
- Big5 - Traditional Chinese
- JIS X-0208 - Japanese
- JIS X-0213
- KS X-1001 - Korean
- EUC-KR
- ISO 2022-KR

Writing Systems

- The world's languages are written in many different scripts
- Some languages use different scripts for different words
- Japanese: Kanji, Katakana, Hiragana, Romanji
- Some languages are even written in multiple writing systems (Digraphia)
- Serbian: Cyrillic, Latin
- Many languages that use writing systems other than Latin have transliterations into Latin script
- Chinese: Pinyin
- Transliteration into Latin characters often necessitated by lack of keyboards for other writing systems

Number of Speakers Worldwide by Script

Name	Active Speakers (millions)	Languages
Latin	4,900	English, Spanish, French, Portuguese, Romanian, etc.
Chinese	1,340	Chinese, Japanese (Kanji), Korean (Hanja), etc.
Arabic	660	Arabic, Persian, Urdu, Punjabi, Pashto, etc.
Devanagari	608	Hindi, Marathi, Konkani, Nepali, Sanskrit, etc.
Bengali	265	Assamese, Bengali, Bishnupriya Manipuri, Meitei Manipuri
Cyrillic	250	Bulgarian, Russian, Serbian, Ukrainian, etc.
Kana	120	Japanese, Okinawan, Ainu
Javanese	80	Javanese
Hangul	79	Korean
Telugu	74	Telugu

WORDS

Segmentation

- (At least) three levels of segmentation:
- Sentence segmentation: where are the sentence boundaries?
- Word segmentation: where are the word boundaries?
- Morphological segmentation: where are the morphemes?

Sentence Boundary Detection

- Some languages have unambiguous end-of-sentence markers
- E.g., Chinese full stop
- Dr. Mulholland of Mulholland Dr. says "In other langs., sentence segmentation is not so easy." Dr. Mulholland is right.
- Six periods, two sentences
- Two main approaches:
- Rule-based
- Machine learning

Word Boundary Detection

- In some languages (e.g., English), blank space and punctuation are strong predictors of word boundaries
- In others (e.g., Chinese), wordsaresimplyruntogetherwithoutbreaks.
- Main approaches
- Rule-based
- Machine learning
- Ignore problem through use of subwords

Morphological Segmentation

- Goal: identify morphological components of a word
- Handling morphology is critical for avoiding OOV in morphologically complex languages
- Morfessor: statistical approach
- Mines large text collection
- Identifies most likely break points

Unsupervised

kansanedu
 kansan + edustaja kansanedus + taja kansa $+n+$ edustaja kansan + edusta + ja

Semi-supervised (1000 annotations)
kansa $+n+$ edusta $+j a^{26.5}$
kansa $+\mathrm{n}+$ edust + aja $\quad 29.3$
kansa $+n+$ edusta $+j+a^{30.1}$
kansa $+\mathrm{n}+$ edust $+\mathrm{a}+\mathrm{ja}{ }^{30.3}$
26.1
26.5 kansa $+\mathrm{n}+\mathrm{edu}+\mathrm{sta}+\mathrm{ja}$30.9

Morphological Processes

- Abbreviations:
- Acronyms:
- Blending:
- Borrowing:
- Clipping:

Compounding:

- Conjugation:
- Contractions:

Declension
Derivation:

- Doubling:

Inflection:

- Military:
- Miscellaneous
- Texting:

BTW, FYI, w/o, Dr.
NASA, MIT, IBM
breakfast/lunch brunch; turducken ombrelli (umbrella), quiche, kindergarten
professor prof; gymnasium gym
airport, girlfriend, father-in-law
swim/swims/swam/swum
do not don't
I/me/my/mine
compute(v), computer(n); boy(n), boyish(adj)
bye-bye; night-night
number or gender: fox+es; act+or/act+ress
Pacific/Command PACOM (clipping + compounding) H2O, i18n (internationalization)
4 (for), CUL8R, RUOK

Stemming

- Applicable to alphabetic languages
- An approximation to lemmatization
- Identify a root morpheme by chopping off prefixes and suffixes

Most stemmers are rule-based
-ing $=>\varepsilon$ juggling $=>$ juggl
-es $=>\varepsilon$ juggles $=>$ juggl
$-\mathrm{le}=>-1$ juggle $=>$ juggl
The Snowball project provides high quality, rulebased stemmers for many European languages
http://snowball.tartarus.org/

SUBWORDS

Subword Representations of Language

- Use pieces of words for indexing
- Two main flavors
- Character N-Grams
- Byte Pair Encoding (BPE)
- Advantages
- Counteracts data sparseness
- Reduces OOVs (out-of-vocabulary)
- Disadvantages
- Larger indexes
- Doesn't play well with word-based processes

Character N-Grams

- Represent text as overlapping substrings of n characters
- Fixed length of n of 4 or 5 is effective in alphabetic languages
- For text of length m, there are $m-n+1 n$-grams

	S	w	i	m	m	e	r	S	
-	s	w	i	m					
	s	w	i	m	m				
		w	i	m	m	e			
			i	m	m	e	r		
				m	m	e	r	s	
					m	e	r	s	-

Advantages:

- simple
- address morphology
- surrogate for short phrases
- robust against spelling \& diacritical errors
- Language-independent

Disadvantages:

- conflation (e.g., simmer, polymers)
- speed and disk usage penalties

Tokenization Comparison

- Words
- Straightforward for most languages
- Generally produce poor performance

- Stems
- Effective in Romance languages
- Not always available
- Character N-grams
- Language-neutral
- Large performance gains in complex languages

Source of N-gram Power

- Idea: remove morphology
- Letter order of words was randomly permuted (consistently)
- golfer -> legfro, team-> eamt
- golfing, golfer, golfed no longer share a morpheme

Byte Pair Encoding (BPE)

- Originally a compression technique

```
vocab ={letters}
while (|vocab| < TARGET_SIZE)
Form a new token T by concatenating most common token pair
    vocab = vocab U {T}
```

 _ she_sells_seashells_
 _she_sello_seashello_
 _she_sells_seashells _
 _she_s e lls _s e a shells_
 _s he _se lls _se a she lls _
 - In some applications, this allows words never seen before (Out Of Vocabulary, or OOV) to be processed appropriately

WordPiece Tokenization

- BERT uses WordPiece tokenization
- Based on BPE: Start with alphabet, merge until desired number of tokens achieved
- New tokens may not cross word boundaries
- English BERT has a vocabulary of 30,000 tokens
- Multilingual BERT has a vocabulary of 119,547 tokens
- WordPiece Algorithm

```
vocab = {letters}
while (|vocab| < TARGET_SIZE)
    Use training data to create language_model(vocab)
    Form a new token T by concatenating the pair of tokens to that maximizes
        the likelihood of training data when added to the language model
    break if likelihood increase < threshold
    vocab = vocab U {T}
```


WordPiece Tokenization cont.

- Special tokens for sentence prediction objective
- [CLS] Beginning of sentence(s)
- [SEP] End of each sentence
- [CLS] i've had a perfectly wonderful evening [SEP] but this wasn't it [SEP]
- Example: embeddings => [em \#\#bed \#\#ding \#\#s]
- The double pound sign means that the previous token is part of the same word
- Word embeddings
- WordPiece embeddings do not encode most complete words
- Two approaches:
- Average vectors for component word pieces

■ Use just first or last subword

SentencePiece Tokenization

- Open source analog to WordPiece
- Does not require prior word segmentation
- Available from https://github.com/google/sentencepiece
- Example
- "L'appartement est grand \& vraiment bien situe en plein centre"

○ "_L" "'" "app" "ar" "tement" "_est" "_grand" "_"
"\&" "_v" "r" "ai" "ment" "_bien" "_situe" "_en"
"_plein" "_centre"

Outline

Introduction
CLIR Evaluation
Attributes of Non-English Text
Crossing the Language Barrier
Do Nothing
Transliteration
Machine Translation
Dictionary Lookup
Multilingual Embeddings
Pivoting
End-to-end Retrieval
Other Techniques
Conclusions

Translation: What Should Be Translated?

Question 1: In which direction should we cross the language barrier?

- Translate the documents
- Pro: Provides lots of context to get accurate word translations
- Con: Translating millions of documents is time-consuming and computationally expensive
- Translate the queries
- Con: Not much context in query itself
- Pro: Might have other information about user that assist THIS WAY
- Pro: Translation is fast (per query)
- Translate both to an interlingua
- Con: More translation required
- Pro: Interlingua might better support retrieval than h
- Pro: Supports multi-way CLIR

Crossing the Language Barrier

Question 2: How should we cross the language barrier?

- Do nothing
- Transliteration
- Machine Translation
- Dictionary Lookup
- Multilingual Embeddings
- Pivoting
- End-to-End Retrieval

Crossing the Language Barrier Do Nothing

- Sometimes called cognate matching
- Buckley et al., 1997: French is misspelled English
- Applied spelling correction to convert English query to French, then used monolingual retrieval
- Outperformed many systems at TREC-6
- McNamee \& Mayfield 2002: Dutch is English
- Character n-gram tokenization
- CLEF-2001 English documents, non-English queries

Crossing the Language Barrier Transliteration

- Transliteration is mapping from the characters of one script to those of a different script in a way that preserves sounds
- Greek word: E入عuӨcpía
- Translation: Freedom
- Transliteration: Eleutheria
- Names are often transliterated rather than translated when mapping to a different language
- Several approaches to transliteration
- Rule-based (usually hand-coded)
- Grapheme-based translation
- Phoneme-based translation
- Alignment

Crossing the Language Barrier Machine Translation

- Most straightforward approach to CLIR

inneal

 मशशनSTr

ماشنا

- Radical improvement in machine translation over past four years
- But much of the gain from using neural approaches comes from improved fluency
- Not clear how improved fluency can help IR
- Correlation between machine translation performance and retrieval performance has been inconsistent

Crossing the Language Barrier Dictionary Lookup

- Word-by-word machine translation
- Keys to success
- Comprehensive dictionary
- Matches domain of query
- Method to select translation(s)
- Query augmentation

Two Types of Dictionary

- Manually-generated

O Commercial dictionaries expensive (~\$10K / language pair)
O Unclear how to pick the right word(s) from possible translations

- Corpus-based (MT translation tables)

O In-domain aligned Parallel Corpora are uncommon
O Translation results may be biased by domain of source text

Corpus-based Translation

Given aligned parallel texts and a particular term to translate:

- Find set of documents (sentences) in the source language containing the term
- Examine corresponding foreign documents
- Extract 'good’ candidate translation(s)
- Goodness can be based on term similarity measures (Dice, PMI, IBM Model 1, etc.)

Sample Corpus-based Translations

(2.D)DMmen

 4

poisson	pêche	eaux	islandais	cee	baisse
fish	fishing	waters	iceland	eec	decline
freshwater	fisheries	water	icelandic	programme	drop
fishermen	fishermen	sewage	denmark	european	prices
fishing	fishery	pollution	norway	nations	price

Issues in Dictionary-Based CLIR

"The main [translation] problems associated with dictionary-based CLIR are (1) untranslatable search keys due to the limitations of general dictionaries, (2) the processing of inflected words, (3) phrase identification and translation, and (4) lexical ambiguity in source and target languages." - Pirkola et al.

Subwords can help two (and a half) of these:

- Out-of-Vocabulary words (OOV)
- Morphological Variation
- (Surrogate) Phrase Translation
A. Pirkola, T. Hedlund, H. Keskusalo, and K. Järvelin, 'Dictionary-Based Cross-Language Information Retrieval: Problems, Methods, and Research Findings.' Information Retrieval, 4:209230, 2001.

Translating Character N-grams

Corpus-based translation can be applied to character n-grams!

- 'work' (from working) maps to 'abaj' (as in trabajaba)
- ‘yrup’, (from syrup) maps to 'rabe' (as in jarabe)
- 'therl' (from Netherlands) to 'ses b' (as in Países Bajos)

	German	Italian	French	Dutch
Word	milch	latte	lait	melk
Stem	milch	latt	lait	melk
4-grams	milc	latt	lait	melk
	ilch	latt		
5-grams	milc	-latt	-lait	melk
	milch	latte	lait_	melk_

Advantages of Character N-gram Translation

- Almost no such thing as an OOV n-gram
- Quality of alignments more important than corpus size
- Less data sparseness
- With 5% of Europarl n-grams outperform words with any amount of (Europarl) parallel data

CLEF Bilingual English to X

		Acquis Corpus			Europarl Corpus		
		words	stems	5-grams	words	stems	5-grams
BG	Bulgarian	0.0591	X	0.0898	x	x	x
CS	Czech	0.1107	x	0.2479	X	X	X
DE	German	0.1802	0.2097	0.2952	0.2427	0.2646	0.3519
ES	Spanish	0.2583	0.3072	0.3661	0.3509	0.3721	0.4294
FI	Finnish	0.1286	0.1755	0.3552	0.2135	0.2488	0.3744
FR	French	0.2508	0.2733	0.3013	0.2942	0.3233	0.3523
HU	Hungarian	0.1087	x	0.2224	x	x	x
IT	Italian	0.2365	0.2656	0.2920	0.2913	0.3132	0.3395
NL	Dutch	0.2474	0.2249	0.3060	0.2974	0.2897	0.3603
PT	Portuguese	0.2009	x	0.2544	0.2365	x	0.2931
SV	Swedish	0.2111	0.2270	0.3016	0.2447	0.2534	0.3203
PMAP		0.1811		0.2756	0.2714		0.3527
\% change				63.5\%			31.9\%
PMAP-7		0.2161	0.2405	0.3168	0.2764	0.2950	0.3612
\% change			13.1\%	56.0\%		7.1\%	33.0\%

Crossing the Language Barrier Multilingual Embeddings

- Embeddings: placement of indexing tokens in high (300-1000) dimensional vector space
- Preserves relationships among terms
- Often called CLWEs (cross-language word embeddings) or CLEs (crosslanguage embeddings)
- Commonly evaluated on bilingual lexicon induction
- Can identify possible translations using approximate nearest neighbors algorithms
- Embeddings can be static (e.g., Word2Vec or GloVe) or contextual (e.g., BERT)

Two Forms of Multilingual Embedding

Shared embedding space

- Supervised using sentence-aligned corpora

- Supervised using document-aligned corpora
- Pseudo-mixing
- Embeddings built from documents where some words have been replaced by translations
Embedding space alignment
- Unsupervised
- Shared term-based alignment
- E.g., identical strings, cognates, numerals
- Dictionary-based alignment

Crossing the Language Barrier Pivoting

- Jump from source to target language through third "pivot" language
- Useful for low resource languages
- Can use different techniques for the two jumps
- Typically:
- First language pair is high resource (e.g., English/Russian)
- Second language pair comprises closely-related languages (e.g., Russian/Ukrainian)
- Or, pivot through English
- Often, English/Language1 and English/Language2 resources are readily available, where Language1/Language2 resources are not

Crossing the Language Barrier End-to-End Retrieval

MS MARCO

- In end-to-end retrieval, the system is trained directly on query-document training pairs
- Monolingually, the MS MARCO datasets have served this purpose
- A key barrier to training end-to-end neural CLIR systems is a lack of such querydocument training pairs
- Large-Scale CLIR Datasets

O Translated MS MARCO
O github.com/unicamp-dl/mMARCO
O Others available off NeuCLIR page
O WikiCLIR
■ Uses 2.8 M first sentence of Wikipedia articles as queries

- Automated relevance judgments in 25 languages

■ cs.jhu.edu/~kevinduh/a/wikiclir2018/

Outline

Introduction
CLIR Evaluation
Attributes of Non-English Text
Crossing the Language Barrier
Other Techniques
Pre- and Post-Translation Expansion
Probabilistic Structured Queries
Conclusions

Pre- and Post-Translation Expansion

- Pre-translation expansion: add new terms to query before translating it
- Post-translation expansion: add new terms to query after translating it
- X-axis: Reduction in size of translation dictionary
- Y-axis: Performance

McNamee and Mayfield, Comparing Cross-Language Query Expansion Techniques by Degrading Translation Resources, SIGIR-2002.

Probabilistic Structured Queries

- Many possible translations, learned from parallel text
- Each with an estimated translation probability
- Term frequency and document frequency of query term e computed using term frequency and document frequency of its translations:

$$
\begin{aligned}
T F\left(e, D_{k}\right) & =\sum_{f_{i}} p\left(e \mid f_{i}\right) \times T F\left(f_{i}, D_{k}\right) \\
D F(e) & =\sum_{f_{i}} p\left(e \mid f_{i}\right) \times D F\left(f_{i}\right)
\end{aligned}
$$

Outline

Introduction
CLIR Evaluation
Attributes of Non-English Text
Crossing the Language Barrier Other Techniques
Conclusions

Paul McNamee's List of Foundational CLIR Literature

- Translate Documents or Queries

McCarley, 'Should we Translate the Documents or the Queries in Cross-Language Information Retrieval', ACL-99

- Translation Ambiguity

Pirkola, Puolamäki, and Järvelin, 'Applying Query Structuring in Cross-Language Retrieval', IPM 39(3), 2003
Gollins and Sanderson, 'Improving Cross-Language Retrieval with Triangulated Translation', SIGIR01
Wang and Oard, 'Combining bidirectional translation and synonymy for cross-language information retrieval', SIGIR-06

Paul McNamee's List of
 Foundational CLIR Literature cont.

- Query Expansion and CLIR

Ballesteros and Croft, 'Phrasal Translation and Query Expansion Techniques for Cross-Language Information Retrieval', SIGIR-97

- Poor Translation Resources

Demner-Fushman and Oard, 'The Effect of Bilingual Term List Size on Dictionary-Based Cross-Language Information Retrieval', HICSS03
McNamee and Mayfield, 'Comparing CrossLanguage Query Expansion Techniques by Degrading Translation Resources', SIGIR-02

Ill

Thank you

Questions?

