Introduction to NLP

CMSC 473/673 Spring 2017
Bryan Wilkinson
Course Overview

● Course Website is
 https://www.csee.umbc.edu/courses/undergraduate/473/
● Blackboard will be used for announcements and posting grades
● My Office Hours are in ITE 364
 ○ Tuesdays at 1PM
 ○ Wednesdays at 1PM
 ○ By appointment
● The TA is Aparna Subramanian
 ○ Thursdays at 2:30 PM
 ○ ITE 349
PhD Candidate in Computer Science
 - Planning to Defend in April

I work with Dr. Tim Oates in CoRaL

Research Projects done with the lab include:
 - Monitoring Twitter for Cybersecurity Attack Signals (w/ USNA)
 - Identifying Environmental Noise Sources in Recordings (w/ US Army Corps of Engineers)

My dissertation research focuses on the semantics of adjectives
 - Ex: How can we learn what other adjectives modify the same property as big and tiny
 - To what degree do they modify that property?

Other research interests include:
 - Working with endangered and under-resourced languages
 - Using artificial data
What is NLP?

- Natural Language Processing generally refers to the processing of text generated by humans for use in computation.
- Computational Linguistics is often used as a synonym but can also mean using computers to perform linguistic investigations or simulate linguistic theories.
- Distinction doesn’t really matter, tons of overlap between both
What is NLP?

- NLP **CAN** combine:
 - Computer Science
 - Information Retrieval
 - Machine Learning
 - AI
 - Math and Statistics
 - Linguistics
 - Philosophy
 - Literature
 - Psychology
 - Many more fields

- Many people practice NLP with only or mostly the first two.
Low Level Examples

- **Changing a Verb’s Tense**
 - How do I make walk have past tense? What about catch?

- **Parts of Speech**
 - What is the noun in
 The employee banks on getting a loan from the bank

- **Grammar Agreement**
 - Which is correct?
 The students in my class (is | are) going to do great.
High Level Examples

● **Automatic Speech Recognition**
 ○ Assistants in Phones
 ○ Voice to Text

● **Editing Assistance**
 ○ What word was I trying to spell? THER

● **Automatic Translation**
 ○ ¿Por qué no puedo traducir a Wólof?

● **Finding Abusive Text Online**
 ○ How can we flag a posting for further review by a human?

● **Where other applications can you think of?**
So Why Is NLP Important

- A lot of things on previous slides might seem solved but....
- What about languages besides English?
 - Where do you even get the data?
- What happens if I am working with a new domain like medical text or tweets?
- How good are the current systems?
 - http://matrix.statmt.org/
Important Organizations and Conferences in NLP

- **Association for Computational Linguistics (ACL)**
 - Publishes *Computational Linguistics* journal
 - Holds ALC conference every year along with other local conferences (NAACL, EACL)
 - Has many special interest groups (SIGs) that focus on specific topics.

- **International Committee on Computational Linguistics (ICCL)**
 - Exists solely to plan COLING conference every two years

- **European Language Resource Association**
 - Organizes Language Resources and Evaluation Conference (LREC) every two years
 - Spearheaded creation of International Standard Language Resource Number (ISLRN)

- **Linguistic Society of America (LSA)**
 - Premier organization for all types of linguistics
What We Will Learn This Semester

- Wide breadth of different NLP areas
 - A little bit of Morphology, Syntax, Semantics, Pragmatics, and maybe some Phonology
- Applications using NLP
 - Translation, Summarization, Question Answering, etc.
- Some statistics
 - Needed for lots of NLP tasks and methods
- Some basic linguistics
 - Enough to understand what we are doing
 - And maybe inspire new ways of thinking about problems
What We Won’t Learn This Semester

- Detailed Machine Learning Algorithms
 - Machine Learning has a lot of use in NLP
 - I’ll give you the basics later today but we don’t need any detailed knowledge
 - Don’t need to implement standard Machine Learning Algorithms

- Neural Networks
 - Commonly used across all areas of Computer Science recently
 - I personally think it is better to understand problem thoroughly then apply tools rather than the other way around
 - That being said, I will try to point to relevant work using NNs when it is appropriate

- Complex Linguistic Theory
 - Not enough time to cover the intricacies of linguistics and teach NLP
 - UMBC offers minor in applied linguistics
 - I am happy to point out relevant courses if you are interested
Machine Learning Primer

● Where to Learn
 ○ CMSC 478/678
 ○ Lots of info all over the web
 ■ I like Course in Machine Learning (CIML) by Hal Daume III (NLP researcher at UMCP)
 ○ Don’t need to implement standard Machine Learning Algorithms

● Algorithm Types
 ○ Supervised
 ■ Regression (Predict a numerical value from input)
 ■ Classification (Predict a class from input)
 ○ Unsupervised
 ■ Clustering
 ■ Dimensionality Reduction

● Awesome Libraries Exist
 ○ I am partial to scikit-learn (or sklearn) for Python
Classification

- The general idea behind classification is to assign a label to each “point” in the data.
- Lots of good ways to do this:
 - Support Vector Machines
 - Decision Trees
 - Neural Networks
 - Nearest Neighbors
- Useful in NLP:
 - Given a sentence, label all the words with their [part of speech/ entity type/ semantic role]
 - Given a document, what is it about (Topic Modeling)
- For this class all you need to know is that classification produces some label as output when given a input:
 - No need to know how it works (in general) or how to train it
 - We will look at sequence classification closely
Classification Example

- We want to know if *Zyrian* is a noun
 - Could do binary classification
 - Or multiclass classification
 - Equivalent to asking what part of speech is *Zyrian*
- What are some features that might help us decide?
 -
- Determine the value for these features for all words
- Then feed into some existing machine learning algorithm
 - Need a training set like words from the dictionary along with their part of speech to train the model
• Instances in Machine Learning are often represented by large vectors of floating point numbers
 ○ Takes up a lot of space
 ○ Makes calculations take a while
 ○ Are all those dimensions needed?

• Dimensionality Reduction attempts to reduce the number of dimensions (features) needed to represent something
 ○ We will look at this when we talk about distributional semantics