Introduction to Latent Sequences & Expectation Maximization

CMSC 473/673
UMBC
October 2nd, 2017
Recap from last time (and the first unit)…
N-gram Language Models

given some context...

compute beliefs about what is likely...

\[p(w_i | w_{i-3}, w_{i-2}, w_{i-1}) \propto \text{count}(w_{i-3}, w_{i-2}, w_{i-1}, w_i) \]

predict the next word
Maxent Language Models

given some context...

compute beliefs about what is likely...

\[p(w_i | w_{i-3}, w_{i-2}, w_{i-1}) = \text{softmax}(\theta \cdot f(w_{i-3}, w_{i-2}, w_{i-1}, w_i)) \]

predict the next word
Neural Language Models

Given some context...

Create/use "distributed representations"...

Combine these representations...

Compute beliefs about what is likely...

Predict the next word

\[p(w_i | w_{i-3}, w_{i-2}, w_{i-1}) \propto \text{softmax}(\theta_{w_i} \cdot f(w_{i-3}, w_{i-2}, w_{i-1})) \]
(Some) Properties of Embeddings

Capture “like” (similar) words

<table>
<thead>
<tr>
<th>target:</th>
<th>Redmond</th>
<th>Havel</th>
<th>ninjitsu</th>
<th>graffiti</th>
<th>capitulate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redmond Wash.</td>
<td>Vaclav Havel</td>
<td>ninja</td>
<td>spray paint</td>
<td>capitulation</td>
<td></td>
</tr>
<tr>
<td>Redmond Washington</td>
<td>president Vaclav Havel</td>
<td>martial arts</td>
<td>grafitti</td>
<td>capitolated</td>
<td></td>
</tr>
<tr>
<td>Microsoft</td>
<td>Velvet Revolution</td>
<td>swordsmanship</td>
<td>taggers</td>
<td>capitolating</td>
<td></td>
</tr>
</tbody>
</table>

Capture relationships

\[
\text{vector(‘king’) – vector(‘man’) + vector(‘woman’) \approx vector(‘queen’)}
\]

\[
\text{vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) \approx vector(‘Rome’)}
\]

Mikolov et al. (2013)
Four kinds of vector models

Sparse vector representations
1. Mutual-information weighted word co-occurrence matrices

Dense vector representations:
2. Singular value decomposition/Latent Semantic Analysis
3. Neural-network-inspired models (skip-grams, CBOW)
4. Brown clusters

Learn more in:
• Your project
• Paper (673)
• Other classes (478/678)
Shared Intuition

Model the meaning of a word by “embedding” in a vector space

The meaning of a word is a vector of numbers

Contrast: word meaning is represented in many computational linguistic applications by a vocabulary index (“word number 545”) or the string itself
Intrinsic Evaluation: Cosine Similarity

Divide the dot product by the length of the two vectors
\[
\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}
\]
This is the cosine of the angle between them
\[
\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta
\]
\[
\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \cos \theta
\]

Are the vectors parallel?
-1: vectors point in opposite directions
+1: vectors point in same directions
0: vectors are orthogonal
Course Recap So Far

Basics of Probability

- Requirements to be a distribution ("proportional to", \propto)
- Definitions of conditional probability, joint probability, and independence
- Bayes rule, (probability) chain rule
Course Recap So Far

Basics of Probability
- Requirements to be a distribution ("proportional to", \propto)
- Definitions of conditional probability, joint probability, and independence
- Bayes rule, (probability) chain rule

Basics of language modeling
- Goal: model (be able to predict) and give a score to language (whole sequences of characters or words)
 - Simple count-based model
 - Smoothing (and why we need it): Laplace (add-λ), interpolation, backoff
- Evaluation: perplexity
Course Recap So Far

Basics of Probability
 Requirements to be a distribution ("proportional to", \(\propto\))
 Definitions of conditional probability, joint probability, and independence
 Bayes rule, (probability) chain rule

Basics of language modeling
 Goal: model (be able to predict) and give a score to language (whole sequences of characters or words)
 Simple count-based model
 Smoothing (and why we need it): Laplace (add-\(\lambda\)), interpolation, backoff
 Evaluation: perplexity

Tasks and Classification (use Bayes rule!)
 Posterior decoding vs. noisy channel model
 Evaluations: accuracy, precision, recall, and \(F_\beta (F_1)\) scores
 Naïve Bayes (given the label, generate/explain each feature independently) and connection to language modeling
Course Recap So Far

Basics of Probability
- Requirements to be a distribution ("proportional to", \propto
- Definitions of conditional probability, joint probability, and independence
- Bayes rule, (probability) chain rule

Basics of language modeling
- Goal: model (be able to predict) and give a score to language (whole sequences of characters or words)
 - Simple count-based model
 - Smoothing (and why we need it): Laplace (add-λ), interpolation, backoff
 - Evaluation: perplexity

Maximum Entropy Models
- Meanings of feature functions and weights
 - Use for language modeling or conditional classification ("posterior in one go")
 - How to learn the weights: gradient descent

Tasks and Classification (use Bayes rule!)
- Posterior decoding vs. noisy channel model
- Evaluations: accuracy, precision, recall, and F_β (F_1) scores
- Naïve Bayes (given the label, generate/explain each feature independently) and connection to language modeling
Course Recap So Far

Basics of Probability
- Requirements to be a distribution ("proportional to", \propto)
- Definitions of conditional probability, joint probability, and independence
- Bayes rule, (probability) chain rule

Basics of language modeling
- Goal: model (be able to predict) and give a score to language (whole sequences of characters or words)
- Simple count-based model
- Smoothing (and why we need it): Laplace (add-\(\lambda\)), interpolation, backoff
- Evaluation: perplexity

Tasks and Classification (use Bayes rule!)
- Posterior decoding vs. noisy channel model
- Evaluations: accuracy, precision, recall, and F_β (F_1) scores
- Naïve Bayes (given the label, generate/explain each feature independently) and connection to language modeling

Maximum Entropy Models
- Meanings of feature functions and weights
- Use for language modeling or conditional classification ("posterior in one go")
- How to learn the weights: gradient descent

Distributed Representations & Neural Language Models
- What embeddings are and what their motivation is
- A common way to evaluate: cosine similarity
Course Recap So Far

Basics of Probability
- Requirements to be a distribution ("proportional to", ∝)
- Definitions of conditional probability, joint probability, and independence
- Bayes rule, (probability) chain rule

Basics of language modeling
- Goal: model (be able to predict) and give a score to language (whole sequences of characters or words)
- Simple count-based model
- Smoothing (and why we need it): Laplace (add-λ), interpolation, backoff
- Evaluation: perplexity

Tasks and Classification (use Bayes rule!)
- Posterior decoding vs. noisy channel model
- Evaluations: accuracy, precision, recall, and Fβ (F1) scores
- Naïve Bayes (given the label, generate/explain each feature independently) and connection to language modeling

Maximum Entropy Models
- Meanings of feature functions and weights
- Use for language modeling or conditional classification ("posterior in one go")
- How to learn the weights: gradient descent

Distributed Representations & Neural Language Models
- What embeddings are and what their motivation is
- A common way to evaluate: cosine similarity
LATENT SEQUENCES AND
LATENT VARIABLE MODELS
Is Language Modeling “Latent?”

\[
p(\text{Colorless green ideas sleep furiously}) = p(\text{Colorless}) \times p(\text{green | Colorless}) \times p(\text{ideas | Colorless green}) \times p(\text{sleep | green ideas}) \times p(\text{furiously | ideas sleep})
\]
Is Language Modeling “Latent?”
Most* of What We’ve Discussed: Not Really

\[
p(\text{Colorless green ideas sleep furiously}) = p(\text{Colorless}) \times p(\text{green} \mid \text{Colorless}) \times p(\text{ideas} \mid \text{Colorless green}) \times p(\text{sleep} \mid \text{green ideas}) \times p(\text{furiously} \mid \text{ideas sleep})
\]

these *values* are unknown

but the generation process (explanation) is transparent

Neural language modeling as an exception
Three people have been fatally shot, and five people, including a mayor, were seriously wounded as a result of a Shining Path attack today against a community in Junin department, central Peruvian mountain region.
Three people have been fatally shot, and five people, including a mayor, were seriously wounded as a result of a Shining Path attack today against a community in Junín department, central Peruvian mountain region.

Is Document Classification “Latent?”
As We’ve Discussed

\[
\begin{align*}
\text{argmax}_X & \prod_i p(Y_i|X) \cdot p(X) \\
\text{argmax}_X & \frac{\exp(\theta \cdot f(x,y))}{Z(x)} \cdot p(x) \\
\text{argmax}_X & \exp(\theta \cdot f(x,y))
\end{align*}
\]
Three people have been fatally shot, and five people, including a mayor, were seriously wounded as a result of a *Shining Path* attack today against a community in Junín department, central Peruvian mountain region.

These *values* are unknown but the *generation process* (explanation) is transparent.
Ambiguity → Part of Speech Tagging

British Left Waffles on Falkland Islands

British Left Waffles on Falkland Islands

British Left Waffles on Falkland Islands

Adjective Noun Verb

Noun Verb Noun
observed text
orthography
morphology
lexemes
syntax
semantics
pragmatics
discourse

Adapted from Jason Eisner, Noah Smith
Latent Modeling

explain what you see/annotate

with things “of importance” you don’t

observed text
orthography
morphology
lexemes
syntax
semantics
pragmatics
discourse

Adapted from Jason Eisner, Noah Smith
Latent Sequence Models: Part of Speech

\[p(\text{British Left Waffles on Falkland Islands}) \]
Latent Sequence Models: Part of Speech

(i): Adjective Noun Verb Prep Noun Noun

(ii): Noun Verb Noun Prep Noun Noun

$p(\text{British Left Waffles on Falkland Islands})$
Latent Sequence Models: Part of Speech

p(British Left Waffles on Falkland Islands)$

1. Explain this sentence as a sequence of (likely?) latent (unseen) tags (labels)

(i): Adjective Noun Verb Prep Noun Noun

(ii): Noun Verb Noun Prep Noun Noun
Latent Sequence Models: Part of Speech

1. Explain this sentence as a sequence of (likely?) latent (unseen) tags (labels)

2. Produce a tag sequence for this sentence

p(British Left Waffles on Falkland Islands)
Noisy Channel Model

\[p(X \mid Y) \propto p(Y \mid X) \ast p(X) \]

possible (clean) output

observed (noisy) text

translation/decode model

(clean) language model

Decode

Rerank
Latent Sequence Model: Machine Translation

\[p(X \mid Y) \propto p(Y \mid X) \cdot p(X) \]

possible (clean) output

(observed) noisy text

Decoder

Rerank

translation/decode model

(clean) language model
Latent Sequence Model: Machine Translation

Le chat est sur la chaise.

Eddie Izzard, “Dress to Kill” (MPAA: R)
https://www.youtube.com/watch?v=x1sQkEfAdfY
Latent Sequence Model: Machine Translation

Le chat est sur la chaise.

The cat is on the chair.
Latent Sequence Model: Machine Translation

How do you know what words translate as?
Learn the translations!

Le chat est sur la chaise.
The cat is on the chair.

Eddie Izzard, “Dress to Kill” (MPAA: R)
https://www.youtube.com/watch?v=x1sQkEfAdfY
Latent Sequence Model: Machine Translation

How do you know what words translate as?
Learn the translations!

How?
Learn a “reverse” latent alignment model
$p(\text{French words, alignments} \mid \text{English words})$

Le chat est sur la chaise.

The cat is on the chair.
How do you know what words translate as?
Learn the translations!

How?
Learn a “reverse” latent alignment model
\(p(\text{French words, alignments} \mid \text{English words}) \)

Alignment?
Words can have different meaning/senses

Le chat est sur la chaise.
The cat is on the chair.
How do you know what words translate as?
Learn the translations!

How?
Learn a “reverse” latent alignment model
\[p(\text{French words, alignments} \mid \text{English words}) \]

Alignment?
Words can have different meaning/senses

Why Reverse?
\[p(\text{English} \mid \text{French}) \propto p(\text{French} \mid \text{English}) \ast p(\text{English}) \]
How to Learn With Latent Variables
(Sequences)

Expectation Maximization
Example: Unigram Language Modeling

\[p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_{i} p(w_i) \]
Example: Unigram Language Modeling

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

maximize (log-)likelihood to learn the probability parameters
Example: Unigram Language Modeling with Hidden Class

\[
p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)
\]

\[
p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1 | z_1) \cdots p(z_N)p(w_N | z_N)
\]

\[
= \prod_i p(w_i | z_i) p(z_i)
\]
Example: Unigram Language Modeling with Hidden Class

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1 | z_1) \cdots p(z_N)p(w_N | z_N) \]

\[= \prod_i p(w_i | z_i) p(z_i) \]

add complexity to better explain what we see

examples of latent classes \(z \):

- part of speech tag
- topic ("sports" vs. "politics")
Example: Unigram Language Modeling with Hidden Class

\[
p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)
\]

add complexity to better explain what we see

\[
p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)
\]

\[
= \prod_i p(w_i|z_i) p(z_i)
\]

goal: maximize (log-)likelihood
Example: Unigram Language Modeling with Hidden Class

\[
p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)
\]

\[
p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)
\]

\[
= \prod_i p(w_i|z_i) p(z_i)
\]

goal: maximize (log-)likelihood

we don't actually observe these \(z\) values

we just see the words \(w\)
Example: Unigram Language Modeling with Hidden Class

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

we don't actually observe these \(z \) values
we just see the words \(w \)

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1 | z_1) \cdots p(z_N)p(w_N | z_N) \]

\[= \prod_i p(w_i | z_i) p(z_i) \]

goal: maximize (log-)likelihood

if we \textit{did} observe \(z \), estimating the probability parameters would be easy...
but we don’t! :(
Example: Unigram Language Modeling with Hidden Class

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

add complexity to better explain what we see

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N) \]

\[= \prod_i p(w_i|z_i) p(z_i) \]

goal: maximize (log-)likelihood

we don’t actually observe these \(z \) values
we just see the words \(w \)

if we \textit{did} observe \(z \), estimating the probability parameters would be easy...
but we don’t! :(if we \textit{knew} the probability parameters then we could estimate \(z \) and evaluate likelihood... but we don’t! :(
Example: Unigram Language Modeling with Hidden Class

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N) \]

\[= \prod_i p(w_i|z_i) \, p(z_i) \]

we don’t actually observe these \(z \) values

goal: maximize *marginalized* (log-)likelihood
Example: Unigram Language Modeling with Hidden Class

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1 | z_1) \cdots p(z_N)p(w_N | z_N) \]

\[= \prod_i p(w_i | z_i) p(z_i) \]

we don’t actually observe these \(z \) values

goal: maximize *marginalized* (log-)likelihood
Example: Unigram Language Modeling with Hidden Class

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N) \]

\[= \prod_i p(w_i|z_i) \cdot p(z_i) \]

we don’t actually observe these \(z \) values

goal: maximize *marginalized* (log-)likelihood
Marginal(ized) Probability

\[p(w) = p(z_1, w) + p(z_2, w) + p(z_3, w) + p(z_4, w) \]
Marginal(ized) Probability

\[p(w) = p(z_1, w) + p(z_2, w) + p(z_3, w) + p(z_4, w) = \sum_{z=1}^{4} p(z_i, w) \]
Marginal(ized) Probability

\[p(w) = \sum_{z} p(z, w) \]
Marginal(ized) Probability

\[p(w) = \sum_{z} p(z, w) = \sum_{z} p(z) p(w \mid z) \]
Example: Unigram Language Modeling with Hidden Class

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N) \]

\[= \prod_{i} p(w_i|z_i) p(z_i) \]

we don’t actually observe these \(z \) values

goal: maximize \textit{marginalized} (log-)likelihood

\[
p(w_1, w_2, \ldots, w_N) = \left(\sum_{z_1} p(z_1, w) \right) \left(\sum_{z_2} p(z_2, w) \right) \cdots \left(\sum_{z_N} p(z_N, w) \right)
\]
Example: Unigram Language Modeling with Hidden Class

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1) p(w_1 | z_1) \ldots p(z_N) p(w_N | z_N) \]

goal: maximize \textit{marginalized} (log-)likelihood

\[
p(w_1, w_2, \ldots, w_N) = \left(\sum_{z_1} p(z_1, w) \right) \left(\sum_{z_2} p(z_2, w) \right) \ldots \left(\sum_{z_N} p(z_N, w) \right)
\]

if we \textit{did} observe \(z \), estimating the probability parameters would be easy... but we don’t! :(

if we \textit{knew} the probability parameters then we could estimate \(z \) and evaluate likelihood... but we don’t! :(
if we *knew* the probability parameters, then we could estimate z and evaluate its likelihood... but we don’t! :(

if we *did* observe z, estimating the probability parameters would be easy... but we don’t! :(
if we knew the probability parameters then we could estimate z and evaluate likelihood... but we don’t! :(

if we didn’t have access to the entire data set, estimating the probability parameters would be easy... but
Expectation Maximization (EM)

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these uncertain counts
Expectation Maximization (EM): E-step

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

\[p(z_i) \quad \rightarrow \quad \text{count}(z_i, w_i) \]

2. M-step: maximize log-likelihood, assuming these uncertain counts
Expectation Maximization (EM): E-step

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

 \[p(z_i) \quad \Rightarrow \quad \text{count}(z_i, w_i) \]

2. M-step: maximize log-likelihood, assuming these uncertain counts

 We’ve already seen this type of counting, when computing the gradient in maxent models.
Expectation Maximization (EM): M-step

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

2. M-step: maximize log-likelihood, assuming these uncertain counts

\[
p^{(t)}(z) \quad \leftrightarrow \quad \hat{p}(z) \quad \rightarrow \quad p^{(t+1)}(z)
\]
\[
\max_{\theta} \mathbb{E}_{z \sim p_{\theta}(t)}(\cdot | w) \left[\log p_{\theta}(z, w) \right]
\]
EM Math

\[
\max_{\theta} \mathbb{E}_{z \sim p_{\theta}(t) (\cdot | w)} [\log p_{\theta}(z, w)]
\]

E-step: count under uncertainty

M-step: maximize log-likelihood
EM Math

E-step: count under uncertainty

$$\max_{\theta} \mathbb{E}_{z \sim p_{\theta(t)}(\cdot | w)} \left[\log p_{\theta}(z, w) \right]$$

old parameters

M-step: maximize log-likelihood

posterior distribution
EM Math

\[
\max_{\theta} \mathbb{E}_z \sim p_{\theta(t)}(\cdot | w) \left[\log p_{\theta}(z, w) \right]
\]

E-step: count under uncertainty

new parameters

old parameters

posterior distribution

M-step: maximize log-likelihood
Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)
Imagine three coins

Flip 1st coin (\textit{penny})

If heads: flip 2nd coin (\textit{dollar coin})

If tails: flip 3rd coin (\textit{dime})

only observe these (record heads vs. tails outcome)

don’t observe this
Imagine three coins

Flip 1st coin (\textit{penny})

If heads: flip 2nd coin (\textit{dollar coin})

If tails: flip 3rd coin (\textit{dime})

unobserved:
\textit{vowel or consonant? part of speech?}

observed:
\textit{a, b, e, etc.}

We \textit{run} the code, vs.
The \textit{run} failed
Three Coins/Unigram With Class Example

Imagine three coins

Flip 1st coin (penny)

\[p(\text{heads}) = \lambda \quad \text{and} \quad p(\text{tails}) = 1 - \lambda \]

If heads: flip 2nd coin (dollar coin)

\[p(\text{heads}) = \gamma \quad \text{and} \quad p(\text{tails}) = 1 - \gamma \]

If tails: flip 3rd coin (dime)

\[p(\text{heads}) = \psi \quad \text{and} \quad p(\text{tails}) = 1 - \psi \]
Imagine three coins

\[p(\text{heads}) = \lambda \]
\[p(\text{tails}) = 1 - \lambda \]

\[p(\text{heads}) = \gamma \]
\[p(\text{tails}) = 1 - \gamma \]

\[p(\text{heads}) = \psi \]
\[p(\text{tails}) = 1 - \psi \]

Three parameters to estimate: \(\lambda \), \(\gamma \), and \(\psi \)
Three Coins/Unigram With Class Example

If all flips were observed

\[p(\text{heads}) = \lambda \quad p(\text{heads}) = \gamma \quad p(\text{heads}) = \psi \]
\[p(\text{tails}) = 1 - \lambda \quad p(\text{tails}) = 1 - \gamma \quad p(\text{tails}) = 1 - \psi \]
Three Coins/Unigram With Class Example

If all flips were observed

\[p(\text{heads}) = \lambda \quad p(\text{heads}) = \gamma \quad p(\text{heads}) = \psi \]
\[p(\text{tails}) = 1 - \lambda \quad p(\text{tails}) = 1 - \gamma \quad p(\text{tails}) = 1 - \psi \]

\[p(\text{heads}) = \frac{4}{6} \quad p(\text{heads}) = \frac{1}{4} \quad p(\text{heads}) = \frac{1}{2} \]
\[p(\text{tails}) = \frac{2}{6} \quad p(\text{tails}) = \frac{3}{4} \quad p(\text{tails}) = \frac{1}{2} \]
Three Coins/Unigram With Class Example

But not all flips are observed \(\rightarrow\) set parameter values

\[
\begin{align*}
\text{p(heads)} &= \lambda = 0.6 & \text{p(heads)} &= 0.8 & \text{p(heads)} &= 0.6 \\
\text{p(tails)} &= 0.4 & \text{p(tails)} &= 0.2 & \text{p(tails)} &= 0.4
\end{align*}
\]
Three Coins/Unigram With Class Example

But not all flips are observed \rightarrow set parameter values

$p(\text{heads}) = \lambda = .6 \quad p(\text{heads}) = .8 \quad p(\text{heads}) = .6$

$p(\text{tails}) = .4 \quad p(\text{tails}) = .2 \quad p(\text{tails}) = .4$

Use these values to compute posteriors

$p(\text{heads} \mid \text{observed item H}) = \frac{p(\text{heads} \& H)}{p(H)}$

$p(\text{heads} \mid \text{observed item T}) = \frac{p(\text{heads} \& T)}{p(T)}$
Three Coins/Unigram With Class Example

But not all flips are observed \(\rightarrow \) set parameter values

\[
p(\text{heads}) = \lambda = .6 \quad p(\text{heads}) = .8 \quad p(\text{heads}) = .6
\]
\[
p(\text{tails}) = .4 \quad p(\text{tails}) = .2 \quad p(\text{tails}) = .4
\]

Use these values to compute posteriors

\[
p(\text{heads} | \text{observed item } H) = \frac{p(H | \text{heads})p(\text{heads})}{\text{marginal likelihood}}
\]
Three Coins/Unigram With Class Example

But not all flips are observed \rightarrow set parameter values

\[p(\text{heads}) = \lambda = .6 \quad p(\text{heads}) = .8 \quad p(\text{heads}) = .6 \]
\[p(\text{tails}) = .4 \quad p(\text{tails}) = .2 \quad p(\text{tails}) = .4 \]

Use these values to compute posteriors

\[p(\text{heads} \mid \text{observed item H}) = \frac{p(H \mid \text{heads})p(\text{heads})}{p(H)} \]

\[p(H \mid \text{heads}) = .8 \quad p(T \mid \text{heads}) = .2 \]
Three Coins/Unigram With Class Example

\[HHHTHTT \]
\[HHTHTTT \]

But not all flips are observed \(\Rightarrow \) set parameter values

\[p(\text{heads}) = \lambda = .6 \quad p(\text{heads}) = .8 \quad p(\text{heads}) = .6 \]
\[p(\text{tails}) = .4 \quad p(\text{tails}) = .2 \quad p(\text{tails}) = .4 \]

Use these values to compute posteriors

\[
p(\text{heads} | \text{observed item } H) = \frac{p(H | \text{heads})p(\text{heads})}{p(H)}
\]

\[p(H | \text{heads}) = .8 \quad p(T | \text{heads}) = .2 \]

\[
p(H) = p(H | \text{heads}) * p(\text{heads}) + p(H | \text{tails}) * p(\text{tails})
= .8 \times .6 + .6 \times .4
\]
Use posteriors to update parameters

\[
p(\text{heads} \mid \text{obs. H}) = \frac{p(H \mid \text{heads})p(\text{heads})}{p(H)} = \frac{.8 \times .6}{.8 \times .6 + .6 \times .4} \approx 0.667
\]

\[
p(\text{heads} \mid \text{obs. T}) = \frac{p(T \mid \text{heads})p(\text{heads})}{p(T)} = \frac{.2 \times .6}{.2 \times .6 + .6 \times .4} \approx 0.334
\]

(in general, \(p(\text{heads} \mid \text{obs. H})\) and \(p(\text{heads} \mid \text{obs. T})\) do NOT sum to 1)
Three Coins/Unigram With Class Example

H H T H T H
H T H T T T

Use posteriors to update parameters

\[
p(\text{heads} \mid \text{obs. H}) = \frac{p(H|\text{heads})p(\text{heads})}{p(H)} = \frac{.8 \times .6}{.8 \times .6 + .6 \times .4} \approx 0.667
\]

\[
p(\text{heads} \mid \text{obs. T}) = \frac{p(T|\text{heads})p(\text{heads})}{p(T)} = \frac{.2 \times .6}{.2 \times .6 + .6 \times .4} \approx 0.334
\]

(in general, \(p(\text{heads} \mid \text{obs. H})\) and \(p(\text{heads} \mid \text{obs. T})\) do NOT sum to 1)

fully observed setting

\[
p(\text{heads}) = \frac{\text{# heads from penny}}{\text{# total flips of penny}}
\]

our setting: partially-observed

\[
p(\text{heads}) = \frac{\text{# expected heads from penny}}{\text{# total flips of penny}}
\]
Use posteriors to update parameters

\[
p(\text{heads} | \text{obs. H}) = \frac{p(H| \text{heads})p(\text{heads})}{p(H)}
= \frac{.8 \times .6}{.8 \times .6 + .6 \times .4} \approx 0.667
\]

\[
p(\text{heads} | \text{obs. T}) = \frac{p(T| \text{heads})p(\text{heads})}{p(T)}
= \frac{.2 \times .6}{.2 \times .6 + .6 \times .4} \approx 0.334
\]

our setting: partially-observed

\[
p^{(t+1)}(\text{heads}) = \frac{\# \text{ expected \ heads from penny}}{\# \text{ total flips of penny}}
= \mathbb{E}_{p^{(t)}}[\# \text{ expected \ heads from penny}] / \# \text{ total flips of penny}
\]
Our setting:
partially-observed

Three Coins/Unigram With Class Example

\[HHHTHTHTTT \]

Use posteriors to update parameters

\[
p(\text{heads} \mid \text{obs. H}) = \frac{p(H| \text{heads})p(\text{heads})}{p(H)}
= \frac{.8 \times .6}{.8 \times .6 + .6 \times .4} \approx 0.667
\]

\[
p(\text{heads} \mid \text{obs. T}) = \frac{p(T| \text{heads})p(\text{heads})}{p(T)}
= \frac{.2 \times .6}{.2 \times .6 + .6 \times .4} \approx 0.334
\]

\[
p^{(t+1)}(\text{heads}) = \frac{\text{# expected heads from penny}}{\text{# total flips of penny}}
= \frac{\mathbb{E}_{p^{(t)}}[\text{# expected heads from penny}]}{\text{# total flips of penny}}
= \frac{2 \times p(\text{heads} \mid \text{obs. H}) + 4 \times p(\text{heads} \mid \text{obs. T})}{6}
\approx 0.444
\]
Expectation Maximization (EM)

0. Assume *some* value for your parameters

Two step, iterative algorithm:

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these uncertain counts
Related to EM

Latent clustering

K-means: https://www.csee.umbc.edu/courses/undergraduate/473/f17/kmeans/

Gaussian mixture modeling