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Example: Is it raining, given umbrellas?

R.; |PR,IR.)| Weather has a30% chance
¢ 07 of changing and a 70%
f 03 chance of staying the same.

I CD e C e &
Crorte) Qo) Grorta)

R, | P(U,IR) | Ifit’s raining, the probability of

t 0.9 someone carrying an umbrella is .9; if
f 02 it's raining, the probability of NOT
carrying an umbrella is .2
20
Filtering
* For each day t, E; contains variable U; (whether the umbrella appears) and X;
contains state variable R; (whether it’s raining)
« Compute the current belief state, given all evidence to date
* Maintain a current state estimate and update it
Instead of looking at all observed values in history
e Also called state estimation
* Given result of filtering up to time t, agent must compute result at t+1 from new
evidence ey:
P(Xiy1 | erii1) = flerr, P(X¢ | ery))
... for some function f.
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Filtering

* A good algorithm for filtering will maintain a current state estimate and
update it at each point.

« P(Xiler ) =f(P(Xler,), eq)
« Where X is the random variable and e is evidence
* Saves recomputation.

* It turns out that this is easy enough to come up with.
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Filtering
* We rearrange the formula for:
* P(Xuilerea)

» First, we divide up the evidence:
* P(Xpalere) = P(Xpal ey €na)

» Then we apply Bayes rule, remembering the use of the normalization factor a:
* P(Xpalere) = aP(eps | Xeq, €1:4) P(Xeea | €1:)

* And after that we use the Markov assumption on the sensor model:

* P(Xuilere) = aP(epq | Xera)P(Xeer | €1:¢)

* The result of this assumption is to make that first term on the right hand side
ignore all the evidence — the probability of the observation at t + 1 only
depends on the value of Xg;.
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Filtering

* Let’s look at that expression some more:

P(Xer1l€1:041) = AP(€pr1 | Xea1)P(Xes1 | €1:¢)

* The first term on the right updates with the new evidence and the second
term on the right is a one step prediction from the evidence up to t to the
stateat t + 1.

* Next we condition on the current state P(X):

P(Xer1l€1:041) = AP(€4e1 | Xes1) ZXe P(Xpsn | X, €2:6)P(X¢ | €1:4)

* Finally, we apply the Markov assumption again:

P(Xes1le1:641) = AP(epin | Xer1) ZXe P(Xeag [ Xe) P(Xe | €1:¢)

* Weé'll call the bit on the right f;.;
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Filtering
« fi.;gives us the required recursive update.
* The probability distribution over the state variables at t + 1 is a function of the
transition model, the sensor model, and what we know about the state at
time t.
* Space and time constant, independent of t.
* This allows a limited agent to compute the current distribution for any
length of sequence.
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Recursive Estimation

« We use recursive estimation to compute P(X.1 | €1.t+1) as a function
of ei;and P(X; | e1)

1. Project current state forward (t 2 t+1)

2. Update state using new evidence e,

P(Xi1 | €1.t41) as function of ;. ;and P(X; | ey.):

P<Xt+1 | el:t+1) = P(Xt+1 ‘ el:taetJrl)
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Recursive Estimation
« P(X.1 | €1.441) as afunction of e ,and P(X, | e1):
P(Xt+l Iel:t+l) = P(Xt+l Iel:t’et+l) dIVIdmg LIP evidence
= aP(eHl IXt+l’elzt) P(Xt+1 lel:t) Bayes rule
=aP(e, 1X,)P(X, le,) sensor Markov assumption
« P(ei1 | Xi.441) updates with new evidence (from sensor)
* One-step prediction by conditioning on current state X:
=aP(e,1X,) Y P(X,,1x) P(x, le,)
27
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Recursive Estimation

One-step prediction by conditioning on current state X:

P(Xt"'l | e11t+1) = aP(et+1 |)(t+1) E\P(XHI lxt)\P(xt |el:t)

, Y. . Y
" transition current
model state

...which is what we wanted!

So, think of P(X | ey.;) as a “message” fi.t+1
* Carried forward along the time steps

* Modified at every transition, updated at every new observation

This leads to a recursive definition:
fl:t+1 = FORWARD(fl:tr et+1)
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Filtering: Umbrellas example
* The prioris (0.5, 0.5). (R=t, R=f)
*  We can first predict whether it will rain on day 1 given what we
already know:
* P(Ry) =Zr P(Ry|rg) P(ro)
=(0.7,0.3)x0.5 + (0.3,0.7)x0.5
= (0.35,0.15) + (0.15,0.35)
=(0.5,0.5)
* As we should expect, this just gives us the prior — that is the
probability of rain when we don’t have any evidence.
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Filtering: Umbrellas example

* However, we have observed the umbrella, so that U, = true, and we
can update using the sensor model:

* P(Ry|U;) = aP(uy|R;)P(R,)
= (0.9,0.2)(0.5,0.5)
= a(0.45,0.1)
=~ (0.818,0.182)

* So, since umbrella is strong evidence for rain, the probability of rain is
much higher once we take the observation into account.
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Filtering: Umbrellas example
* We can then carry out the same computation for Day 2, first predicting
whether it will rain on day 2 given what we already saw:
* P(Ry|uy) =Zn P(Ry|ry)P(ry|uy)
=(0.7,0.3)x0.818 + (0.3,0.7)x0.182
= (0.627,0.373)
* So even without evidence of rain on the second day there is a higher
probability of rain than the prior because rain tends to follow rain.
(In this model rain tends to persist.)
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Filtering: Umbrellas example

* Then we can repeat the evidence update, u, (U, = true), so:

* P(Ry|uq,uy) = aP(uy|Ry)P(Ry | uq)
- 2(0.9,0.2)(0.627,0.373)
- 2(0.565,0.075)
~ (0.883,0.117)

* So, the probability of rain increases again, and is higher than on day 1.
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Filtering: Umbrellas example
* Put more succinctly:
0.500 0.627
0.500 0.373
True  0.500 / 0.!18 o.e’sa
False  0.500 0.182 0.117
* We can think of the calculation as messages passed along the chain
33
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Umbrellas, summarized

* P(Rainy=t)
= Yrain, P(Raing = t | Raing) P(Raing)
=0.70 * 0.50 + 0.30 * 0.50 = 0.50

* P(Rain; =t | Umbrella; = t)
= a P(Umbrella; =t | Rainy =t) P(Rain; =)
=a*0.90*0.50=a *0.45=0.818

* P(Rain, =t | Umbrella; = t)
= Jrain, P(Rain, =t | Rainy) P(Rainy | Umbrella; = t)
=0.70 * 0.818 + 0.30 * 0.182 = 0.627

* P(Rainz=t | Umbrella:1 =t, Umbrellaz = t)
= a P(Umbrella, =t | Rain, =t) P(Rain, =t | Umbrella; = t)
=a*0.90 *0.627 = a * 0.564 =~ 0.883
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Group Exercise: Filtering

P(X,, le,)=aP(e,1X,.,) EP(Xt+1 1 X,) P(X, le,)

X

t

P(R,IU;,U) = a P(UIR;) ZR1 P(RyIR;) P(R,IU,)

F 0.3

—Gno— A?
o= O
What is the probability of rain on R, | P(UJR)

Day 2, given a uniform prior of rain
on Day 0, U; = true, and U, = true?

F 0.2

Ry | PRJIR. ) | Weather has a 30% chance
T 07 of changing and a 70%
=(0.883 ’ chance of staying the same.

If it's raining, the probability
of someone carrying an

T 09 umbrella is .9; if it’s raining,
the probability of NOT
carrying an umbrella is .2
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