Example: Is it raining, given umbrellas?

$\mathrm{R}_{\mathrm{t}-1}$	$\mathrm{P}_{\left(\mathrm{R}_{\mathrm{t}} \mid \mathrm{R}_{\mathrm{t}-1}\right)}$$t$ f
0.7	
0.3	

Weather has a 30% chance of changing and a 70% chance of staying the same.

R_{t}	$\mathrm{P}\left(\mathrm{U}_{\mathrm{t}} \mid \mathrm{R}_{\mathrm{t}}\right)$
t	0.9
f	0.2

If it's raining, the probability of someone carrying an umbrella is .9 ; if it's raining, the probability of NOT carrying an umbrella is .2

Filtering

- For each day t, \mathbf{E}_{t} contains variable U_{t} (whether the umbrella appears) and \mathbf{X}_{t} contains state variable R_{t} (whether it's raining)
- Compute the current belief state, given all evidence to date
- Maintain a current state estimate and update it
- Instead of looking at all observed values in history
- Also called state estimation
- Given result of filtering up to time t, agent must compute result at $t+1$ from new evidence $\mathbf{e}_{\mathrm{t}+1}$:

$$
\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}+1}\right)=f\left(\mathbf{e}_{\mathrm{t}+1}, \mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)\right)
$$

.. for some function f.

Filtering

- A good algorithm for filtering will maintain a current state estimate and update it at each point.
- $\mathrm{P}\left(\mathrm{X}_{t+1} \mid \mathrm{e}_{1: t+1}\right)=f\left(\mathrm{P}\left(\mathrm{X}_{t} \mid \mathrm{e}_{1: t}\right), \mathrm{e}_{t+1}\right)$
- Where X is the random variable and e is evidence
- Saves recomputation.
- It turns out that this is easy enough to come up with.

Filtering

- We rearrange the formula for:
- $P\left(X_{t+1} \mid \mathrm{e}_{1: t+1}\right)$
- First, we divide up the evidence:
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$
- Then we apply Bayes rule, remembering the use of the normalization factor α :
- $P\left(X_{t+1} \mid \mathrm{e}_{1: t+1}\right)=\alpha P\left(\mathrm{e}_{t+1} \mid \mathrm{X}_{t+1}, \mathrm{e}_{1: t}\right) P\left(\mathrm{X}_{t+1} \mid \mathrm{e}_{1: t}\right)$
- And after that we use the Markov assumption on the sensor model:
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)$
- The result of this assumption is to make that first term on the right hand side ignore all the evidence - the probability of the observation at $t+1$ only depends on the value of X_{t+1}.

Filtering

- Let's look at that expression some more:
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)$
- The first term on the right updates with the new evidence and the second term on the right is a one step prediction from the evidence up to t to the state at $t+1$.
- Next we condition on the current state $P(X)$:
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum x_{t} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right)$
- Finally, we apply the Markov assumption again:
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum x_{t} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$
- We'll call the bit on the right $\mathrm{f}_{1: t}$

Filtering

- $f_{\text {1:t }}$ gives us the required recursive update.
- The probability distribution over the state variables at $t+1$ is a function of the transition model, the sensor model, and what we know about the state at time t.
- Space and time constant, independent of t.
- This allows a limited agent to compute the current distribution for any length of sequence.

Recursive Estimation

- We use recursive estimation to compute $P\left(X_{t+1} \mid e_{1: t+1}\right)$ as a function of e_{t+1} and $P\left(X_{t} \mid e_{1: t}\right)$

1. Project current state forward ($t \rightarrow t+1$)
2. Update state using new evidence $\mathbf{e}_{\mathrm{t}+1}$

$$
\begin{aligned}
& \mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}+1}\right) \text { as function of } \mathbf{e}_{\mathrm{t}+1} \text { and } \mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right) \text { : } \\
& \mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}+1}\right)=\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}}, \mathbf{e}_{\mathrm{t}+1}\right)
\end{aligned}
$$

Recursive Estimation

- $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: t+1}\right)$ as a function of $\mathbf{e}_{\mathrm{t}+1}$ and $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$:

$$
\begin{array}{ll}
P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right) & \text { dividing up evidence } \\
=\alpha P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right) & \text { Bayes rule } \\
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) & \text { sensor Markov assumption }
\end{array}
$$

- $\mathrm{P}\left(\mathbf{e}_{\mathrm{t}+1} \mid \mathbf{X}_{1: t+1}\right)$ updates with new evidence (from sensor)
- One-step prediction by conditioning on current state X :

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
$$

Recursive Estimation

- One-step prediction by conditioning on current state X :

$$
P\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} \underbrace{P\left(X_{t+1} \mid x_{t}\right)}_{\begin{array}{c}
\text { transition } \\
\text { model }
\end{array}} \underbrace{P\left(x_{t} \mid e_{1: t}\right)}_{\begin{array}{c}
\text { current } \\
\text { state }
\end{array}}
$$

- ...which is what we wanted!
- So, think of $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$ as a "message" $f_{1: \mathrm{t}+1}$
- Carried forward along the time steps
- Modified at every transition, updated at every new observation
- This leads to a recursive definition:

$$
f_{1: t+1}=\alpha \operatorname{FORWARD}\left(f_{1: t}, e_{t+1}\right)
$$

Filtering: Umbrellas example

- The prior is $\langle 0.5,0.5\rangle$. $(\mathrm{R}=t, \mathrm{R}=f)$
- We can first predict whether it will rain on day 1 given what we already know:
- $\mathbf{P}\left(\mathbf{R}_{1}\right)=\sum r_{0} \mathbf{P}\left(R_{1} \mid r_{0}\right) P\left(r_{0}\right)$

$$
=\langle 0.7,0.3\rangle \times 0.5+\langle 0.3,0.7\rangle \times 0.5
$$

$$
=\langle 0.35,0.15\rangle+\langle 0.15,0.35\rangle
$$

$$
=\langle 0.5,0.5\rangle
$$

- As we should expect, this just gives us the prior - that is the probability of rain when we don't have any evidence.

Filtering: Umbrellas example

- However, we have observed the umbrella, so that $U_{1}=$ true, and we can update using the sensor model:
- $\mathbf{P}\left(\mathbf{R}_{1} \mid U_{1}\right)=\alpha \mathbf{P}\left(u_{1} \mid R_{1}\right) \mathbf{P}\left(R_{1}\right)$
$=\alpha\langle 0.9,0.2\rangle\langle 0.5,0.5\rangle$
$=\alpha\langle 0.45,0.1\rangle$
$\approx\langle 0.818,0.182\rangle$
- So, since umbrella is strong evidence for rain, the probability of rain is much higher once we take the observation into account.

Filtering: Umbrellas example

- We can then carry out the same computation for Day 2, first predicting whether it will rain on day 2 given what we already saw:
- $\mathbf{P}\left(\mathbf{R}_{2} \mid u_{1}\right)=\sum_{1} \mathbf{P}\left(R_{2} \mid r_{1}\right) P\left(r_{1} \mid u_{1}\right)$

$$
\begin{aligned}
& =\langle 0.7,0.3\rangle \times 0.818+\langle 0.3,0.7\rangle \times 0.182 \\
& \approx\langle 0.627,0.373\rangle
\end{aligned}
$$

- So even without evidence of rain on the second day there is a higher probability of rain than the prior because rain tends to follow rain.
- (In this model rain tends to persist.)

Filtering: Umbrellas example

- Then we can repeat the evidence update, $u_{2}\left(U_{2}=t r u e\right)$, so:
- $\mathbf{P}\left(\mathbf{R}_{2} \mid u_{1}, u_{2}\right)=\alpha \mathbf{P}\left(u_{2} \mid R_{2}\right) \mathbf{P}\left(R_{2} \mid u_{1}\right)$

$$
\begin{aligned}
& =\alpha\langle 0.9,0.2\rangle\langle 0.627,0.373\rangle \\
& =\alpha\langle 0.565,0.075\rangle \\
& \approx\langle 0.883,0.117\rangle
\end{aligned}
$$

- So, the probability of rain increases again, and is higher than on day 1.

Filtering: Umbrellas example

- Put more succinctly:

- We can think of the calculation as messages passed along the chain

Umbrellas, summarized

- $P\left(\right.$ Rain $\left._{1}=t\right)$
$=\sum_{\text {Rain }_{0}} P\left(\right.$ Rain $_{1}=t \mid$ Rain $\left._{0}\right) P\left(\right.$ Rain $\left._{0}\right)$
$=0.70 * 0.50+0.30 * 0.50=0.50$
- $P\left(\right.$ Rain $_{1}=t \mid$ Umbrella $\left._{1}=t\right)$
$=\alpha P\left(\right.$ Umbrella $_{1}=t \mid$ Rain $\left._{1}=t\right) P\left(\right.$ Rain $\left._{1}=t\right)$
$=\alpha^{*} 0.90 * 0.50=\alpha^{*} 0.45 \approx 0.818$
- $P\left(\right.$ Rain $_{2}=t \mid$ Umbrella $\left._{1}=t\right)$
$=\sum_{\text {Rain }_{1}} P\left(\right.$ Rain $_{2}=t \mid$ Rain $\left._{1}\right) P\left(\right.$ Rain $_{1} \mid$ Umbrella $\left._{1}=t\right)$
$=0.70 * 0.818+0.30 * 0.182 \approx 0.627$
- $P\left(\right.$ Rain $_{2}=t \mid$ Umbrella $_{1}=t$, Umbrella $\left._{2}=t\right)$
$=\alpha P\left(\right.$ Umbrella $_{2}=t \mid$ Rain $\left._{2}=t\right) P\left(\right.$ Rain $_{2}=t \mid$ Umbrella $\left._{1}=t\right)$
$=\alpha^{*} 0.90 * 0.627 \approx \alpha * 0.564 \approx 0.883$

Group Exercise: Filtering

$P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{X_{t}} P\left(X_{t+1} \mid X_{t}\right) P\left(X_{t} \mid e_{1: t}\right)$
$\mathrm{P}\left(\mathrm{R}_{2} \mid \mathrm{U}_{1}, \mathrm{U}_{2}\right)=\alpha \mathrm{P}\left(\mathrm{U}_{2} \mid \mathrm{R}_{2}\right) \sum_{\mathrm{R} 1} \mathrm{P}\left(\mathrm{R}_{2} \mid \mathrm{R}_{1}\right) \mathrm{P}\left(\mathrm{R}_{1} \mid \mathrm{U}_{1}\right)$ $=0.883$

$\mathrm{R}_{\mathrm{t}-1}$	$\mathrm{P}\left(\mathrm{R}_{\mathrm{t}} \mathrm{R}_{\mathrm{t}-1}\right)$
T	0.7
F	0.3

Weather has a 30% chance of changing and a 70\% chance of staying the same.

What is the probability of rain on Day 2 , given a uniform prior of rain on Day $0, \mathrm{U}_{1}=$ true, and $\mathrm{U}_{2}=$ true?

R_{t}	$\mathrm{P}\left(\mathrm{U}_{\mathrm{t}} \mid \mathrm{R}_{\mathrm{t}}\right)$
T	0.9
F	0.2

If it's raining, the probability of someone carrying an umbrella is .9 ; if it's raining, the probability of NOT carrying an umbrella is .2

