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Weather has a 30% chance 
of changing and a 70% 
chance of staying the same.

Example: Is it raining, given umbrellas?

Fully worked out HMM for rain: http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf

If it’s raining, the probability of 
someone carrying an umbrella is .9; if 
it’s raining, the probability of NOT 
carrying an umbrella is .2
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Filtering
• For each day t, Et contains variable Ut (whether the umbrella appears) and Xt

contains state variable Rt (whether it’s raining)

• Compute the current belief state, given all evidence to date

• Maintain a current state estimate and update it
• Instead of looking at all observed values in history
• Also called state estimation

• Given result of filtering up to time t, agent must compute result at t+1 from new 
evidence et+1: 

P(Xt+1 | e1:t+1) = f(et+1 ,  P(Xt | e1:t))

… for some function f.
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Filtering

• A good algorithm for filtering will maintain a current state estimate and 
update it at each point.

• P(Xt+1|e1:t+1) = f (P(Xt|e1:t), et+1) 

• Where X is the random variable and e is evidence

• Saves recomputation.

• It turns out that this is easy enough to come up with.

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf

22

Filtering
• We rearrange the formula for: 

• P(Xt+1|e1:t+1) 

• First, we divide up the evidence:
• P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1) 

• Then we apply Bayes rule, remembering the use of the normalization factor α:
• P(Xt+1|e1:t+1) = αP(et+1|Xt+1, e1:t) P(Xt+1|e1:t)

• And after that we use the Markov assumption on the sensor model: 
• P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t) 

• The result of this assumption is to make that first term on the right hand side 
ignore all the evidence — the probability of the observation at t + 1 only 
depends on the value of Xt+1. 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf
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Filtering
• Let’s look at that expression some more: 

• P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t) 

• The first term on the right updates with the new evidence and the second 
term on the right is a one step prediction from the evidence up to t to the 
state at t + 1. 

• Next we condition on the current state P(X):
• P(Xt+1|e1:t+1) = αP(et+1|Xt+1) Σxt P(Xt+1|xt, e1:t)P(xt|e1:t) 

• Finally, we apply the Markov assumption again: 
• P(Xt+1|e1:t+1) = αP(et+1|Xt+1) Σxt P(Xt+1|xt)P(xt|e1:t)

• We’ll call the bit on the right f1:t 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf
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Filtering

• f1:t gives us the required recursive update. 
• The probability distribution over the state variables at t + 1 is a function of the 

transition model, the sensor model, and what we know about the state at 
time t. 

• Space and time constant, independent of t.

• This allows a limited agent to compute the current distribution for any 
length of sequence. 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf
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Recursive Estimation

• We use recursive estimation to compute P(Xt+1 | e1:t+1) as a function 
of et+1 and P(Xt | e1:t)

1. Project current state forward (t à t+1)

2. Update state using new evidence et+1

P(Xt+1 | e1:t+1) as function of et+1 and P(Xt | e1:t):

P(Xt+1 | e1:t+1) = P(Xt+1 | e1:t,et+1)

26
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Recursive Estimation

• P(Xt+1 | e1:t+1) as a function of et+1 and P(Xt | e1:t):

• P(et+1 | X1:t+1) updates with new evidence (from sensor)

• One-step prediction by conditioning on current state X:

27

P(Xt+1 | e1:t+1) = P(Xt+1 | e1:t,et+1)
=α P(et+1 | Xt+1,e1:t ) P(Xt+1 | e1:t )
=α P(et+1 | Xt+1) P(Xt+1 | e1:t )

dividing up evidence

Bayes rule

sensor Markov assumption

=α P(et+1 | Xt+1) P(Xt+1 | xt ) P(xt | e1:t )
xt

∑
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Recursive Estimation

• One-step prediction by conditioning on current state X:

P(Xt+1 | e1:t+1)

• …which is what we wanted!

• So, think of P(Xt | e1:t) as a “message” f1:t+1

• Carried forward along the time steps
• Modified at every transition, updated at every new observation 

• This leads to a recursive definition:
f1:t+1 = a FORWARD(f1:t, et+1)

28

=α P(et+1 | Xt+1) P(Xt+1 | xt ) P(xt | e1:t )
xt

∑
transition 

model
current 
state
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Filtering: Umbrellas example

• The prior is ⟨0.5, 0.5⟩. (R=t, R=f)

• We can first predict whether it will rain on day 1 given what we 
already know: 

• P(R1) = Σr0 P(R1|r0) P(r0) 
= ⟨0.7,0.3⟩×0.5 + ⟨0.3,0.7⟩×0.5 
= ⟨0.35,0.15⟩ + ⟨0.15,0.35⟩
= ⟨0.5,0.5⟩

• As we should expect, this just gives us the prior — that is the 
probability of rain when we don’t have any evidence. 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf
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Filtering: Umbrellas example

• However, we have observed the umbrella, so that U1 = true, and we 
can update using the sensor model: 

• P(R1|U1) = αP(u1|R1)P(R1)
= α⟨0.9,0.2⟩⟨0.5,0.5⟩
= α⟨0.45,0.1⟩
≈ ⟨0.818,0.182⟩

• So, since umbrella is strong evidence for rain, the probability of rain is 
much higher once we take the observation into account. 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf
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Filtering: Umbrellas example

• We can then carry out the same computation for Day 2, first predicting 
whether it will rain on day 2 given what we already saw: 

• P(R2|u1) = Σr1 P(R2|r1)P(r1|u1) 
= ⟨0.7,0.3⟩×0.818 + ⟨0.3,0.7⟩×0.182 
≈ ⟨0.627,0.373⟩

• So even without evidence of rain on the second day there is a higher 
probability of rain than the prior because rain tends to follow rain. 
• (In this model rain tends to persist.) 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf

31



10/20/22

7

Filtering: Umbrellas example

• Then we can repeat the evidence update, u2 (U2 = true), so: 

• P(R2|u1,u2) = αP(u2|R2)P(R2|u1)
= α⟨0.9,0.2⟩⟨0.627,0.373⟩
= α⟨0.565,0.075⟩
≈ ⟨0.883,0.117⟩

• So, the probability of rain increases again, and is higher than on day 1. 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf
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Filtering: Umbrellas example

• Put more succinctly:

• We can think of the calculation as messages passed along the chain 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf
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Umbrellas, summarized
• P(Rain1 = t)

= ΣRain0 P(Rain1 = t | Rain0) P(Rain0)
= 0.70 * 0.50 + 0.30 * 0.50 = 0.50 

• P(Rain1 = t | Umbrella1 = t)
= α P(Umbrella1 = t | Rain1 = t) P(Rain1 = t)
= α * 0.90 * 0.50 = α *0.45 ≈ 0.818 

• P(Rain2 = t | Umbrella1 = t)
= ΣRain1 P(Rain2 = t | Rain1) P(Rain1 | Umbrella1 = t) 
= 0.70 * 0.818 + 0.30 * 0.182 ≈ 0.627 

• P(Rain2 = t | Umbrella1 = t, Umbrella2 = t)
= α P(Umbrella2 = t | Rain2 = t) P(Rain2 = t | Umbrella1 = t) 
= α * 0.90 * 0.627 ≈ α * 0.564 ≈ 0.883
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P(R2|U1,U2) = α P(U2|R2) ΣR1 P(R2|R1) P(R1|U1)
= 0.883
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What is the  probability of rain on 
Day 2, given a uniform prior of rain 
on Day 0, U1 = true, and U2 = true?

€ 

P(Xt+1 | e1:t+1) = α P(et+1 | Xt+1) P(Xt+1 | Xt ) P(Xt | e1:t )
X t

∑

Group Exercise: Filtering
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We got here, but I don’t know that 
they really understood it. Spent 
time on the class exercise and told 
them to do it outside. Definitely 
one for HW3/final exam

This was a terrible idea for HW3.

Didn’t even start decision making.

Weather has a 30% chance 
of changing and a 70% 
chance of staying the same.

If it’s raining, the probability 
of someone carrying an 
umbrella is .9; if it’s raining, 
the probability of NOT 
carrying an umbrella is .2
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