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Bayes Nets
AI Class 10 (Ch. 14.1–14.4.2; skim 14.3)

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Matt E. Taylor @ WSU, Lise
Getoor @ UCSC, Dr. P. Matuszek @ Villanova University, and Weng-Keen Wong at OSU. Based in part on 

www.csc.calpoly.edu/~fkurfess/Courses/CSC-481/W02/Slides/Uncertainty.ppt . 

Weather Cavity

Toothache Catch
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Probability, redux

• Worlds, random variables, events, sample space

• Joint probabilities of multiple connected variables

• Conditional probabilities of a variable, given another variable(s)

• Marginalizing out unwanted variables

• Inference from the joint probability 

The big idea: figuring out the probability
of variable(s) taking certain value(s)

2
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Review: Bayesian Diagnostic Reasoning

• Bayes’ rule says that
• P(Hi | E1, …, Em) = P(E1, …, Em | Hi) P(Hi) / P(E1, …, Em)

• Assume each piece of evidence Ei is conditionally independent of the 
others, given a hypothesis Hi, then:
• P(E1, …, Em | Hi) = Õl

j=1 P(Ej | Hi)

• If we only care about relative probabilities for the Hi, then we have:
• P(Hi | E1, …, Em) = α P(Hi) Õl

j=1 P(Ej | Hi)

3

3

Next Up

• Bayesian networks
• Network structure and independence

• Inference in Bayesian networks
• Exact inference

• Approximate inference

4
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Review: Independence

What does it mean for A and B to be independent?

• P(A) ⫫ P(B)

• A and B do not affect each other’s probability

• P(A Ù B) = P(A) P(B)

5

5

Review: Conditioning

What does it mean for A and B to be conditionally independent given C?

• A and B don’t affect each other if C is known

• P(A Ù B | C) = P(A | C) P(B | C)

6

6
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Review: Bayes’ Rule

What is Bayes’ Rule?

What’s it useful for?
• Diagnosis
• Effect is perceived, want to know (probability of) cause

7

P(Hi | Ej ) =
P(Ej |Hi )P(Hi )

P(Ej )

P(cause | effect) = P(effect | cause)P(cause)
P(effect)

R&N, 495–496
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Review: Bayes’ Rule

What is Bayes’ Rule?

What’s it useful for?
• Diagnosis
• Effect is perceived, want to know (probability of) cause

8

P(Hi | Ej ) =
P(Ej |Hi )P(Hi )

P(Ej )

P(hidden | observed) = P(observed | hidden)P(hidden)
P(observed)

R&N, 495–496
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Review: Joint Probability
• What is the joint probability of A and B?

• P(A,B)

• The probability of any pair of legal assignments.
• Generalizing to > 2, of course

• Booleans: expressed as a matrix/table

• Continuous domains: probability functions

9

A B

T T 0.09

T F 0.1

F T 0.01

F F 0.8

alarm ¬ alarm
burglary 0.09 0.01

¬ burglary 0.1 0.8
≡

9

Review: Bayes’ Nets: Big Picture

• Problems with full joint distribution tables as our probabilistic models:
• Joint gets way too big to represent explicitly

• Unless there are only a few variables

• Hard to learn (estimate) anything empirically about more than a few variables 
at a time

10

A ¬A

E ¬E E ¬E
B 0.01 0.08 0.001 0.009

¬B 0.01 0.09 0.01 0.79

Slides derived from Matt E. Taylor, U Alberta
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Review: Bayes’ Nets

• Bayesian Network BN: BN = (DAG, CPD) 
• DAG: directed acyclic graph (BN’s structure)
• CPD: conditional probability distribution (BN’s parameters)

P(C|A) = 0.2    
P(C|¬A) = 0.005

P(B|A) = 0.3     
P(B|¬A) = 0.001
P(¬B|A) = 0.7  
P(¬B|¬A) = 0.999

P(A) = 0.001

P(D|B,C) = 0.1
P(D|B,¬C) = 0.01
P(D|¬B,C) = 0.01     
P(D|¬B,¬C) = 0.00001

P(E|C) = 0.4  
P(E|¬C) = 0.002

A

B C

D E

11

Review: Bayes’ Nets

• P(a, m, i, e, s) = P(a | m) * P(m | i, e) * P(i) * P(e) * P(s | i)

e

m

a

i

s

¬e e

0.7 0.3

¬m m

¬i, ¬e 0.6 0.4

¬i, e 0.9 0.1

i, ¬e 0.5 0.5

i, e 0.8 0.2

¬i i

0.8 0.2

¬s s

¬i 0.75 0.25

i 0.4 0.6

¬a a

¬m 0.6 0.4

m 0.9 0.1

www.upgrad.com/blog/bayesian-network-example/
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The Chain Rule

• P(α1∧α2∧...∧αn) = P(α1) ×
P(α2 | α1) ×
P(α3 | α1∧α2) × ... ×
P(αn | α1∧···∧αn-1) 

= ∏i=1..n P(αi | α1∧···∧αi-1)

= 

13

P(x1,..., xn ) =Πi=1
n P(xi |π i )

artint.info/html/ArtInt_143.html

13

The Chain Rule

• Decomposition: 

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

• With assumption of conditional independence: 

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

• Bayes’ nets express conditional independences
• (Assumptions) 

14

P(x1,..., xn ) =Πi=1
n P(xi |π i )

Slides derived from Matt E. Taylor, U Alberta

P(x1,..., xn ) = P(x1)P(x2 | x1)P(x3 | x1, x2)...

rain

traffic umbrella

14
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Chaining: Example

Computing the joint probability for all variables is easy:

P(a, b, c, d, e)   = P(e | a, b, c, d) P(a, b, c, d)
= P(e | c) P(a, b, c, d)
= P(e | c) P(d | a, b, c) P(a, b, c) 
= P(e | c) P(d | b, c) P(c | a, b) P(a, b)
= P(e | c) P(d | b, c) P(c | a) P(b | a) P(a)

We’re reducing distributions–P(x,y)–to single values.

A

B C

D E

By product rule
By conditional 
independence 
assumption

15

Topological Semantics

• A node is conditionally independent of 
its non-descendants given its parents

• A node is conditionally independent of 
all other nodes in the network given its 
parents, children, and children’s 
parents (also known as its Markov 
blanket)
• (For much later: a method called d-

separation can be applied to decide 
whether a set of nodes X is independent 
of a set Y, given a third set Z)

Make a 

Image: mjtsai1974.github.io/DevBlog/2018/07/11/bayesian-ml-net-profound
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Independence and Causal Chains

• Important question about a BN:
• Are two nodes independent given certain evidence?
• If yes, we can it prove using algebra (tedious)

• If no, can prove it with a counter-example

• Question: are X and Z necessarily independent? 
• No. 
• Ex: Clouds (X) cause rain (Y), which causes traffic (Z)

• X can influence Z, Z can influence X (via Y)

• This configuration is a “causal chain” 

X

Y

Z

Slides derived from Matt E. Taylor, WSU
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Two More Main Patterns

• Common Cause:
• Y causes X and Y causes Z
• Are X and Z independent?
• Are X and Z independent given Y?

• Common Effect:
• Two causes of one effect
• Are X and Z independent?

• Are X and Z independent given Y?
• No!
• Observing an effect “activates” influence between possible causes.

X

Y

Z

X

Y

Z

No

Yes

Yes

Slides derived from Matt E. Taylor, WSU
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Conditionality Example

• Hidden: A, B, E. You don’t know:
• If there’s a burglar.
• If there was an earthquake.

• If the alarm is going off.

• Observed: J and M.
• John and/or Mary have some chance of calling if 

the alarm rings. 
• You know who called you.

Slides derived from Matt E. Taylor, WSU
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Conditionality Example 2

• At first:
• Is the probability of John calling affected by 

whether there’s an earthquake?
• Is the probability of Mary calling affected by 

John calling?

• Your alarm is going off!
• Is the probability of Mary calling affected by 

John calling?

Slides derived from Matt E. Taylor, WSU
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Conditionality Example 3

• At first:
• Is whether there’s an earthquake affected by 

whether there’s a burglary in progress (and vice 
versa)?

• Your alarm is going off!
• Does the probability a burglary is happening 

depend on whether there’s an earthquake?

Slides derived from Matt E. Taylor, WSU

21

Representational Extensions

• Conditional probability tables (CPTs) for large networks can require a 
large number of parameters
• O(2k) where k is the branching factor of the network

• There are ways of compactly representing CPTs
• Deterministic relationships
• Noisy-OR 
• Noisy-MAX

• What about continuous variables?
• Discretization
• Use density functions (usually mixtures of Gaussians) to build hybrid Bayesian 

networks (with discrete and continuous variables)

23

23
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Bayes’ Net Inference

Some material borrowed from Lise Getoor

24

Inference Tasks
• Simple queries: Compute posterior marginal P(Xi | E=value)

• E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)

• Conjunctive queries:
• P(Xi, Xj | E=value) = P(Xi | E=value) P(Xj | Xi, E=value)

• Optimal decisions:
• Decision networks include utility information
• Probabilistic inference gives P(outcome | action, evidence)

• Value of information: Which evidence should we seek next?

• Sensitivity analysis: Which probability values are most critical?

• Explanation: Why do I need a new starter motor?

25

25
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Direct Inference with BNs

• Instead of computing the joint, suppose we just want the probability for 
one variable.

• Exact methods of computation:
• Enumeration

• Variable elimination
• Join trees: get the probabilities associated with every query variable

27

27

Inference by Enumeration

• Add all of the terms (atomic event 
probabilities) from the full joint distribution

• If E are the evidence (observed) variables and Y are the other 
(unobserved) variables, then:

• P(X | E) = α P(X, E) = α ∑ P(X, E, Y)

• Each P(X, E, Y) term can be computed using the chain rule

• Computationally expensive!

Reminder: P(E) is known 
(observed), so 1/P(E) is a 
constant that makes 
everything sum to 1: the 
normalizing constant

28
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Example 1: Enumeration

• Recipe:
• State the marginal probabilities you need
• Figure out ALL the atomic probabilities you need

• Calculate and combine them 

• Example:

• P(+b | +j, +m) =

Slides derived from Matt E. Taylor, WSU; Russell&Norvig

29

P(+b, +j, +m)
P(+j, +m)

29

Example 1 cont’d

30

Slides derived from Matt E. Taylor, WSU; Russell&Norvig

30



9/27/22

15

Example 2: Enumeration

• P(xi) = Σπ P(xi | πi) P(πi)

• Say we want to know P(D=t)

• Only E is given as true

• P (d | e) = a ΣABCP(a, b, c, d, e) (reminder: a = 1/P(e))
= a ΣABCP(a) P(b | a) P(c | a) P(d | b, c) P(e | c)

• With simple iteration, that’s a lot of  repetition! 

• P(e|c) has to be recomputed every time we iterate over C=true

31

A

B C

D E

i

31

Variable Elimination

• Basically just enumeration with caching of local calculations

• Linear for polytrees (singly connected BNs)

• Potentially exponential for multiply connected BNs
• Exact inference in Bayesian networks is NP-hard!

• Join tree algorithms are an extension of variable elimination methods 
that compute posterior probabilities for all nodes in a BN 
simultaneously

32

32
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Variable Elimination Approach

• General idea:

• Write query in the form

• Note that there is no a term here
• It’s a conjunctive probability, not a conditional probability…

• Iteratively
• Move all irrelevant terms outside of innermost sum
• Perform innermost sum, getting a new term
• Insert the new term into the product

33

P(Xn,e) = ! P(xi | pai )
i
∏

x2

∑
x3

∑
xk

∑

33

Variable Elimination: Example

RainSprinkler

Cloudy

WetGrass

∑=
c,s,r

)c(P)c|s(P)c|r(P)s,r|w(P)w(P

∑ ∑=
s,r c

)c(P)c|s(P)c|r(P)s,r|w(P

∑=
s,r

1 )s,r(f)s,r|w(P )s,r(f1

“factors”

34
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A More Complex Example

• “Lungs” network:

Visit to 
Smogland Smoking

Lung CancerTuberculosis

Abnormality
in Chest Bronchitis

X-Ray 
performed

Dyspnea

35

35

Lungs 1
• We want to compute P(d)

• Need to eliminate: v,s,x,t,l,a,b

Initial factors:

V S

LT

A B

X D

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

36
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Lungs 2
• We want to compute P(d)

• Need to eliminate: v,s,x,t,l,a,b

Initial factors:

Eliminate: v

Compute:

• Note: fv(t) = P(t)
• Result of elimination is not necessarily a probability term

fv (t) = P(v)P(t | v)
v
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

37

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

V S

LT

A B

X D

37

Lungs 3
• We want to compute P(d)

• Need to eliminate: s,x,t,l,a,b

Initial factors:

Eliminate: s

Compute:

• Summing on s results in a factor with two arguments fs(b,l)
• In general, result of elimination may be a function of several variables

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

fs (b, l) = P(s)P(b | s)P(l | s)
s
∑

⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)

38

V S

LT

A B

X D

38
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Lungs 4
• We want to compute P(d)

• Need to eliminate: x,t,l,a,b

Initial factors

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

Eliminate: x

Note: fx(a) = 1 for all values of a !! ß WHY

Compute: fx (a) = P(x | a)
x
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)

⇒ fv (t) fs (b, l) fx (a)P(a | t, l)P(d | a,b)

39

V S

LT

A B

X D

39

Lungs 5
• We want to compute P(d)

• Need to eliminate: t,l,a,b

Initial factors P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

Eliminate: t

Compute: ft (a, l) = fv (t)P(a | t, l)
t
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)

⇒ fv (t) fs (b, l) fx (a)P(a | t, l)P(d | a,b)

⇒ fs (b, l) fx (a) ft (a, l)P(d | a,b)

40

V S

LT

A B

X D

40
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Lungs 6
• We want to compute P(d)

• Need to eliminate: l,a,b

Initial factors P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

Eliminate: l
Compute: fl (a,b) = fs (b, l) ft (a, l)

l
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l) fx (a)P(a | t, l)P(d | a,b)
⇒ fs (b, l) fx (a) ft (a, l)P(d | a,b)

⇒ fl (a,b) fx (a)P(d | a,b)

41

V S

LT

A B

X D

41

Lungs Finale
• We want to compute P(d)

• Need to eliminate: b

Initial factors P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

Eliminate: a,b

Compute: fa (b,d) = fl (a,b) fx (a)p(d | a,b)
a
∑ fb(d) = fa (b,d)

b
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l) fx (a)P(a | t, l)P(d | a,b)

⇒ fl (a,b) fx (a)P(d | a,b)
⇒ fs (b, l) fx (a) ft (a, l)P(d | a,b)

⇒ fa (b,d)⇒ fb(d)

42

V S

LT

A B

X D

42
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Dealing with Evidence

• How do we deal with evidence?
• And what is “evidence?”
• Variables whose value has been observed

• Suppose we are given evidence: V = t, S = f, D = t

• We want to compute P(L, V = t, S = f, D = t)

44

V S

LT

A B

X D

44

Dealing with Evidence 

• We start by writing the factors:

• Since we know that V = t, we don’t need to eliminate V

• Instead, we can replace the factors P(V) and P(T |V) with

• These “select” appropriate parts of original factors given evidence

• Note that fP(V) is a constant, so does not appear in elimination of other 
variables

45

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

fP(V ) = P(V = t) fp(T |V ) (T ) = P(T |V = t)

V S

LT

A B

X D

45
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Dealing with Evidence 

• So now…
• Given evidence V = t, S = f, D = t

• Compute P(L, V = t, S = f, D = t )
• Initial factors, after setting evidence:

fP(v) fP(s) fP(t|v) (t) fP(l|s) (l) fP(b|s) (b)P(a | t, l)P(x | a) fP(d|a,b) (a,b)

46

V S

LT

A B

X D

46

• Given evidence V = t, S = f, D = t, we want to compute P(L, V = t, S = f, D = t )

• Initial factors, after setting evidence:

• Eliminating x, we get

• Eliminating t, we get

• Eliminating a, we get

• Eliminating b, we get

Dealing with Evidence 

fP(v) fP(s) fP(l|s) (l) fP(b|s) (b) fa (b, l)

fP(v) fP(s) fP(l|s) (l) fP(b|s) (b) ft (a, l) fx (a) fP(d|a,b) (a,b)

fP(v) fP(s) fP(t|v) (t) fP(l|s) (l) fP(b|s) (b)P(a | t, l) fx (a) fP(d|a,b) (a,b)

fP(v) fP(s) fP(t|v) (t) fP(l|s) (l) fP(b|s) (b)P(a | t, l)P(x | a) fP(d|a,b) (a,b)

fP(v) fP(s) fP(l|s) (l) fb(l)

47

V S

LT

A B

X D

47
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Variable Elimination Algorithm

• Let X1,…, Xm be an ordering on the non-query variables

• For i = m, …, 1

• In the summation for Xi, leave only factors mentioning Xi

• Multiply the factors, getting a factor that contains a number for each value of  
the variables mentioned, including Xi

• Sum out Xi, getting a factor f  that contains a number for each value of  the 
variables mentioned, not including Xi

• Replace the multiplied factor in the summation

48

...
X2

∑
Xm

∑
X1

∑ P(Xj | Parents(Xj ))
j
∏

48

Exercise: Variable Elimination

smart study

prepared fair

pass

p(smart)=.8 p(study)=.6

p(fair)=.9

p(prep|…) smart ¬smart
study .9 .7

¬study .5 .1

p(pass|…)
smart ¬smart

prep ¬prep prep ¬prep

fair .9 .7 .7 .2

¬fair .1 .1 .1 .1

Query: What is the 
probability that a student 
studied, given that they 
pass the exam?

49
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Exercise: Variable Elimination

smart study

prepared fair

pass

p(smart)=.8 p(study)=.6

p(fair)=.9

p(prep|…) smart ¬smart
study .9 .7

¬study .5 .1

p(pass|…)
smart ¬smart

prep ¬prep prep ¬prep

fair .9 .7 .7 .2

¬fair .1 .1 .1 .1

Query: What is the 
probability that a student 
is smart, given that they 
pass the exam?

50

Summary

• Bayes nets
• Structure
• Parameters

• Conditional independence
• Chaining

• BN inference
• Enumeration

• Variable elimination
• Sampling methods

51
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