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Bayes Nets
Al Class 10 (Ch. 14.1-14.4.2; skim 14.3)

TDRCD
oS >

Probability, redux

*  Worlds, random variables, events, sample space

» Joint probabilities of multiple connected variables

» Conditional probabilities of a variable, given another variable(s)
* Marginalizing out unwanted variables

* Inference from the joint probability

The big idea: figuring out the probability
of variable(s) taking certain value(s)
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Review: Bayesian Diagnostic Reasoning

* Bayes’ rule says that
PH; | E,,....E,)=P(E,,...,E, | H) PH,) / P(E,, ..., E,)

* Assume each piece of evidence E; is conditionally independent of the
others, given a hypothesis H;, then:
P(E,, ..., Ey | Hy) = [T, P(E; | Hy)

« If we only care about relative probabilities for the H,, then we have:
P(H; | E, ..., Ey) = o P(H)) [T, P(E; | H;)

Next Up

* Bayesian networks

Network structure and independence

* Inference in Bayesian networks
Exact inference

Approximate inference
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Review: Independence

What does it mean for A and B to be independent?
« P(A) 1L P(B)
A and B do not affect each other’s probability

« P(A A B) = P(A) P(B)

Review: Conditioning

What does it mean for A and B to be conditionally independent given C?
* Aand B don’t affect each other if C is known

« PAABIC)=PAIC)PBIC)




9/27/22

Review: Bayes' Rule

What is Bayes’ Rule?
P(E,|H)P(H))
P(E))

P(H,|E,)=

What’s it useful for?
Diagnosis

Effect is perceived, want to know (probability of) cause

P(effect | cause)P(cause)

P(causel effect) = Pleffect)
effec

Review: Bayes' Rule

What is Bayes’ Rule?
P(E;|H)P(H))
P(E))

P(H,|E,)=

What’s it useful for?
Diagnosis

Effect is perceived, want to know (probability of) cause

P(observed | hidden)P(hidden)

P(hidden | observed) =
P(observed)
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Review: Joint Probability

* Whatis the joint probability of A and B?
- P(AB)

* The probability of any pair of legal assignments.
* Generalizing to > 2, of course

« Booleans: expressed as a matrix/table

alarm | —alarm

0.09

burglary [ 0.09 0.01
= burglary [ 0.1 0.8

» Continuous domains: probability functions

0.1

0.01

0.8

9
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Review: Bayes’ Nets: Big Picture
* Problems with full joint distribution tables as our probabilistic models:
* Joint gets way too big to represent explicitly
* Unless there are only a few variables
* Hard to learn (estimate) anything empirically about more than a few variables
at a time
A —A
E -E E -E
B| 0.01 | 0.08 | 0.001 | 0.009
—B| 0.01 | 0.09 | 0.01 0.79
10
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Review: Bayes’' Nets

* Bayesian Network BN: BN = (DAG, CPD)

* DAG: directed acyclic graph (BN’s structure)
* CPD: conditional probability distribution (BN’s parameters)

P(A) = 0.001

P(B|A)=0.3 P(C|A)=0.2
P(B|-A) = 0.001 P(C|-A) = 0.005
P(—BJA) = 0.7

P(—B|—A) = 0.999
(E) P(E|C)=0.4
P(D|B,—C) = 0.01

P(D|-B,C) = 0.01

P(D|-B,—~C) = 0.00001
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Review: Bayes’' Nets
 P(a,m,i,e,s)=P(@a| m)*P(m|i,e)*P(i) * P(e) * P(s | i)
—e e _|| i
0.7 0.3 e | 0.8 0.2
—m m\ / \ —S S
i —e | 06 | 04 m S i | 075 [ o025
—~i,e | 09 | 01 1 i 04 | 06
i, e 05 | 0.5 —a a
m 09 | 01
12
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The Chain Rule

* P(oyAOLA..A0,) = P(ayg) X
P(a, | ay) x
P(asl oyAQ,) X ... X
P(a, | oyAA0, 1)

= [Tiz1 o P(oi oA Ay )

= P(xl’-"’xn)= H?:lp(xi |'7-[l)

13
The Chain Rule
n
P(x,...x,)=1I_P(x;|m,)
* Decomposition: P(x,,...,x,)=P(x,)P(x, | x,)P(x; | x,,x2)...
P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)
* With assumption of conditional independence:
. . rain
P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain)
» Bayes’ nets express conditional independences
¢ (Assumptions) )
traffic umbrella
14
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Chaining: Example

Computing the joint probability for all variables is easy:

P(a,b,c,d,e) =P(e| a,b,c d) P(a,b,c,d)

P(e | ¢c) P(a, b, c, d) <
Ple | c)P(d | a, b, ¢) P(a, b, c)

P(e | ¢)P(d | b,c) P(c | a,b) P(a, b)
Ple | c)P(d | b,c)P(c | a) P(b | a) P(a)

We’re reducing distributions—P(x,y)-to single values.

By product rule
By conditional
independence
assumption

15

Topological Semantics

* A node is conditionally independent of
its non-descendants given its parents

* A node is conditionally independent of
all other nodes in the network given its
parents, children, and children’s
parents (also known as its Markov
blanket)

* (For much later: a method called d-
separation can be applied to decide

whether a set of nodes X is independent
of a set Y, given a third set Z)

16
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Independence and Causal Chains

* Important question about a BN:

Are two nodes independent given certain evidence?
If yes, we can it prove using algebra (tedious)

If no, can prove it with a counter-example

* Question: are X and Z necessarily independent?

No.
Ex: Clouds (X) cause rain (Y), which causes traffic (Z)

X can influence Z, Z can influence X (via Y)

* This configuration is a “causal chain”

17

Two More Main Patterns

e Common Cause:

Y causes X and Y causes Z
Are X and Z independent? No
Are X and Z independent given Y? Yes

e Common Effect:

Two causes of one effect

Are X and Z independent? Yes

Are X and Z independent given Y?
No!

Observing an effect “activates” influence between possible causes.

18
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Conditionality Example

e Hidden: A, B, E. You don’t know:

« Ifthere’s a burglar. B E
« If there was an earthquake. <\ e
« If the alarm is going off.
* Observed: J and M. ,/ \
« John and/or Mary have some chance of calling if J M
the alarm rings.
* You know who called you.
19
Conditionality Example 2
* At first:
* Is the probability of John calling affected by B E
whether there’s an earthquake? < >
* Is the probability of Mary calling affected by
John calling? / \
* Your alarm is going off!
* Is the probability of Mary calling affected by J M
John calling?
20

10
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Conditionality Example 3

» At first:
* Iswhether there’s an earthquake affected by B E
whether there’s a burglary in progress (and vice
versa)? N &
A
* Your alarm is going off! / \
* Does the probability a burglary is happening
J M

depend on whether there’s an earthquake?

21
Representational Extensions
» Conditional probability tables (CPTs) for large networks can require a
large number of parameters
+ 0(2%) where k is the branching factor of the network
* There are ways of compactly representing CPTs
* Deterministic relationships
*  Noisy-OR
*  Noisy-MAX
* What about continuous variables?
* Discretization
* Use density functions (usually mixtures of Gaussians) to build hybrid Bayesian
networks (with discrete and continuous variables)
23

11
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Bayes’ Net Inference

24

24
Inference Tasks
«  Simple queries: Compute posterior marginal P(X; | E=value)
« E.g, P(NoGas | Gauge=empty, Lights=on, Starts=false)
* Conjunctive queries:
+ P(X, X; | E=value) = P(X; | E=value) P(X; | Xi, E=value)
* Optimal decisions:
*  Decision networks include utility information
*  Probabilistic inference gives P(outcome | action, evidence)
*  Value of information: Which evidence should we seek next?
* Sensitivity analysis: Which probability values are most critical?
* Explanation: Why do | need a new starter motor?
25

12
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Direct Inference with BNs

* Instead of computing the joint, suppose we just want the probability for
one variable.

* Exact methods of computation:
Enumeration
Variable elimination

Join trees: get the probabilities associated with every query variable

27
; Reminder: P(E) is known
Inference by Enumeration (observed), so 1/P(E) is a
constant that makes =
« Add all of the terms (atomic event Serytnngisumtiofisthe
probabilities) from the full joint distribution oL GO
* IfE are the evidence (observed) variables and Y are the other
(unobserved) variables, then:
-« PXIE)=aPX,E)=a3 PX,E,Y)
 Each P(X, E, Y) term can be computed using the chain rule
* Computationally expensive!
28

13
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Example 1: Enumeration

* Recipe:
State the marginal probabilities you need
Figure out ALL the atomic probabilities you need

Calculate and combine them
* Example:

P(+b, +j, +m)
P(+], +m)

« P(+b | 4j,+m) = A

B E
N~
N\
J M

29

Example 1 cont'd

P(+b,+j,+m) =
P(+b) P(+e) P(+a|+b, +e) P(+j|+a) P(+m|+a)+
P(+b)P(+e)P(—a|+b, +e) P(+j|—a) P(+m|—a)+
P(+b)P(—e) P(+a|+b, —e) P(+j|4a) P(+m|4a)+
P(+b)P(—e)P(—a|+b, —e) P(+j|—a) P(+m|—a)
B E

\Az

f)

P(+m | +b, +e)? P
J) M

30

14
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Example 2: Enumeration

© P(x) =25 P(x; | m) P(7m)

« Say we want to know P(D=t¢)

* Only E 1s given as true

« P(dle)=a Z,pcP(a,b,c,d,e) (reminder: o. = 1/P(e))
=a ZppcP(a) P(bla)P(cla)P(dIb,c)Plelc)

«  With simple iteration, that’s a lot of repetition!

* P(elc) has to be recomputed every time we iterate over C=true

31

Variable Elimination

» Basically just enumeration with caching of local calculations

* Linear for polytrees (singly connected BNs)

* Potentially exponential for multiply connected BNs

Exact inference in Bayesian networks is NP-hard!

* Join tree algorithms are an extension of variable elimination methods
that compute posterior probabilities for all nodes in a BN
simultaneously

32

15
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Variable Elimination Approach

* General idea:

*  Write query in the form

P(X ,e)= E”'EEHP(X" | pa;)

X3 Xy 1

Note that there is no o term here

It’s a conjunctive probability, not a conditional probability...

* lteratively

Move all irrelevant terms outside of innermost sum
Perform innermost sum, getting a new term
Insert the new term into the product

33
Variable Elimination: Example
P(w) = E P(w |1,8)P(r| c)P(s | ¢)P(c)
- §CP(W |1,5)(> P(r|c)P(s|c)P(c factors
— §P(w | 1,9)f,(1,5) f,(r,s)
Sprinkler
WetGrass >
34
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A More Complex Example

« “Lungs” network:

Visit to
Smogland
Abnormality
in Chest

X-Ray D

35
Lungs 1

«  We want to compute P(d)

e Need to eliminate: v,s,x,t,/,a,b

Initial factors:

4 4
PW)P(s)P(tIv)P(L1s)P(bls)P(alt,l)P(x|la)P(d|a,b)

36

17



9/27/22

Lungs 2

We want to compute P(d)
Need to eliminate: v,s,x,t,,,a,b
Initial factors:

PW)P(s)P(tIv)P(L1s)P(bls)P(alt,l)P(x1a)P(d|a,b)

Eliminate: v

Compute:  f,(1)= Y, POP(t1v)
= mp(s)vp(z |$)P(b1s)P(alt,)P(x1a)P(d|a,b)

Note: f,(t) = P(t)

Result of elimination is not necessarily a probability term

37
Lungs 3
We want to compute P(d)
Need to eliminate: s,x,t,/,a,b
Initial factors:
PW)P(s)P(tIv)P(I1s)P(bls)P(alt,l)P(x1a)P(d!a,b)
= f.()P(s)P(LIs)P(bls)P(alt,l)P(xla)P(d|a,b)
Eliminate: s
Compute: f,(b,1)= Y P(s)P(b15)P(l5)
= £.(O)f.(b,))P(alt,))P(x|a)P(d|a,b)
Summing on s results in a factor with two arguments f,(b,l)
In general, result of elimination may be a function of several variables
38

18
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Lungs 4

+  We want to compute P(d)

« Need to eliminate: x,t,/,a,b

Initial factors

PW)P(s)P(tIv)P(1s)P(bls)P(alt,l)P(x1a)P(d|a,b)
= f.(O)P(s)P(Is)P(bls)P(alt,l)P(x|a)P(d|a,b)

Eliminate: x = f.@)f.(b,)P(alt,l)P(x|a)P(d|a,b)
Compute: f (a) = EP(x la)
) = [, f.(b,Df (@)Palt,[)P(da,D)

39

Lungs 5

- We want to compute P(d)

« Need to eliminate: t,/,a,b

Initial factors ~ P(V)P(s)P(t|1v)P(l1s)P(bls)P(alt,])P(x|a)P(d|a,b)
= f.()P(s)P(1s)P(bls)P(alt,)P(x|a)P(d|a,b)
= f.(@)f.(b,))P(alt,)P(x|a)P(d|a,b)
= ﬁ_@)ﬁ(b,l)fx(a)P(a lt,[)P(d|a,b)

Eliminate: ¢
Compute: f.(a,l)= 2 f.()P(alt,l)

= f,(b,D)f.(a)f,(a,))P(d|a,D)

40

19
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Lungs 6

+  We want to compute P(d)

*  Need to eliminate: /,a,b

Initial factors  P(v)P(s)P(t|v)P(LIs)P(bls)P(alt,l)P(x|1a)P(d|a,b)
= [ ()P(s)P(Is)P(bls)P(alt,l)P(x|a)P(d|a,b)
= f.(t)f.(b,)P(alt,l)P(x|a)P(d|a,b)
= f. (@) f.(b,])f.(a)P(alt,l)P(d|a,b)
= £(b.Df (@ f(@DP(da,b)

Eliminate: [
Compute: f,(a.b)= Y. f,(b,1)f,(a,])
= f(a.b)f.(@P(d)a,b)

41

Lungs Finale

«  We want to compute P(d)

* Need to eliminate: b

Initial factors P(V)P(s)P(t|1v)P(l1s)P(bls)P(alt,l)P(x|a)P(d|a,b)
= f.(P(s)P1s)P(bls)P(alt,l)P(x|a)P(d|a,b)
= f.()f.(b,)P(alt,)P(x|a)P(d|a,b)
= f. () f.(b,])f (a)P(alt,l)P(d|a,b)
= f,(b.Df (a)f,(a,)P(d|a,b)
= f(a,b)f.(a)P(d)a,b) = f,(b,d)=> f,(d)

Eliminate: a,b

Compute: fa(b,d)=Ef,(a,b)fx(a)p(dla,b) fb(d)=2fa(b’d)

42
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Dealing with Evidence SR
T L
 How do we deal with evidence?
* And what is “evidence?” o o
* Variables whose value has been observed o o

* Suppose we are given evidence: V=¢S=f D =t

« Wewanttocompute P(L,V=t,S=fD=t)

44
Dealing with Evidence SR>
T L
*  We start by writing the factors:
PW)P(s)P(tIv)P(L1s)P(bls)P(alt,l)P(x1a)P(d|a,b)
* Since we know that V =t, we don’t need to eliminate V
* Instead, we can replace the factors P(V) and P(T |V) with
Jeary=P(V=10) fpmw(T) =P(TIV=t)
* These “select” appropriate parts of original factors given evidence
* Note that fpy) is a constant, so does not appear in elimination of other
variables
45
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Dealing with Evidence

« So now...
* Givenevidence V=t S=f D=t

« Initial factors, after setting evidence:

fp(v)fp(s)fp(zw)(t)fp(nx)(l)fp(ms)(b)P(a l2,[)P(x| a)fP(dIa,b)(a’b)

« Compute P(L,V=t,S=f,D=t) (X))

46

Dealing with Evidence

Given evidence V' =t, S =f D =t, we want to compute P(L, V=t S=f D =t)

Initial factors, after setting evidence:

fP(v)fP(s)fP(tIv) (t)fP(lls) (l)fP(bls) (b)P(alt, I)Pix I asz(dIa,b) (a,b)
Eliminating x, we get
fP(v)fP(s)fP e (t)fP(lls) (l)fP(bls) (b)P(alt,Df, (a)fP(dla,b) (a,b)
Eliminating ¢, we get
JearSe eas Doy (B f (@D f, (a)fP(dIg p(a.b)

Eliminating a, we get

fP(v)fP(s)fP(lls) (l)fp(hm (b)f,(b,1)

Eliminating b, we get AJ

JeorT ey Seas DI, (D)

47
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Variable Elimination Algorithm

« Let Xy,..., X, be an ordering on the non-query variables

« Fori=m,..,1 3 ¥.. > | [P(X; | Parents(X,))

X, X, X

m

* In the summation for X;, leave only factors mentioning X;
the variables mentioned, including X;

variables mentioned, not including X;

» Replace the multiplied factor in the summation

« Multiply the factors, getting a factor that contains a number for each value of

« Sum out X, getting a factor f that contains a number for each value of the

48
Exercise: Variable Elimination
p(smart)=.8 p(study)=.6
p(fair)=.9
Fp(prep|...) | smart —smart
study 9 Vi
—study 5 A
o " smart —smart
p(pass|...) prep | —prep | prep | —prep Query: What is the
por . - - 5 probability that a student
ar i ' i ' studied, given that they
49
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Exercise: Variable Elimination

p(smart)=.8

p(study)=.6

p(fair)=.9
Fp(prep|...) | smart —smart
study 9 i
—study 5 A

”""" smart —smart
p(pass|...) prep | —prep | prep | —prep Query: What is the
probability that a student
fair 9 i i 2 . .
is smart, given that they
50
Summary
* Bayes nets
e Structure
* Parameters
* Conditional independence
* Chaining
* BN inference
* Enumeration
* Variable elimination
e Sampling methods
51
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