

Probability, redux

- Worlds, random variables, events, sample space
- Joint probabilities of multiple connected variables
- Conditional probabilities of a variable, given another variable(s)
- Marginalizing out unwanted variables
- Inference from the joint probability

The big idea: figuring out the probability of variable(s) taking certain value(s)

Review: Bayesian Diagnostic Reasoning

- Bayes' rule says that
 - $P(H_i | E_1, ..., E_m) = P(E_1, ..., E_m | H_i) P(H_i) / P(E_1, ..., E_m)$
- Assume each piece of evidence E_i is conditionally independent of the others, given a hypothesis H_i, then:
 - $P(E_1, \ldots, E_m \mid H_i) = \prod_{j=1}^{l} P(E_j \mid H_i)$
- If we only care about relative probabilities for the H_i, then we have:
 - $P(H_i | E_1, ..., E_m) = \alpha P(H_i) \prod_{j=1}^{l} P(E_j | H_i)$

3

Next Up

- Bayesian networks
 - Network structure and independence
- Inference in Bayesian networks
 - Exact inference
 - Approximate inference

Review: Independence

What does it mean for A and B to be independent?

- P(A) **L** P(B)
- A and B do not affect each other's probability
- $P(A \land B) = P(A) P(B)$

5

Review: Conditioning

What does it mean for A and B to be conditionally independent given C?

- A and B don't affect each other if C is known
- $P(A \land B | C) = P(A | C) P(B | C)$

Review: Bayes' Rule What is Bayes' Rule? $P(H_i | E_j) = \frac{P(E_j | H_i)P(H_i)}{P(E_j)}$ What's it useful for? • Diagnosis • Effect is perceived, want to know (probability of) cause $P(hidden | observed) = \frac{P(observed | hidden)P(hidden)}{P(observed)}$

R&N, 495–496

Review: Joint Probability

- What is the joint probability of A and B?
 - *P*(A,B)
- The probability of **any pair** of legal assignments.
 - Generalizing to > 2, of course
- Booleans: expressed as a matrix/table

	alarm	¬ alarm	
burglary	0.09	0.01	
¬ burglary	0.1	0.8	

Α	В	
Т	Т	0.09
Т	F	0.1
F	Т	0.01
F	F	0.8

Continuous domains: probability functions

9

Review: Bayes' Nets: Big Picture

- Problems with full joint distribution tables as our probabilistic models:
 - Joint gets way too big to represent explicitly
 - Unless there are only a few variables
 - Hard to learn (estimate) anything empirically about more than a few variables at a time

	А		¬A	
	Е	¬Ε	Е	¬Ε
В	0.01	0.08	0.001	0.009
¬B	0.01	0.09	0.01	0.79

The Chain Rule

•
$$P(\alpha_1 \land \alpha_2 \land \dots \land \alpha_n) = P(\alpha_1) \times$$

$$P(\alpha_2 \mid \alpha_1) \times$$

$$P(\alpha_3 \mid \alpha_1 \land \alpha_2) \times \dots \times$$

$$P(\alpha_n \mid \alpha_1 \land \dots \land \alpha_{n-1})$$

$$= \prod_{i=1..n} P(\alpha_i \mid \alpha_1 \land \dots \land \alpha_{i-1})$$

$$= P(x_1,...,x_n) = \prod_{i=1}^n P(x_i \mid \pi_i)$$

artint.info/html/ArtInt_143.html

Representational Extensions

- Conditional probability tables (CPTs) for large networks can require a large number of parameters
 - O(2^k) where k is the branching factor of the network
- There are ways of compactly representing CPTs
 - Deterministic relationships
 - Noisy-OR
 - Noisy-MAX
- What about continuous variables?
 - Discretization
 - Use density functions (usually mixtures of Gaussians) to build hybrid Bayesian networks (with discrete and continuous variables)

Inference Tasks Simple queries: Compute posterior marginal P(X_i | E=value) E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false) Conjunctive queries: P(X_i, X_j | E=value) = P(X_i | E=value) P(X_j | X_i, E=value) Optimal decisions: Decision networks include utility information Probabilistic inference gives P(outcome | action, evidence) Value of information: Which evidence should we seek next? Sensitivity analysis: Which probability values are most critical? Explanation: Why do I need a new starter motor?

Direct Inference with BNs

- Instead of computing the joint, suppose we just want the probability for one variable.
- Exact methods of computation:
 - Enumeration
 - Variable elimination
 - Join trees: get the probabilities associated with every query variable

27

Inference by EnumerationReminder: P(E) is known
(observed), so 1/P(E) is a
constant that makes
everything sum to 1: the
normalizing constant• Add all of the terms (atomic event
probabilities) from the full joint distributioneverything sum to 1: the
normalizing constant• If E are the evidence (observed) variables and Y are the other
(unobserved) variables, then:
• $P(X | E) = \alpha P(X, E) = \alpha \sum P(X, E, Y)$ e Computationally expensive!

Variable Elimination

- Basically just enumeration with caching of local calculations
- Linear for polytrees (singly connected BNs)
- Potentially exponential for multiply connected BNs
 - Exact inference in Bayesian networks is NP-hard!
- Join tree algorithms are an extension of variable elimination methods that compute posterior probabilities for all nodes in a BN simultaneously

Variable Elimination Approach

- General idea:
- Write query in the form

$$P(X_n, e) = \sum_{x_k} \cdots \sum_{x_3} \sum_{x_2} \prod_i P(x_i \mid pa_i)$$

- Note that there is no α term here
- It's a conjunctive probability, not a conditional probability...
- Iteratively
 - Move all irrelevant terms outside of innermost sum
 - Perform innermost sum, getting a new term
 - Insert the new term into the product

Variable Elimination Algorithm

• Let X_1, \ldots, X_m be an ordering on the non-query variables

• For i = m, ...,
$$1 \sum_{X_1} \sum_{X_2} \dots \sum_{X_m} \prod_j P(X_j | Parents(X_j))$$

- In the summation for $X_{\rm i},$ leave only factors mentioning $X_{\rm i}$
- Multiply the factors, getting a factor that contains a number for each value of the variables mentioned, including $X_{\rm i}$
- Sum out X_i , getting a factor f that contains a number for each value of the variables mentioned, not including X_i
- Replace the multiplied factor in the summation

48

Summary

- Bayes nets
 - Structure
 - Parameters
 - Conditional independence
 - Chaining
- BN inference
 - Enumeration
 - Variable elimination
 - Sampling methods