Bayes Nets
 Al Class 10 (Ch. 14.1-14.4.2; skim 14.3)

Based on slides by Dr. Marie destardin. Some material also adapted from slides by Matt E. Taylor @ WSU, List
Getoor © UCSC, Dr. P. Matuszek @ Villanova University, and Weng-Keen Wong at OSU. Based in part on
1

Probability, redux

- Worlds, random variables, events, sample space
- Joint probabilities of multiple connected variables
- Conditional probabilities of a variable, given another variables)
- Marginalizing out unwanted variables
- Inference from the joint probability

The big idea: figuring out the probability of variables) taking certain values)

Review: Bayesian Diagnostic Reasoning

- Bayes' rule says that
- $P\left(H_{i} \mid E_{1}, \ldots, E_{m}\right)=P\left(E_{1}, \ldots, E_{m} \mid H_{i}\right) P\left(H_{i}\right) / P\left(E_{1}, \ldots, E_{m}\right)$
- Assume each piece of evidence E_{i} is conditionally independent of the others, given a hypothesis H_{i}, then:
- $\mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}} \mid \mathrm{H}_{\mathrm{i}}\right)=\prod_{\mathrm{j}=1}^{1} \mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{\mathrm{i}}\right)$
- If we only care about relative probabilities for the H_{i}, then we have:
- $\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right)=\alpha \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right) \prod_{\mathrm{j}=1}^{1} \mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{\mathrm{i}}\right)$

3

Next Up

- Bayesian networks
- Network structure and independence
- Inference in Bayesian networks
- Exact inference
- Approximate inference

Review: Independence

What does it mean for A and B to be independent?

- $P(A) \Perp P(B)$
- A and B do not affect each other's probability
- $P(A \wedge B)=P(A) P(B)$

5

Review: Conditioning

What does it mean for A and B to be conditionally independent given C ?

- A and B don't affect each other if C is known
- $P(\mathrm{~A} \wedge \mathrm{~B} \mid \mathrm{C})=P(\mathrm{~A} \mid \mathrm{C}) P(\mathrm{~B} \mid \mathrm{C})$

Review: Bayes' Rule

What is Bayes' Rule?

$$
P\left(H_{i} \mid E_{j}\right)=\frac{P\left(E_{j} \mid H_{i}\right) P\left(H_{i}\right)}{P\left(E_{j}\right)}
$$

What's it useful for?

- Diagnosis
- Effect is perceived, want to know (probability of) cause

$$
P(\text { cause |effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

Review: Bayes' Rule

What is Bayes' Rule?

$$
P\left(H_{i} \mid E_{j}\right)=\frac{P\left(E_{j} \mid H_{i}\right) P\left(H_{i}\right)}{P\left(E_{j}\right)}
$$

What's it useful for?

- Diagnosis
- Effect is perceived, want to know (probability of) cause

$$
P(\text { hidden } \mid \text { observed })=\frac{P(\text { observed } \mid \text { hidden }) P(\text { hidden })}{P(\text { observed })}
$$

Review: Joint Probability

- What is the joint probability of A and B ?
- $\quad P(\mathrm{~A}, \mathrm{~B})$
- The probability of any pair of legal assignments.
- Generalizing to >2, of course
- Booleans: expressed as a matrix/table

	alarm	\neg alarm
burglary	0.09	0.01
\neg burglary	0.1	0.8

- Continuous domains: probability functions

9

Review: Bayes' Nets: Big Picture

- Problems with full joint distribution tables as our probabilistic models:
- Joint gets way too big to represent explicitly
- Unless there are only a few variables
- Hard to learn (estimate) anything empirically about more than a few variables at a time

	\mathbf{A}		$\neg \mathbf{A}$	
	\mathbf{E}	$\neg \mathbf{E}$	\mathbf{E}	$\neg \mathbf{E}$
\mathbf{B}	0.01	0.08	0.001	0.009
$\neg \mathbf{B}$	0.01	0.09	0.01	0.79

Review: Bayes' Nets

- Bayesian Network BN: BN = (DAG, CPD)
- DAG: directed acyclic graph (BN's structure)
- CPD: conditional probability distribution (BN's parameters)

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~B} \mid \mathrm{A})=0.3 \\
& \mathrm{P}(\mathrm{~B} \mid \neg \mathrm{A})=0.001 \\
& \mathrm{P}(\neg \mathrm{~B} \mid \mathrm{A})=0.7 \\
& \mathrm{P}(\neg \mathrm{~B} \mid \neg \mathrm{A})=0.999
\end{aligned}
$$

Review: Bayes' Nets

- $P(a, m, i, e, s)=P(a \mid m) * P(m \mid i, e) * P(i) * P(e) * P(s \mid i)$

The Chain Rule

- $\mathrm{P}\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{\mathrm{n}}\right)=\mathrm{P}\left(\alpha_{1}\right) \times$

$$
\mathrm{P}\left(\alpha_{2} \mid \alpha_{1}\right) \times
$$

$$
\mathrm{P}\left(\alpha_{3} \mid \alpha_{1} \wedge \alpha_{2}\right) \times \ldots \times
$$

$$
P\left(\alpha_{n} \mid \alpha_{1} \wedge \cdots \wedge \alpha_{n-1}\right)
$$

$$
=\quad \prod_{\mathrm{i}=1 . \mathrm{n}} \mathrm{P}\left(\alpha_{\mathrm{i}} \mid \alpha_{1} \wedge \cdots \wedge \alpha_{\mathrm{i}-1}\right)
$$

$$
=\quad P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \pi_{i}\right)
$$

The Chain Rule

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \pi_{i}\right)
$$

- Decomposition: $P\left(x_{1}, \ldots, x_{n}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x 2\right) \ldots$

$$
\begin{aligned}
& P(\text { Traffic, Rain, Umbrella })= \\
& \quad P(\text { Rain }) P(\text { Traffic | Rain }) P(\text { Umbrella | Rain, Traffic })
\end{aligned}
$$

- With assumption of conditional independence:
$P($ Traffic, Rain, Umbrella $)=$
P (Rain) P (Traffic I Rain) P (Umbrella | Rain)
- Bayes' nets express conditional independences
- (Assumptions)

Chaining: Example

Computing the joint probability for all variables is easy:

$$
\begin{array}{rlrl}
\mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e})=\mathrm{P}(\mathrm{e} \mid \mathrm{a}, \mathrm{~b}, \boldsymbol{c}, \mathrm{~d}) \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) \longleftarrow & \text { By product rule } \\
& =\mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) \longleftarrow & \text { By conditional } \\
& =\mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{~d} \mid \mathrm{a}, \boldsymbol{b}, \boldsymbol{c}) \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) & \text { independence } \\
& =\mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{~d} \mid \mathrm{b}, \mathrm{c}) \mathrm{P}(\mathrm{c} \mid \boldsymbol{a}, \mathrm{b}) \mathrm{P}(\mathrm{a}, \mathrm{~b}) & \text { assumption } \\
& =\mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{~d} \mid \mathrm{b}, \mathrm{c}) \mathrm{P}(\mathrm{c} \mid \mathrm{a}) \mathrm{P}(\mathrm{~b} \mid \mathrm{a}) \mathrm{P}(\mathrm{a}) &
\end{array}
$$

We're reducing distributions- $\mathbf{P}(\mathbf{x}, \mathrm{y})$-to single values.

Topological Semantics

- A node is conditionally independent of its non-descendants given its parents
- A node is conditionally independent of all other nodes in the network given its parents, children, and children's parents (also known as its Markov blanket)
- (For much later: a method called dseparation can be applied to decide whether a set of nodes X is independent of a set Y, given a third set Z)

Independence and Causal Chains

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, we can it prove using algebra (tedious)
- If no, can prove it with a counter-example
- Question: are X and Z necessarily independent?
- No.
- Ex: Clouds (X) cause rain (Y), which causes traffic (Z)
- X can influence Z , Z can influence X (via Y)
x

Y

- This configuration is a "causal chain"

Two More Main Patterns

- Common Cause:
- Y causes X and Y causes Z
- Are X and Z independent? No
- Are X and Z independent given Y ? Yes
- Common Effect:
- Two causes of one effect
- Are X and Z independent? Yes
- Are X and Z independent given Y ?
- No!

- Observing an effect "activates" influence between possible causes.

Conditionality Example

- Hidden: A, B, E. You don't know:
- If there's a burglar.
- If there was an earthquake.
- If the alarm is going off.
- Observed: J and M.
- John and/or Mary have some chance of calling if the alarm rings.

- You know who called you.

Conditionality Example 2

- At first:
- Is the probability of John calling affected by whether there's an earthquake?
- Is the probability of Mary calling affected by John calling?
- Your alarm is going off!
- Is the probability of Mary calling affected by John calling?

Conditionality Example 3

- At first:
- Is whether there's an earthquake affected by whether there's a burglary in progress (and vice versa)?
- Your alarm is going off!
- Does the probability a burglary is happening depend on whether there's an earthquake?

Representational Extensions

- Conditional probability tables (CPTs) for large networks can require a large number of parameters
- $\mathrm{O}\left(2^{\mathrm{k}}\right)$ where k is the branching factor of the network
- There are ways of compactly representing CPTs
- Deterministic relationships
- Noisy-OR
- Noisy-MAX
- What about continuous variables?
- Discretization
- Use density functions (usually mixtures of Gaussians) to build hybrid Bayesian networks (with discrete and continuous variables)

Bayes' Net Inference

Inference Tasks

- Simple queries: Compute posterior marginal $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{E}=\right.$ value)
- E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)
- Conjunctive queries:
- $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}} \mid \mathrm{E}=\right.$ value $)=\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{E}=\right.$ value $) \mathrm{P}\left(\mathrm{X}_{\mathrm{j}} \mid \mathrm{X}_{\mathrm{i}}, \mathrm{E}=\right.$ value $)$
- Optimal decisions:
- Decision networks include utility information
- Probabilistic inference gives P(outcome \| action, evidence)
- Value of information: Which evidence should we seek next?
- Sensitivity analysis: Which probability values are most critical?
- Explanation: Why do I need a new starter motor?

Direct Inference with BNs

- Instead of computing the joint, suppose we just want the probability for one variable.
- Exact methods of computation:
- Enumeration
- Variable elimination
- Join trees: get the probabilities associated with every query variable

Inference by Enumeration

- Add all of the terms (atomic event probabilities) from the full joint distribution

Reminder: $\mathrm{P}(\mathrm{E})$ is known (observed), so $1 / \mathrm{P}(\mathrm{E})$ is a constant that makes everything sum to 1 : the normalizing constant

- If \mathbf{E} are the evidence (observed) variables and \mathbf{Y} are the other (unobserved) variables, then:
- $\mathrm{P}(\mathrm{X} \mid \mathbf{E})=\alpha \mathrm{P}(\mathrm{X}, \mathbf{E})=\alpha \sum \mathrm{P}(\mathrm{X}, \mathbf{E}, \mathbf{Y})$
- Each $\mathrm{P}(\mathrm{X}, \mathrm{E}, \mathrm{Y})$ term can be computed using the chain rule
- Computationally expensive!

Example 1: Enumeration

- Recipe:
- State the marginal probabilities you need
- Figure out ALL the atomic probabilities you need
- Calculate and combine them
- Example:
- $P(+b \mid+j,+m)=\frac{P(+b,+j,+m)}{P(+j,+m)}$

Example 1 cont'd

$$
\begin{aligned}
& P(+b,+j,+m)= \\
& P(+b) P(+e) P(+a \mid+b,+e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(+e) P(-a \mid+b,+e) P(+j \mid-a) P(+m \mid-a)+ \\
& P(+b) P(-e) P(+a \mid+b,-e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(-e) P(-a \mid+b,-e) P(+j \mid-a) P(+m \mid-a) \\
& \mathrm{P}(+\mathrm{m} \mid+\mathrm{b},+\mathrm{e}) ?
\end{aligned}
$$

Example 2: Enumeration

- $P\left(\mathrm{x}_{\mathrm{i}}\right)=\Sigma_{\pi_{\mathrm{i}}} P\left(\mathrm{x}_{\mathrm{i}} \mid \pi_{\mathrm{i}}\right) P\left(\pi_{\mathrm{i}}\right)$
- Say we want to know $P(\mathrm{D}=t)$
- Only E is given as true

- $\mathrm{P}(\mathrm{d} \mid \mathrm{e})=\alpha \Sigma_{\mathrm{ABC}} \mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})$ (reminder: $\alpha=1 / P(e)$)

$$
=\alpha \Sigma_{A B C} \mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{~b} \mid \mathrm{a}) \mathrm{P}(\mathrm{c} \mid \mathrm{a}) \mathrm{P}(\mathrm{~d} \mid \mathrm{b}, \mathrm{c}) \mathrm{P}(\mathrm{e} \mid \mathrm{c})
$$

- With simple iteration, that's a lot of repetition!
- $\mathrm{P}(\mathrm{e} \mid \mathrm{c})$ has to be recomputed every time we iterate over $\mathrm{C}=$ true

Variable Elimination

- Basically just enumeration with caching of local calculations
- Linear for polytrees (singly connected BNs)
- Potentially exponential for multiply connected BNs
- Exact inference in Bayesian networks is NP-hard!
- Join tree algorithms are an extension of variable elimination methods that compute posterior probabilities for all nodes in a BN simultaneously

Variable Elimination Approach

- General idea:
- Write query in the form

$$
P\left(X_{n}, e\right)=\sum_{x_{k}} \cdots \sum_{x_{3}} \sum_{x_{2}} \prod_{i} P\left(x_{i} \mid p a_{i}\right)
$$

- Note that there is no α term here
- It's a conjunctive probability, not a conditional probability...
- Iteratively
- Move all irrelevant terms outside of innermost sum
- Perform innermost sum, getting a new term
- Insert the new term into the product

Variable Elimination: Example

$$
\begin{aligned}
\mathrm{P}(\mathrm{w}) & =\sum_{\mathrm{r}, \mathrm{~s}, \mathrm{c}} \mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{~s}) \mathrm{P}(\mathrm{r} \mid \mathrm{c}) \mathrm{P}(\mathrm{~s} \mid \mathrm{c}) \mathrm{P}(\mathrm{c}) \\
& =\sum_{\mathrm{r}, \mathrm{~s}} \mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{~s}) \underset{\mathrm{C}}{\mathrm{P}(\mathrm{r} \mid \mathrm{c}) \mathrm{P}(\mathrm{~s} \mid \mathrm{c}) \mathrm{P}(\mathrm{c})} \\
& =\sum_{\mathrm{r}, \mathrm{~s}} \mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{~s}) \mathrm{f}_{1}(\mathrm{r}, \mathrm{~s})
\end{aligned}
$$

A More Complex Example

- "Lungs" network:

Initial factors:

$$
P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)
$$

Lungs 2

- We want to compute $P(d)$
- Need to eliminate: v, s, x, t, l, a, b

Initial factors:

$$
\underline{P(v)} P(s) \underline{P(t \mid v)} P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)
$$

Eliminate: v
Compute: $\quad f_{v}(t)=\sum P(v) P(t \mid v)$

$$
\Rightarrow \underline{f_{v}(t)} P(s)^{v} P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)
$$

- Note: $f_{v}(t)=P(t)$
- Result of elimination is not necessarily a probability term

Lungs 3

- We want to compute $P(d)$
- Need to eliminate: s, x, t, l, a, b

Initial factors:

$$
\begin{aligned}
& P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& \Rightarrow f_{v}(t) P(s) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)
\end{aligned}
$$

Eliminate: s
Compute: $f_{s}(b, l)=\sum P(s) P(b \mid s) P(l \mid s)$

$$
\Rightarrow f_{v}(t) \underline{f}_{s}^{s}(b, l) P(a \mid t, l) P(x \mid a) P(d \mid a, b)
$$

- Summing on s results in a factor with two arguments $f_{s}(b, l)$
- In general, result of elimination may be a function of several variables

Lungs 4

- We want to compute $P(d)$
- Need to eliminate: x, t, l, a, b

Initial factors

$$
\begin{aligned}
& P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& \quad \Rightarrow f_{v}(t) P(s) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)
\end{aligned}
$$

Eliminate: $x \quad \Rightarrow f_{v}(t) f_{s}(b, l) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$
Compute: $f_{x}(a)=\sum_{x} P(x \mid a)$

$$
\Rightarrow f_{v}(t) f_{s}(b, l) \underline{f_{x}(a)} P(a \mid t, l) P(d \mid a, b)
$$

Lungs 5

- We want to compute $P(d)$
- Need to eliminate: t, l, a, b

Initial factors

$$
\begin{aligned}
& P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& \Rightarrow f_{v}(t) P(s) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& \Rightarrow f_{v}(t) f_{s}(b, l) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& \Rightarrow \underline{f_{v}(t)} f_{s}(b, l) f_{x}(a) P(a \mid t, l) P(d \mid a, b)
\end{aligned}
$$

Eliminate: t
Compute: $f_{t}(a, l)=\sum_{t} f_{v}(t) P(a \mid t, l)$

$$
\Rightarrow f_{s}(b, l) f_{x}(a) \underline{f_{t}(a, l)} P(d \mid a, b)
$$

Lungs 6

- We want to compute $P(d)$
- Need to eliminate: l, a, b

Initial factors $P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$

$$
\begin{aligned}
& \Rightarrow f_{v}(t) P(s) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& \Rightarrow f_{v}(t) f_{s}(b, l) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& \Rightarrow f_{v}(t) f_{s}(b, l) f_{x}(a) P(a \mid t, l) P(d \mid a, b) \\
& \Rightarrow f_{s}(b, l) f_{x}(a) f_{t}(a, l) P(d \mid a, b)
\end{aligned}
$$

Eliminate: l
Compute: $f_{l}(a, b)=\sum_{l} f_{s}(b, l) f_{t}(a, l)$

$$
\Rightarrow f_{l}(a, b) f_{x}(a) P(d \mid a, b)
$$

Lungs Finale

- We want to compute $P(d)$
- Need to eliminate: b

Initial factors $P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$

$$
\begin{aligned}
& \Rightarrow f_{v}(t) P(s) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& \Rightarrow f_{v}(t) f_{s}(b, l) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& \Rightarrow f_{v}(t) f_{s}(b, l) f_{x}(a) P(a \mid t, l) P(d \mid a, b) \\
& \quad \Rightarrow f_{s}(b, l) f_{x}(a) f_{t}(a, l) P(d \mid a, b) \\
& \quad \Rightarrow f_{l}(a, b) \underline{f_{x}(a)} P(d \mid a, b) \Rightarrow f_{a}(b, d) \Rightarrow f_{b}(d)
\end{aligned}
$$

Eliminate: a, b
Compute: $f_{a}(b, d)=\sum_{a} f_{l}(a, b) f_{x}(a) p(d \mid a, b) \quad f_{b}(d)=\sum_{b} f_{a}(b, d)$

Dealing with Evidence

- How do we deal with evidence?
- And what is "evidence?"
- Variables whose value has been observed

- Suppose we are given evidence: $V=t, S=f, D=t$
- We want to compute $P(L, V=t, S=f, D=t)$

Dealing with Evidence

- We start by writing the factors:

$$
P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)
$$

- Since we know that $\mathrm{V}=\mathrm{t}$, we don't need to eliminate V

- Instead, we can replace the factors $\mathrm{P}(\mathrm{V})$ and $\mathrm{P}(\mathrm{T} \mid \mathrm{V})$ with

$$
f_{P(V)}=P(V=t) \quad f_{p(T \mid V)}(T)=P(T \mid V=t)
$$

- These "select" appropriate parts of original factors given evidence
- Note that $f_{P(V)}$ is a constant, so does not appear in elimination of other variables

Dealing with Evidence

- So now...
- Given evidence $V=t, S=f, D=t$
- Compute $P(L, V=t, S=f, D=t)$

- Initial factors, after setting evidence:

$$
\underline{f_{P(v)}} \underline{f_{P(s)}} \underline{f_{P(t \mid v)}(t)} f_{P(l \mid s)}(l) f_{P(b \mid s)}(b) P(a \mid t, l) P(x \mid a) f_{P(d a, b)}(a, b)
$$

Dealing with Evidence

- Given evidence $V=t, S=f, D=t$, we want to compute $P(L, V=t, S=f, D=t)$
- Initial factors, after setting evidence:
$f_{P(v)} f_{P(s)} f_{P(t \mid v)}(t) f_{P(l \mid s)}(l) f_{P(b \mid s)}(b) P(a \mid t, l) P(x \mid a) f_{P(d l a, b)}(a, b)$
iminating x, we get

$f_{P(v)} f_{P(s)} f_{P(t \mid v)}(t) f_{P(l \mid s)}(l) f_{P(b l s)}(b) P(a \mid t, l) f_{x}(a) f_{P(d a, b)}(a, b)$
- Eliminating t, we get
$f_{P(v)} f_{P(s))} f_{P(l l s)}(l) f_{P(b l s)}(b) \underline{f_{t}(a, l) f_{x}(a) f_{P(d l a, b)}(a, b)}$
- Eliminating a, we get

$$
f_{P(v)} f_{P(s)} f_{P(l l s)}(l) \underline{f_{P(b l s)}}(b) f_{a}(b, l)
$$

- Eliminating b, we get
$f_{P(v)} f_{P(s)} f_{P(l l s)}(l) f_{b}(l)$

Variable Elimination Algorithm

- Let X_{1}, \ldots, X_{m} be an ordering on the non-query variables
- For $\mathrm{i}=\mathrm{m}, \ldots, 1 \sum_{X_{1}} \sum_{X_{2}} \ldots \sum_{X_{m}} \prod_{j} P\left(X_{j} \mid \operatorname{Parents}\left(X_{j}\right)\right)$
- In the summation for X_{i}, leave only factors mentioning X_{i}
- Multiply the factors, getting a factor that contains a number for each value of the variables mentioned, including X_{i}
- Sum out X_{i}, getting a factor f that contains a number for each value of the variables mentioned, not including X_{i}
- Replace the multiplied factor in the summation

Exercise: Variable Elimination

Query: What is the probability that a student studied, given that they pass the exam?

Exercise: Variable Elimination

Query: What is the probability that a student is smart, given that they pass the exam?

Summary

- Bayes nets
- Structure
- Parameters
- Conditional independence
- Chaining
- BN inference
- Enumeration
- Variable elimination
- Sampling methods

