

Probabilistic Reasoning

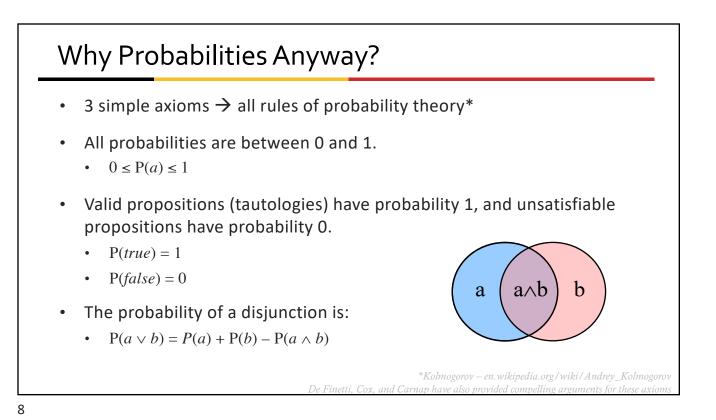
- We don't (can't!) know everything about most problems.
- Most problems are not:
 - Deterministic
 - Fully observable
- Or, we can't calculate everything.
 - Continuous problem spaces
- Probability lets us understand, quantify, and work with this uncertainty.

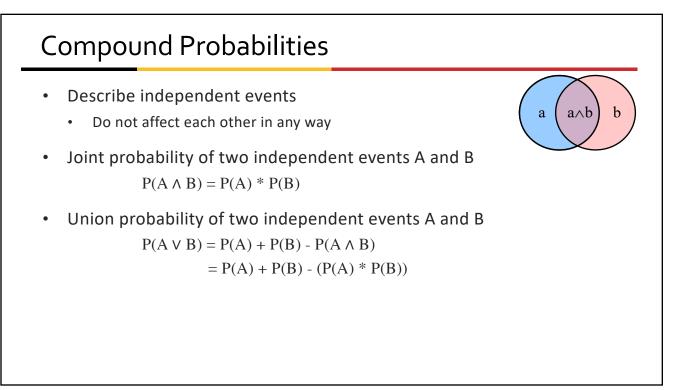
<section-header> Probability World: The complete set of possible states Random variables: Problem aspects that take a value. "The number of blue squares we have pulled," B "The combined value of two dice we rolled," C Fvent: Something that happens Sample Space: All the things (outcomes) that could happen in some set of circumstances Pull 2 squares from envelope A: what is the sample space? How about envelope B? World, redux: A complete assignment of values to variables

commons.wikimedia.org/wiki/File:2-Dice-Icon

Basic Probability

- Each P is a non-negative value in [0,1]
 - $P(\{1,1\}) = 1/36$
- Total probability of the sample space is 1
 - $P(\{1,1\}) + P(\{1,2\}) + P(\{1,3\}) + \dots + P(\{6,6\}) = 1$
- For mutually exclusive events, the probability for at least one of them is the sum of their individual probabilities
 - $P(sunny) \lor P(cloudy) = P(sunny) + P(cloudy)$
- Experimental probability: Based on frequency of past events
- Subjective probability: Based on expert assessment





Probability Theory						
 Random variables: Domain: possible values 	•	Alarm (A), • Boolear	Burglary (B n, discrete,			
Atomic event:	• $A=true \land B=true \land E=false$:					
 Complete specification of a state 	•	• alarm \land burglary \land \neg earthquake P(B) = 0.1				
 Prior probability: 						
 Degree of belief without any new evidence 				alarm	⊐alarm	
· loint probability	•	P(A, B) =	burglary	0.09	0.01	
Joint probability:			¬ burglary	0.1	0.8	
 Matrix of combined probabilities of a set of variables, P(A,B) 						

Probability Distributions

- A distribution is the probabilities of **all possible values** of a random variable
- Ex: weather can be sunny, rainy, cloudy, or snowy
 - P(Weather = sun) = 0.6
 - P(Weather = rain) = 0.1
 - P(Weather = cloud) = 0.29
 - P(Weather = snow) = 0.01
 - $P(Weather) = \langle 0.6, 0.1, 0.29, 0.01 \rangle$ \leftarrow shortcut
- P(Weather): probability distribution on Weather

11

Probability Theory: Definitions

- Conditional probability: Probability of some effect given that we know cause(s)
 - Example: P(*alarm* | *burglary*)
 - (Technically, we only know b is correlated, not causal)
- Computing it:

•
$$P(a \mid b) = -\frac{P(a \land b)}{P(b)}$$

• P(b): **normalizing constant** (later we'll call this alpha α or rho ϱ)

Probability Theory: Definitions

- Product rule:
 - $P(a \land b) = P(a \mid b) P(b)$

 Marginalizing (summing ou 	t):
---	-----

- Finding distribution over one or a subset of variables
- Marginal probability of B summed over all alarm states:
- $P(B) = \Sigma_a P(B, a)$
 - P(B) = sum of P(B, a) for all possible values of A
- Conditioning over a subset of variables:
 - $P(B) = \Sigma_a P(B \mid a) P(a)$

Let's Try It			alarm	⊐ alarm
		burglary	0.09	0.01
		¬ burglary	0.1	0.8
Cond'l probability				
 P(effect, cause[s]) 	•	$\mathbf{P}(A \mid B) =$?	
 P(a b) = P(a ∧ b) / P(b) P(b): normalizing constant (1/α) 	٠	$\mathbf{P}\left(B \mid A\right) =$?	
Product rule:				
 P(a ∧ b) = P(a b) P(b) 	•	$P(B \wedge A) =$	<u> ?</u>	
Marginalizing:				
 P(B) = ΣaP(B, a) 				
 P(B) = ΣaP(B a) P(a) (conditioning) 	٠	P(A) = ?		

	alarm	⊐ alarm
burglary	0.09	0.01
¬ burglary	0.1	0.8

Marginalizing

- Marginalization: how to safely ignore variables.
- Two-variable example (A and B).
- If we know P(A=a,B=b) for *all* values of *a* and *b*:
- $P(B=b)=\sum_{a}P(A=a,B=b).$
- Here we "marginalized out" the variable A.
- Takes variable(s) in a out of consideration

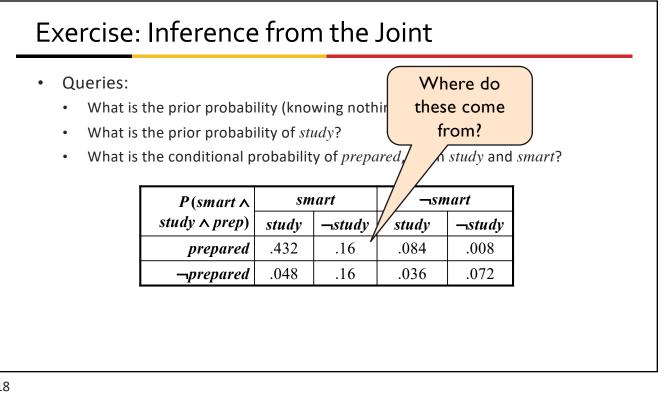
Marginalizing

- Marginalizing (summing out):
 - Finding distribution over one or a subset of variables
 - Marginal probability of B summed over all alarm states:
 - $P(B) = \Sigma_a P(B, a)$
- Takes variable(s) in *a* out of consideration

Marginalizing Example

- You are a video games company, and you want to know the probability of a new user winning, P(W). 1000 people already played. Your game has only two characters to choose.
- You know:
 - People who chose character A: P(A) = 600/1000
 - People who chose character B: P(B) = 400/1000
 - People who chose A and won, P(W|A): 75/100 •
 - People who chose B and won, P(W | B): 69/100
- What is P(W)?
- $P(W) = P(W \mid A)P(A) + P(W \mid B) P(B)$ $=75/100 \times 600/1000 + 69/100 \times 400/1000 = 0.75 \times 0.6 + 0.69 \times 0.4 = 0.726$

www.quora.com/What-is-marginalization-in-probabilit



Exercise: Inference from the joint

- Queries:
 - What is the prior probability of *smart*?
 - What is the prior probability of *study*?
 - What is the conditional probability of *prepared*, given *study* and *smart*?

P(smart ∧	SM	art	-sn	nart
study ∧ prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

P(*smart*) = .432 + .16 + .048 + .16 = **0.8**

19

Exercise: Inference from the joint

- Queries:
 - What is the prior probability of *smart*?
 - What is the prior probability of *study*?
 - What is the conditional probability of *prepared*, given *study* and *smart*?

P(smart \land	SM	art	-sn	nart
study \land prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

Queries:						
 What is 	the prior probab	ility of sn	nart?			
What is	the prior probab	ility of <i>st</i>	udy?			
• What is the conditional probability of <i>prepared</i> , given <i>study</i> and <i>smart</i> ? $P(smart \land smart \neg smart$						
	study ∧ prep)	study	¬study	study	¬study	
	prepared	.432	.16	.084	.008	
	¬prepared	.048	.16	.036	.072	

Independence: **⊥** • Independent: Two sets of propositions that do not affect each others' probabilities Easy to calculate **joint** and **conditional** probability of independence: • $(A, B) \Leftrightarrow P(A \land B) = P(A) P(B) \text{ or } P(A \mid B) = P(A)$ • Examples: • A = alarmM = moon phase $A \blacksquare B \blacksquare E = f$ ٠ $M \perp L = f$ B = burglaryL = light levelE = earthquake $A \perp M = t$ •

Independence Example

- {moon-phase, light-level} II {burglary, alarm, earthquake}
 - But maybe burglaries increase in low light
 - But, if we know the light level, *moon-phase L burglary*
 - Once we're burglarized, light level doesn't affect whether the alarm goes off; {*light-level*} 11 {*alarm*}
- We need:
 - 1. A more complex notion of independence
 - 2. Methods for reasoning about these kinds of (common) relationships

24

Exercise: Independence

- Is *smart* independent of *study*?
 - $P(smart \mid study) = P(smart)$
- Is *prepared* independent of *study*?
 - $P(prep \mid study) = P(prep)$

P(smart ∧	SM	art	-sm	art
study \land prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

Exercise: Independence

- Is *smart* independent of *study*?
 - $P(smart \mid study) = P(smart)$
- Is *prepared* independent of *study*?
 - $P(prep \mid study) = P(prep)$

Smart	Study		
t	t	0.432 + 0.48	0.480
t	f	0.16 + 0.16	0.32
f	t	0.084 + 0.008	0.092
f	f	0.036 + 0.72	0.756

P(smart ∧	SM	art	-sn	nart
study ∧ prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

26

Exercise: Independence

- $P(smart \mid study) = P(smart)$
- P(*smart* | *study*) = P(*smart*, *study*) / P(*study*)
- 0.8 = (.432 + .048) / .6
- 0.8 = 0.8

					Smart	Study		
P(smart \land	SM	smart		<i>¬smart</i>		t .	0.432 + 0.48	0.480
study \land prep)	study	¬study	study	¬study	t	f	0.16 + 0.16	0.32
prepared	.432	.16	.084	.008	f	t	0.084 + 0.008	0.092
-prepared	.048	.16	.036	.072	f	f	0.036 + 0.72	0.756

Conditional Probabilities

- Describes dependent events
 - Affect each other in some way
- Typical in the real world
- If we know some event has occurred, what does that tell us about the likelihood of another event?

28

Conditional Independence

- *moon-phase* and *burglary* are **conditionally independent given** *light-level*
 - That is, $M \perp B$ if we already know L
- Conditional independence is:
 - Weaker than absolute independence
 - Useful in decomposing full joint probability distributions

Conditional Independence

- Absolute independence: $A \perp B$, if:
 - $P(A \land B) = P(A) P(B)$
 - Equivalently, P(A) = P(A | B) and P(B) = P(B | A)
- *A* and *B* are conditionally independent given *C* if:
 - $P(A \land B \mid C) = P(A \mid C) P(B \mid C)$
- This lets us decompose the joint distribution:
 - $P(A \land B \land C) = P(A \mid C) P(B \mid C) P(C)$
- What does this mean?

30

Exercise: Conditional Independence

- Queries:
 - Is *smart* conditionally independent of *prepared*, given *study*?
 - Is *study* conditionally independent of *prepared*, given *smart*?

P(smart \land	SM	art	-sn	art	
study \land prep)	study	¬study	study	¬study	
prepared	.432	.16	.084	.008	
¬prepared	.048	.16	.036	.072	

Probability

- Worlds, random variables, events, sample space
- Joint probabilities of multiple connected variables
- **Conditional probabilities** of a variable, given another variable(s)
- Marginalizing out unwanted variables
- Inference from the joint probability

The big idea: figuring out the probability of variable(s) taking certain value(s)

32

Bayes' Rule

- Derive the probability of some event, given another event
 - Assumption of attribute independency (AKA the Naïve assumption)
 - Naïve Bayes assumes that all *attributes* are independent.
- Also the basis of modern machine learning
- Bayes' rule is derived from the product rule

R&N 495

Bayes' Rule

- $P(Y \mid X) = P(X \mid Y) P(Y) / P(X)$
- Often useful for diagnosis.
- If we have:
 - X = (observable) effects, e.g., symptoms
 - Y = (hidden) causes, e.g., illnesses
 - A model for how causes lead to effects: P(X | Y)
 - Prior beliefs about frequency of occurrence of effects: P(Y)
- We can reason from effects to causes: P(Y | X)

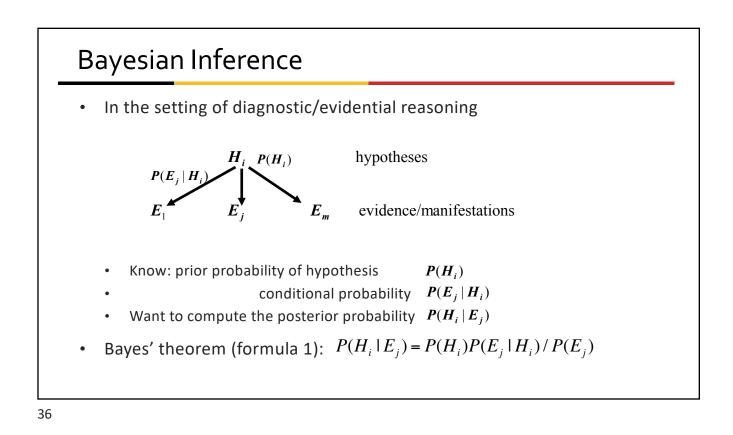
34

Naïve Bayes Algorithm

- Estimate the probability of each class:
 - Compute the posterior probability (Bayes rule)

$$P(c_i \mid D) = \frac{P(c_i)P(D \mid c_i)}{P(D)}$$

- Choose the class with the highest probability
- Assumption of attribute independency (Naïve assumption): Naïve Bayes assumes that all of the attributes are independent.



Simple Bayesian Diagnostic Reasoning

- We know:
 - Evidence / manifestations: $E_1, \ldots E_m$
 - Hypotheses / disorders: $H_1, \ldots H_n$
 - + E_j and H_i are binary; hypotheses are mutually exclusive (non-overlapping) and exhaustive (cover all possible cases)
 - Conditional probabilities: $P(E_j \mid H_i), \, i=1, \, \ldots \, n; \, j=1, \, \ldots \, m$
- Cases (evidence for a particular instance): $E_1, ..., E_m$
- Goal: Find the hypothesis H_i with the highest posterior
 - $Max_i P(Hi | E_1, \dots, E_m)$

Priors

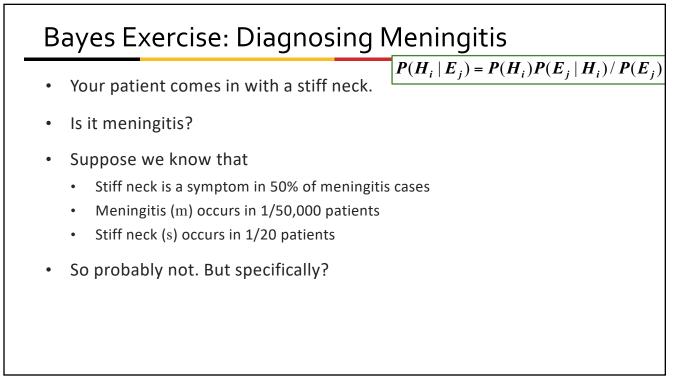
- Four values total here:
 - P(H | E) = (P(E | H) * P(H)) / P(E)
- P(H | E) what we want to compute
- Three we already know, called the priors
 - P(E | H)
 - P(H)
 - P(E)

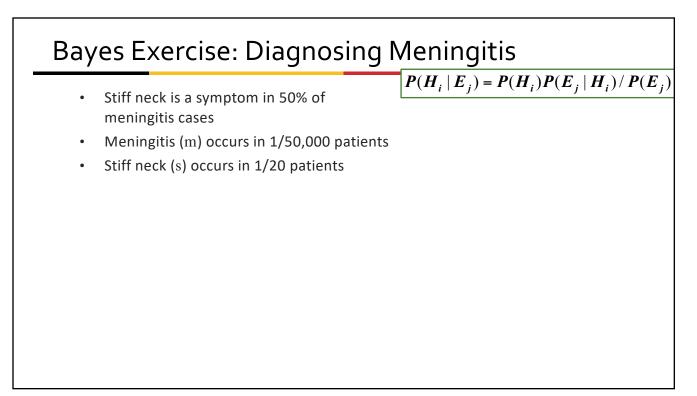
(In ML later, we will use the training set to estimate the priors)

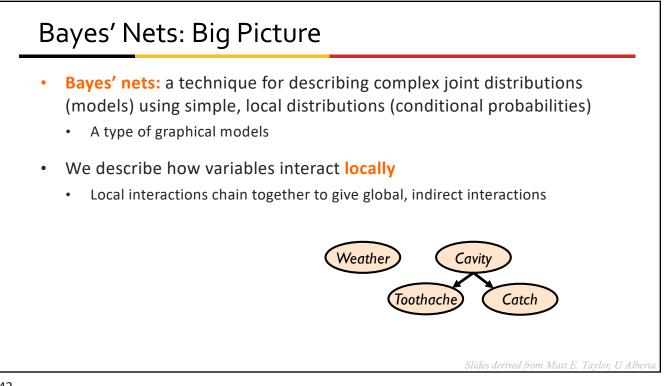
38

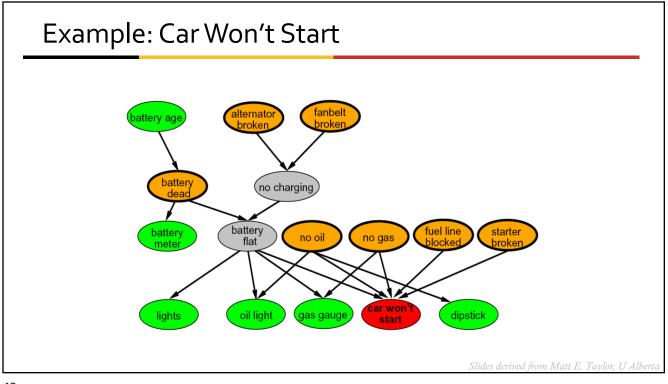
Bayesian Diagnostic Reasoning II

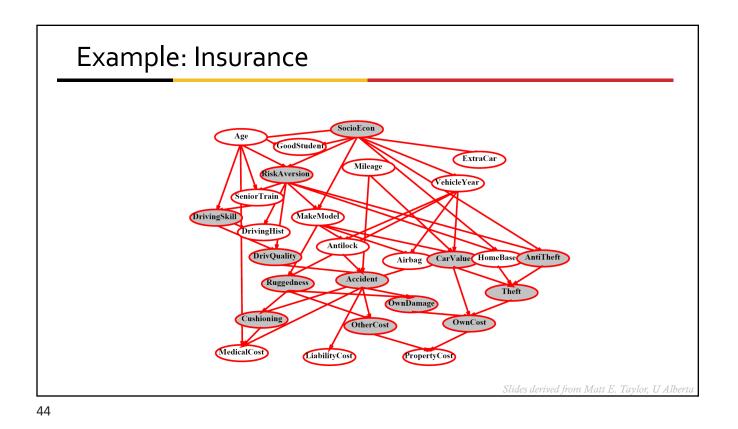
- Bayes' rule says that
 - $P(H_i | E_1, ..., E_m) = P(E_1, ..., E_m | H_i) P(H_i) / P(E_1, ..., E_m)$
- Assume each piece of evidence E_i is **conditionally independent** of the others, **given** a hypothesis H_i , then:
 - $P(E_1, \ldots, E_m \mid H_i) = \prod_{j=1}^{l} P(E_j \mid H_i)$
- If we only care about relative probabilities for the $H_{i\!\prime}$ then we have:
 - $P(H_i | E_1, ..., E_m) = \alpha P(H_i) \prod_{j=1}^{l} P(E_j | H_i)$



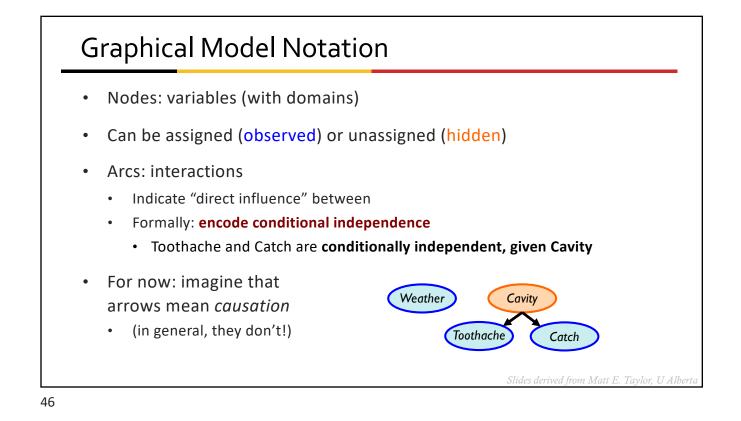


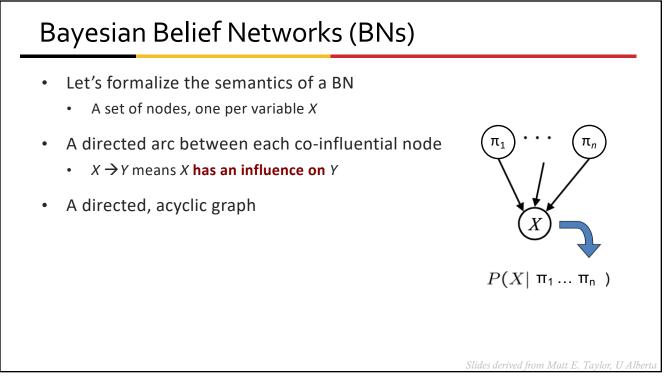


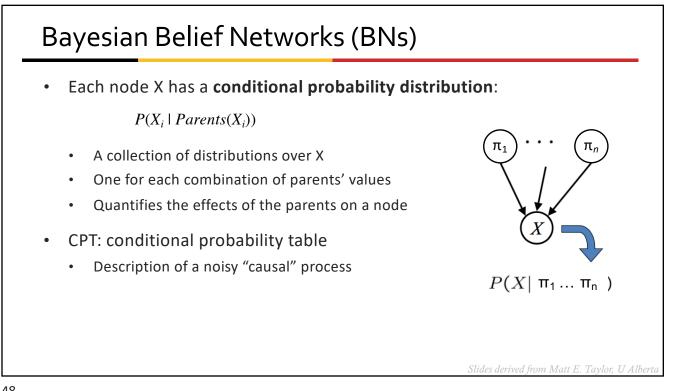


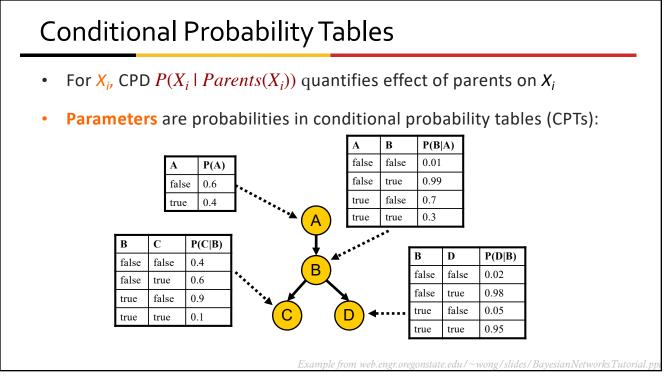


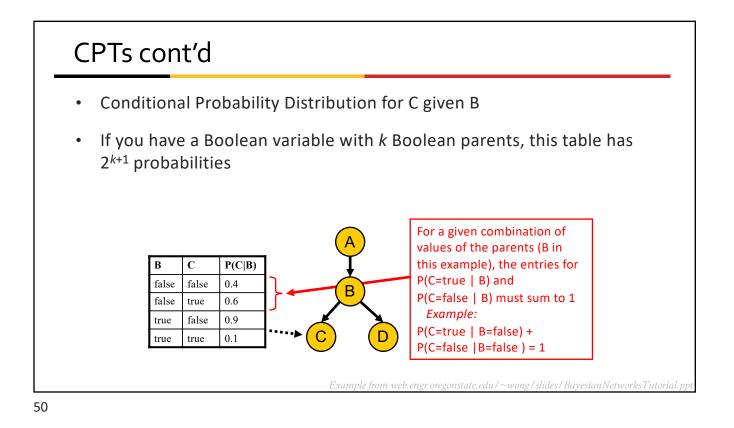
Example: Toothache Random variables: How's the weather? Do you have a toothache? Does the dentist's probe catch when she pokes your tooth? Do you have a cavity?

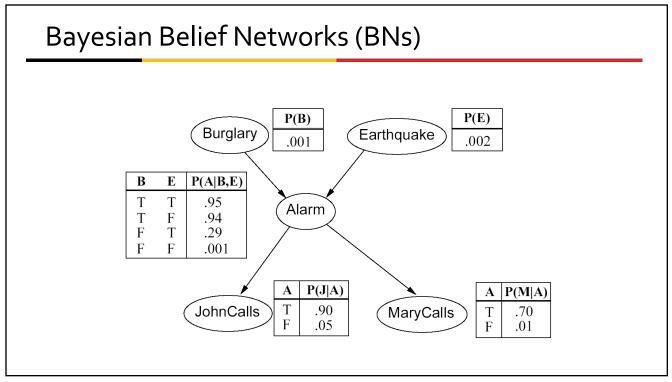


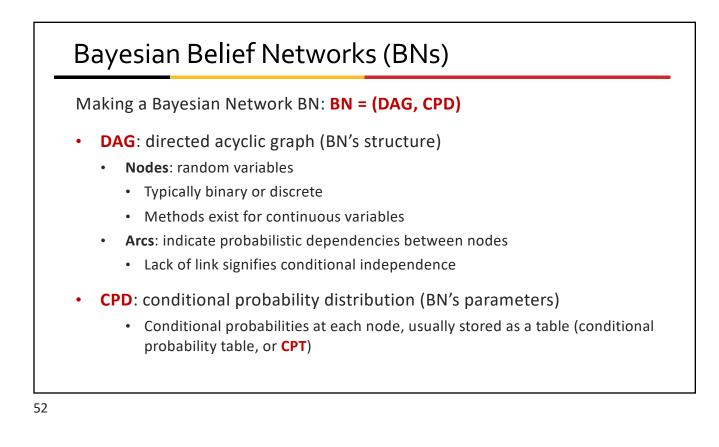


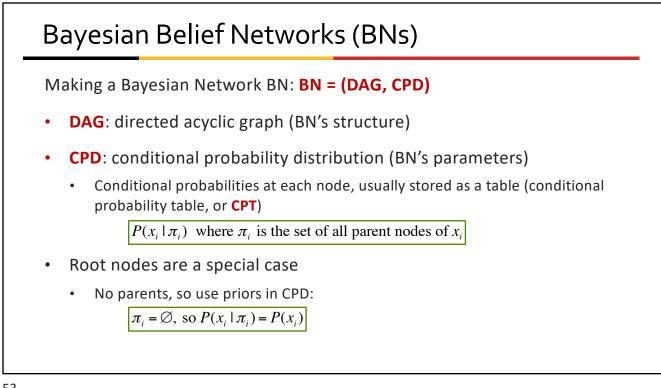






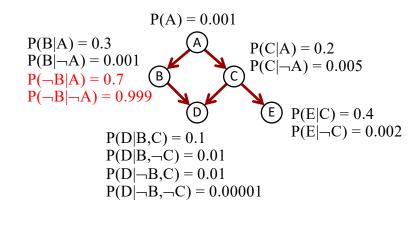






Example BN

 We only specify P(A) etc., not P(¬A), since they have to sum to one



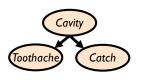
54

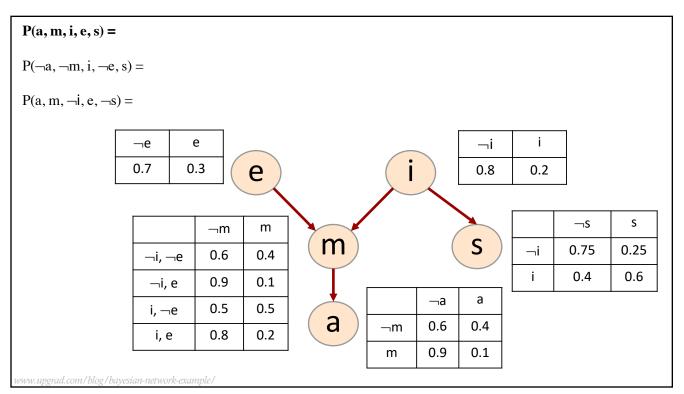
Probabilities in BNs

- Bayes' nets implicitly encode joint distributions as a product of local conditional distributions.
- To see probability of a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

- Example: P(+cavity, +catch, ¬toothache) = ?
- This lets us reconstruct any entry of the full joint





Summary

- Probability review
 - Distributions, conditional probability, marginalizing
 - Independence
 - Bayes' rule
- Bayes' nets (Bayesian Belief Networks)
 - Graphical notation
 - Conditional probability tables
 - Probability distributions
- Next time
 - Inference using Bayes' nets