Probabilistic Reasoning

Probabilistic Reasoning

- So far, mostly, we've done deterministic problems.

- This is a stepping stone to stochastic problem-solving.
- We'll use many of the same techniques and core ideas!
- Like minimax \rightarrow expectiminimax

Probabilistic Reasoning

- We don't (can't!) know everything about most problems.
- Most problems are not:
- Deterministic
- Fully observable
- Or, we can't calculate everything.
- Continuous problem spaces
- Probability lets us understand, quantify, and work with this uncertainty.

5

Probability

- World: The complete set of possible states
- Random variables: Problem aspects that take a value
- "The number of blue squares we have pulled," B
- "The combined value of two dice we rolled," C

- Event: Something that happens
- Sample Space: All the things (outcomes) that could happen in some set of circumstances
- Pull 2 squares from envelope A : what is the sample space?
- How about envelope B?
- World, redux: A complete assignment of values to variables

Basic Probability

- Each P is a non-negative value in $[0,1]$
- $\mathrm{P}(\{1,1\})=1 / 36$
- Total probability of the sample space is 1

- $\mathrm{P}(\{1,1\})+\mathrm{P}(\{1,2\})+\mathrm{P}(\{1,3\})+\ldots+\mathrm{P}(\{6,6\})=1$
- For mutually exclusive events, the probability for at least one of them is the sum of their individual probabilities
- $\quad \mathrm{P}($ sunny $) \vee \mathrm{P}($ cloudy $)=\mathrm{P}($ sunny $)+\mathrm{P}($ cloudy $)$
- Experimental probability: Based on frequency of past events
- Subjective probability: Based on expert assessment

Why Probabilities Anyway?

- 3 simple axioms \rightarrow all rules of probability theory*
- All probabilities are between 0 and 1.
- $0 \leq \mathrm{P}(a) \leq 1$
- Valid propositions (tautologies) have probability 1, and unsatisfiable propositions have probability 0.
- $\mathrm{P}($ true $)=1$
- $\mathrm{P}($ false $)=0$
- The probability of a disjunction is:
- $\mathrm{P}(a \vee b)=P(a)+\mathrm{P}(b)-\mathrm{P}(a \wedge b)$

Compound Probabilities

- Describe independent events
- Do not affect each other in any way
- Joint probability of two independent events A and B

$$
\mathrm{P}(\mathrm{~A} \wedge \mathrm{~B})=\mathrm{P}(\mathrm{~A}) * \mathrm{P}(\mathrm{~B})
$$

- Union probability of two independent events A and B

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A} \vee \mathrm{~B}) & =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \wedge \mathrm{~B}) \\
& =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-(\mathrm{P}(\mathrm{~A}) * \mathrm{P}(\mathrm{~B}))
\end{aligned}
$$

9

Probability Theory

- Random variables:
- Domain: possible values
- Atomic event:
- Complete specification of a state
- Prior probability:
- Degree of belief without any new evidence
- Joint probability:
- Matrix of combined probabilities of a set of variables, $\mathrm{P}(A, B)$
- Alarm (A), Burglary (B), Earthquake (E)
- Boolean, discrete, continuous
- $\mathrm{A}=$ true $\wedge \mathrm{B}=$ true $\wedge \mathrm{E}=$ false:
- alarm \wedge burglary $\wedge \neg$ earthquake
- $\mathrm{P}(B)=0.1$
- $\mathrm{P}(A, B)=$| burglary | 0.09 | 0.01 |
| ---: | :---: | :---: |
| ᄀburglary | 0.1 | 0.8 |

	alarm	\neg alarm
burglary	0.09	0.01
\neg burglary	0.1	0.8

Probability Distributions

- A distribution is the probabilities of all possible values of a random variable
- Ex: weather can be sunny, rainy, cloudy, or snowy
- $\mathrm{P}($ Weather $=$ sun $)=0.6$
- $\mathrm{P}($ Weather $=$ rain $)=0.1$
- $\mathrm{P}($ Weather $=$ cloud $)=0.29$
- $\mathrm{P}($ Weather $=$ snow $)=0.01$
- $\mathrm{P}($ Weather $)=<0.6,0.1,0.29,0.01>\leqslant$ shortcut
- P(Weather): probability distribution on Weather

Probability Theory: Definitions

- Conditional probability: Probability of some effect given that we know cause(s)
- Example: P(alarm I burglary)
- (Technically, we only know b is correlated, not causal)
- Computing it:
- $\mathrm{P}(a \mid b)=\frac{\mathrm{P}(a \wedge b)}{\mathrm{P}(b)}$
- $\mathrm{P}(b)$: normalizing constant (later we'll call this alpha α or rho Q)

Probability Theory: Definitions

- Product rule:
- $\mathrm{P}(a \wedge b)=\mathrm{P}(a \mid b) \mathrm{P}(b)$
- Marginalizing (summing out):

	alarm	\neg alarm
burglary	0.09	0.01
\neg burglary	0.1	0.8

- Finding distribution over one or a subset of variables
- Marginal probability of B summed over all alarm states:
- $\mathrm{P}(B)=\sum_{\mathrm{a}} \mathrm{P}(B, a)$
- $\mathrm{P}(B)=$ sum of $\mathrm{P}(B, a)$ for all possible values of A
- Conditioning over a subset of variables:
- $\mathrm{P}(B)=\sum_{\mathrm{a}} \mathrm{P}(B \mid a) \mathrm{P}(a)$
- Cond'I probability
- P(effect, cause[s])
- $\mathrm{P}(A \mid B)=$?
- $P(a \mid b)=P(a \wedge b) / P(b)$
- $P(b)$: normalizing constant $(1 / \alpha)$
- Product rule:
- $P(a \wedge b)=P(a$
b) $P(b)$
- $\mathrm{P}(B \wedge A)=$?
- Marginalizing:
- $P(B)=\Sigma a P(B, a)$
- $P(B)=\Sigma a P(B \mid a) P(a)$ (conditioning) - $P(A)=$?

Marginalizing

- Marginalization: how to safely ignore variables.
- Two-variable example (A and B).
- If we know $P(A=a, B=b)$ for all values of a and b :
- $P(B=b)=\sum_{a} P(A=a, B=b)$.
- Here we "marginalized out" the variable A.
- Takes variable(s) in a out of consideration

Marginalizing

- Marginalizing (summing out):
- Finding distribution over one or a subset of variables
- Marginal probability of B summed over all alarm states:
- $\mathrm{P}(B)=\Sigma_{a} \mathrm{P}(B, a)$
- Takes variable(s) in a out of consideration

Marginalizing Example

- You are a video games company, and you want to know the probability of a new user winning, $\mathrm{P}(W) .1000$ people already played. Your game has only two characters to choose.
- You know:
- People who chose character A: $\mathrm{P}(A)=600 / 1000$
- People who chose character B: $\mathrm{P}(B)=400 / 1000$
- People who chose A and won, $\mathrm{P}(W \mid A): 75 / 100$
- People who chose B and won, $\mathrm{P}(W \mid B): 69 / 100$
- What is $\mathrm{P}(\mathrm{W})$?
- $\mathrm{P}(W)=\mathrm{P}(W \mid A) \mathrm{P}(A)+\mathrm{P}(W \mid B) \mathrm{P}(B)$

$$
=75 / 100 \times 600 / 1000+69 / 100 \times 400 / 1000=0.75 \times 0.6+0.69 \times 0.4=0.726
$$

Exercise: Inference from the Joint

- Queries:
- What is the prior probability (knowing nothir
- What is the prior probability of study?
- What is the conditional probability of prepared.,

$\begin{array}{r} P(\text { smart } \wedge \\ \text { study } \wedge p r e p) \end{array}$	smart		7 नsmart	
	study	7study	study	नstudy
prepared	. 432	. 16	. 084	. 008
\neg prepared	. 048	. 16	. 036	. 072

Where do these come from? study and smart?

ᄀsmart

Exercise: Inference from the joint

- Queries:
- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?

P(smart \wedge	smart		ᄀsmart	
study ^prep)	study	ᄀstudy	study	ᄀstudy
prepared	.432	.16	.084	.008
pprepared	.048	.16	.036	.072

$$
\mathrm{P}(\text { smart })=.432+.16+.048+.16=0.8
$$

Exercise: Inference from the joint

- Queries:
- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?

$\begin{array}{r} P(\text { smart } \wedge \\ \text { study } \wedge p r e p) \end{array}$	smart		ᄀsmart	
	study	حstudy	study	حstudy
prepared	. 432	. 16	. 084	. 008
\neg prepared	. 048	. 16	. 036	. 072

$$
P(s t u d y)=.432+.048+.084+.036=0.6
$$

Exercise: Inference from the joint

- Queries:
- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?

$\begin{array}{r} P(\text { smart } \wedge \\ \text { study } \wedge p r e p) \end{array}$	smart		ᄀsmart	
	study	ᄀstudy	study	حstudy
prepared	. 432	. 16	. 084	. 008
\neg prepared	. 048	. 16	. 036	. 072

$$
\begin{aligned}
\mathrm{P}(\text { prep } \mid \text { smart,study }) & =\mathrm{P}(\text { prep, smart, study }) / \mathrm{P}(\text { smart, study }) \\
& =.432 /(.432+.048) \\
& =0.9
\end{aligned}
$$

Independence: ㅛ

- Independent: Two sets of propositions that do not affect each others' probabilities
- Easy to calculate joint and conditional probability of independence:
- $(A, B) \Leftrightarrow \mathrm{P}(A \wedge B)=\mathrm{P}(A) \mathrm{P}(B)$ or $\mathrm{P}(A \mid B)=\mathrm{P}(A)$
- Examples:

-	$A=$ alarm	$M=$ moon phase			
-	$B=$ burglary	$L=$ light level			
-	$E=$ earthquake		$	$	$A \Perp B \Perp E=f$
:---					

Independence Example

- \{moon-phase, light-level\} \Perp \{burglary, alarm, earthquake $\}$
- But maybe burglaries increase in low light
- But, if we know the light level, moon-phase \Perp burglary
- Once we're burglarized, light level doesn't affect whether the alarm goes off; \{light-level $\} \Perp$ \{alarm $\}$
- We need:

1. A more complex notion of independence
2. Methods for reasoning about these kinds of (common) relationships

Exercise: Independence

- Is smart independent of study?
- $\mathrm{P}($ smart \mid study $)=\mathrm{P}($ smart $)$
- Is prepared independent of study?
- $\mathrm{P}($ prep \mid study $)=\mathrm{P}($ prep $)$

$\begin{array}{r} P(\text { smart } \wedge \\ \text { study } \wedge p r e p) \end{array}$	smart		ᄀsmart	
	study	ᄀstudy	study	حstudy
prepared	. 432	. 16	. 084	. 008
\neg prepared	. 048	. 16	. 036	. 072

Exercise: Independence

- Is smart independent of study?
- $\mathrm{P}($ smart \mid study $)=\mathrm{P}($ smart $)$
- Is prepared independent of study?
- $\mathrm{P}($ prep \mid study $)=\mathrm{P}($ prep $)$

Smart	Study		
t	t	$0.432+0.48$	0.480
t	f	$0.16+0.16$	0.32
f	t	$0.084+0.008$	0.092
f	f	$0.036+0.72$	0.756

$\begin{array}{r} P(\text { smart } \wedge \\ \text { study } \wedge p r e p) \end{array}$	smart		ᄀsmart	
	study	ᄀstudy	study	ᄀstudy
prepared	. 432	. 16	. 084	. 008
\neg prepared	. 048	. 16	. 036	. 072

Exercise: Independence

- $\mathrm{P}($ smart \mid study $)=\mathrm{P}($ smart $)$
- $\mathrm{P}($ smart \mid study $)=\mathrm{P}($ smart, study $) / \mathrm{P}($ study $)$
- $0.8=(.432+.048) / .6$
- $0.8=0.8$

P(smart ^	smart		ᄀsmart	
study ^prep)	study	ᄀstudy	study	ᄀstudy
prepared	.432	.16	.084	.008
ᄀprepared	.048	.16	.036	.072

Smart	Study		
t	t	$0.432+0.48$	0.480
t	f	$0.16+0.16$	0.32
f	t	$0.084+0.008$	0.092
f	f	$0.036+0.72$	0.756

Conditional Probabilities

- Describes dependent events
- Affect each other in some way
- Typical in the real world
- If we know some event has occurred, what does that tell us about the likelihood of another event?

Conditional Independence

- moon-phase and burglary are conditionally independent given light-level
- That is, $M \Perp B$ if we already know L
- Conditional independence is:
- Weaker than absolute independence
- Useful in decomposing full joint probability distributions

Conditional Independence

- Absolute independence: $A \Perp B$, if:
- $\mathrm{P}(A \wedge B)=\mathrm{P}(A) \mathrm{P}(B)$
- Equivalently, $\mathrm{P}(A)=\mathrm{P}(A \mid B)$ and $\mathrm{P}(B)=\mathrm{P}(B \mid A)$
- $\quad A$ and B are conditionally independent given C if:
- $\mathrm{P}(A \wedge B \mid C)=\mathrm{P}(A \mid C) \mathrm{P}(B \mid C)$
- This lets us decompose the joint distribution:
- $\mathrm{P}(A \wedge B \wedge C)=\mathrm{P}(A \mid C) \mathrm{P}(B \mid C) \mathrm{P}(C)$
- What does this mean?

Exercise: Conditional Independence

- Queries:
- Is smart conditionally independent of prepared, given study?
- Is study conditionally independent of prepared, given smart?

$\begin{array}{r} P(\text { smart } \wedge \\ \text { study } \wedge p r e p) \end{array}$	smart		ᄀsmart	
	study	नstudy	study	नstudy
prepared	. 432	. 16	. 084	. 008
\neg prepared	. 048	. 16	. 036	. 072

Probability

- Worlds, random variables, events, sample space
- Joint probabilities of multiple connected variables
- Conditional probabilities of a variable, given another variable(s)
- Marginalizing out unwanted variables
- Inference from the joint probability

The big idea: figuring out the probability of variable(s) taking certain value(s)

32

Bayes' Rule

- Derive the probability of some event, given another event
- Assumption of attribute independency (AKA the Naïve assumption)
- Naïve Bayes assumes that all attributes are independent.
- Also the basis of modern machine learning
- Bayes' rule is derived from the product rule

Bayes' Rule

- $\mathrm{P}(Y \mid X)=\mathrm{P}(X \mid Y) \mathrm{P}(Y) / \mathrm{P}(X)$
- Often useful for diagnosis.
- If we have:
- $X=$ (observable) effects, e.g., symptoms
- $Y=$ (hidden) causes, e.g., illnesses
- A model for how causes lead to effects: $\mathrm{P}(X \mid Y)$
- Prior beliefs about frequency of occurrence of effects: $\mathrm{P}(\mathrm{Y})$
- We can reason from effects to causes: $\mathrm{P}(Y \mid X)$

Naïve Bayes Algorithm

- Estimate the probability of each class:
- Compute the posterior probability (Bayes rule)

$$
P\left(c_{i} \mid D\right)=\frac{P\left(c_{i}\right) P\left(D \mid c_{i}\right)}{P(D)}
$$

- Choose the class with the highest probability
- Assumption of attribute independency (Naïve assumption): Naïve Bayes assumes that all of the attributes are independent.

Bayesian Inference

- In the setting of diagnostic/evidential reasoning

- Know: prior probability of hypothesis $\boldsymbol{P}\left(\boldsymbol{H}_{i}\right)$
- conditional probability $\boldsymbol{P}\left(\boldsymbol{E}_{j} \mid \boldsymbol{H}_{i}\right)$
- Want to compute the posterior probability $\boldsymbol{P}\left(\boldsymbol{H}_{i} \mid \boldsymbol{E}_{j}\right)$
- Bayes' theorem (formula 1): $P\left(H_{i} \mid E_{j}\right)=P\left(H_{i}\right) P\left(E_{j} \mid H_{i}\right) / P\left(E_{j}\right)$

Simple Bayesian Diagnostic Reasoning

- We know:
- Evidence / manifestations: $\mathrm{E}_{1}, \ldots \mathrm{E}_{\mathrm{m}}$
- Hypotheses / disorders: $\mathrm{H}_{1}, \ldots \mathrm{H}_{\mathrm{n}}$
- E_{j} and H_{i} are binary; hypotheses are mutually exclusive (non-overlapping) and exhaustive (cover all possible cases)
- Conditional probabilities: $\mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{\mathrm{i}}\right), \mathrm{i}=1, \ldots \mathrm{n} ; \mathrm{j}=1, \ldots \mathrm{~m}$
- Cases (evidence for a particular instance): $\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}$
- Goal: Find the hypothesis H_{i} with the highest posterior
- $\operatorname{Max}_{\mathrm{i}} \mathrm{P}\left(\mathrm{Hi} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right)$

Priors

- Four values total here:
- $\mathrm{P}(\mathrm{H} \mid \mathrm{E})=(\mathrm{P}(\mathrm{E} \mid \mathrm{H}) * \mathrm{P}(\mathrm{H})) / \mathrm{P}(\mathrm{E})$
- $\mathrm{P}(\mathrm{H} \mid \mathrm{E})$ - what we want to compute
- Three we already know, called the priors
- P(E| H)
- $\mathrm{P}(\mathrm{H})$
- $\mathrm{P}(\mathrm{E})$
(In ML later, we will use the training set to estimate the priors)

Bayesian Diagnostic Reasoning II

- Bayes' rule says that
- $P\left(H_{i} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right)=\mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}} \mid \mathrm{H}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right) / \mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right)$
- Assume each piece of evidence E_{i} is conditionally independent of the others, given a hypothesis H_{i}, then:
- $P\left(E_{1}, \ldots, E_{m} \mid H_{i}\right)=\prod_{j=1}^{1} P\left(E_{j} \mid H_{i}\right)$
- If we only care about relative probabilities for the H_{i}, then we have:
- $\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right)=\alpha \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right) \prod_{\mathrm{j}=1}^{1} \mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{\mathrm{i}}\right)$

Bayes Exercise: Diagnosing Meningitis

- Your patient comes in with a stiff neck.

$$
P\left(H_{i} \mid E_{j}\right)=P\left(H_{i}\right) P\left(E_{j} \mid H_{i}\right) / P\left(E_{j}\right)
$$

- Is it meningitis?
- Suppose we know that
- Stiff neck is a symptom in 50% of meningitis cases
- Meningitis (m) occurs in 1/50,000 patients
- Stiff neck (s) occurs in $1 / 20$ patients
- So probably not. But specifically?

Bayes Exercise: Diagnosing Meningitis

- Stiff neck is a symptom in 50% of

$$
P\left(H_{i} \mid E_{j}\right)=P\left(H_{i}\right) P\left(E_{j} \mid H_{i}\right) / P\left(E_{j}\right)
$$ meningitis cases

- Meningitis (m) occurs in 1/50,000 patients
- Stiff neck (s) occurs in 1/20 patients

Bayes' Nets: Big Picture

- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- A type of graphical models
- We describe how variables interact locally
- Local interactions chain together to give global, indirect interactions

Example: Car Won't Start

Example: Insurance

Example: Toothache

- Random variables:
- How's the weather?
- Do you have a toothache?
- Does the dentist's probe catch when she pokes your tooth?
- Do you have a cavity?

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (hidden)
- Arcs: interactions
- Indicate "direct influence" between
- Formally: encode conditional independence
- Toothache and Catch are conditionally independent, given Cavity
- For now: imagine that
arrows mean causation
- (in general, they don't!)

Bayesian Belief Networks (BNs)

- Let's formalize the semantics of a BN
- A set of nodes, one per variable X
- A directed arc between each co-influential node
- $\quad X \rightarrow Y$ means X has an influence on Y
- A directed, acyclic graph

$P\left(X \mid \pi_{1} \ldots \pi_{n}\right)$

Bayesian Belief Networks (BNs)

- Each node X has a conditional probability distribution:

$$
P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

- A collection of distributions over X
- One for each combination of parents' values
- Quantifies the effects of the parents on a node
- CPT: conditional probability table
- Description of a noisy "causal" process

Conditional Probability Tables

- For X_{i}, CPD $P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ quantifies effect of parents on X_{i}
- Parameters are probabilities in conditional probability tables (CPTs):

CPTs cont'd

- Conditional Probability Distribution for C given B
- If you have a Boolean variable with k Boolean parents, this table has 2^{k+1} probabilities

Bayesian Belief Networks (BNs)

Bayesian Belief Networks (BNs)

Making a Bayesian Network BN: BN = (DAG, CPD)

- DAG: directed acyclic graph (BN's structure)
- Nodes: random variables
- Typically binary or discrete
- Methods exist for continuous variables
- Arcs: indicate probabilistic dependencies between nodes
- Lack of link signifies conditional independence
- CPD: conditional probability distribution (BN's parameters)
- Conditional probabilities at each node, usually stored as a table (conditional probability table, or CPT)

52

Bayesian Belief Networks (BNs)

Making a Bayesian Network BN: BN = (DAG, CPD)

- DAG: directed acyclic graph (BN's structure)
- CPD: conditional probability distribution (BN's parameters)
- Conditional probabilities at each node, usually stored as a table (conditional probability table, or CPT)

$$
P\left(x_{i} \mid \pi_{i}\right) \text { where } \pi_{i} \text { is the set of all parent nodes of } x_{i}
$$

- Root nodes are a special case
- No parents, so use priors in CPD:

$$
\pi_{i}=\varnothing, \text { so } P\left(x_{i} \mid \pi_{i}\right)=P\left(x_{i}\right)
$$

Example BN

- We only specify $P(A)$ etc., not $P(\neg A)$, since they have to sum to one

$$
\mathrm{P}(\mathrm{~A})=0.001
$$

$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=0.3$
$\mathrm{P}(\mathrm{B} \mid \neg \mathrm{A})=0.001$
$\mathrm{P}(\neg \mathrm{B} \mid \mathrm{A})=0.7$
$\mathrm{P}(\neg \mathrm{B} \mid \neg \mathrm{A})=0.999$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{D} \mid \mathrm{B}, \mathrm{C})=0.1 \\
& \mathrm{P}(\mathrm{D} \mid \mathrm{B}, \neg \mathrm{C})=0.01 \\
& \mathrm{P}(\mathrm{D} \mid \neg \mathrm{B}, \mathrm{C})=0.01 \\
& \mathrm{P}(\mathrm{D} \mid \neg \mathrm{B}, \neg \mathrm{C})=0.00001
\end{aligned}
$$

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions as a product of local conditional distributions.
- To see probability of a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- Example: $\mathrm{P}(+$ cavity, +catch, -toothache $)=$?

- This lets us reconstruct any entry of the full joint
$\mathbf{P}(\mathbf{a}, \mathbf{m}, \mathbf{i}, \mathbf{e}, \mathbf{s})=$
$\mathrm{P}(\neg \mathrm{a}, \neg \mathrm{m}, \mathrm{i}, \neg \mathrm{e}, \mathrm{s})=$
$\mathrm{P}(\mathrm{a}, \mathrm{m}, \neg \mathrm{i}, \mathrm{e}, \neg \mathrm{s})=$

56

Summary

- Probability review
- Distributions, conditional probability, marginalizing
- Independence
- Bayes' rule
- Bayes' nets (Bayesian Belief Networks)
- Graphical notation
- Conditional probability tables
- Probability distributions
- Next time
- Inference using Bayes' nets

