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Probabilistic Reasoning

Some material also adapted from www.csc.calpoly.edu/~fkurfess/Courses/CSC-481/W02/Slides/Uncertainty.ppt

A B
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Probabilistic Reasoning

• So far, mostly, we’ve done deterministic problems.

• This is a stepping stone to stochastic problem-solving.

• We’ll use many of the same techniques and core ideas!
• Like minimax à expectiminimax

Images: www.instructables.com/id/How-to-Win-a-Chess-Game-in-2-Moves/
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Probabilistic Reasoning

• We don’t (can’t!) know everything about most problems.

• Most problems are not:
• Deterministic
• Fully observable

• Or, we can’t calculate everything.
• Continuous problem spaces

• Probability lets us understand, quantify, and work with this uncertainty.

5

Probability
• World: The complete set of possible states

• Random variables: Problem aspects that take a value
• “The number of blue squares we have pulled,” B
• “The combined value of two dice we rolled,” C

• Event: Something that happens

• Sample Space: All the things (outcomes) that could happen in some set of 
circumstances
• Pull 2 squares from envelope A: what is the sample space?
• How about envelope B?

• World, redux: A complete assignment of values to variables

A B
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Basic Probability

• Each P is a non-negative value in [0,1]
• P({1,1}) = 1/36

• Total probability of the sample space is 1
• P({1,1}) + P({1,2}) + P({1,3}) + … + P({6,6}) = 1

• For mutually exclusive events, the probability for at least one of them is 
the sum of their individual probabilities
• P(sunny) ∨ P(cloudy) = P(sunny) + P(cloudy)

• Experimental probability: Based on frequency of past events

• Subjective probability: Based on expert assessment

commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
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Why Probabilities Anyway?

• 3 simple axioms à all rules of probability theory*

• All probabilities are between 0 and 1.
• 0 ≤ P(a) ≤ 1

• Valid propositions (tautologies) have probability 1, and unsatisfiable 
propositions have probability 0.
• P(true) = 1
• P(false) = 0

• The probability of a disjunction is:
• P(a Ú b) = P(a) + P(b) – P(a Ù b)

aÙba b

*Kolmogorov – en.wikipedia.org/wiki/Andrey_Kolmogorov
De Finetti, Cox, and Carnap have also provided compelling arguments for these axioms
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Compound Probabilities

• Describe independent events
• Do not affect each other in any way

• Joint probability of two independent events A and B
P(A ∧ B) = P(A) * P(B)

• Union probability of two independent events A and B
P(A ∨ B) = P(A) + P(B) - P(A ∧ B)

= P(A) + P(B) - (P(A) * P(B))

aÙba b

9

Probability Theory

• Random variables: 
• Domain: possible values

• Atomic event:
• Complete specification of a 

state

• Prior probability:
• Degree of belief without any 

new evidence

• Joint probability:
• Matrix of combined 

probabilities of a set of 
variables, P(A,B)

10

• Alarm (A), Burglary (B), Earthquake (E)
• Boolean, discrete, continuous

• A=true Ù B=true Ù E=false:
• alarm Ù burglary Ù ¬earthquake

• P(B) = 0.1

• P(A, B) = 
alarm ¬ alarm

burglary 0.09 0.01
¬ burglary 0.1 0.8

10
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Probability Distributions

• A distribution is the probabilities of all possible values of a random 
variable

• Ex: weather can be sunny, rainy, cloudy, or snowy
• P(Weather = sun) = 0.6
• P(Weather = rain) = 0.1
• P(Weather = cloud) = 0.29
• P(Weather = snow) = 0.01
• P(Weather) = <0.6, 0.1, 0.29, 0.01>   ß shortcut

• P(Weather): probability distribution on Weather

11

Probability Theory: Definitions

• Conditional probability: Probability of some effect given that we 
know cause(s)
• Example: P(alarm | burglary)

• (Technically, we only know b is correlated, not causal)

• Computing it:

• P(a | b) = 

• P(b): normalizing constant (later we’ll call this alpha α or rho ϱ)

P(a Ù b)
P(b)

12
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Probability Theory: Definitions

• Product rule:
• P(a Ù b) = P(a | b) P(b)

• Marginalizing (summing out):
• Finding distribution over one or a subset of variables

• Marginal probability of B summed over all alarm states:
• P(B) = ΣaP(B, a)

• P(B) = sum of P(B, a) for all possible values of A

• Conditioning over a subset of variables:
• P(B) = ΣaP(B | a) P(a)

alarm ¬ alarm
burglary 0.09 0.01

¬ burglary 0.1 0.8

13

• P (A | B) = 0.9

• P (B | A) = 0.47
• P (B | A) = P (B Ù A) / P (A) =

0.09 / 0.19 = 0.47

• P (B Ù A) = 0.09
• P (B | A) P (A) = 

0.47 × 0.19 = 0.09

• P (A) = 0.19
• P (A Ù B) + P (A Ù ¬B) =

0.09 + 0.1 =  0.19

Let’s Try It

• Cond’l probability
• P(effect, cause[s])
• P(a | b) = P(a Ù b) / P(b)

• P(b): normalizing constant (1/α)

• Product rule:
• P(a Ù b) = P(a | b) P(b)

• Marginalizing:
• P(B) = ΣaP(B, a)
• P(B) = ΣaP(B | a) P(a) (conditioning)

alarm ¬ alarm
burglary 0.09 0.01

¬ burglary 0.1 0.8

?

?

?

?

14
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Marginalizing

• Marginalization: how to safely ignore variables.

• Two-variable example (A and B).

• If we know 𝑃(𝐴=𝑎,𝐵=𝑏) for all values of 𝑎 and 𝑏:

• 𝑃(𝐵=𝑏)=∑𝑎𝑃(𝐴=𝑎,𝐵=𝑏). 

• Here we "marginalized out" the variable 𝐴.

• Takes variable(s) in a out of consideration

15

15

Marginalizing

• Marginalizing (summing out):
• Finding distribution over one or a subset of variables
• Marginal probability of B summed over all alarm states:

• P(B) = ΣaP(B, a)

• Takes variable(s) in a out of consideration

16
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Marginalizing Example
• You are a video games company, and you want to know the probability of a 

new user winning, P(W). 1000 people already played. Your game has only two 
characters to choose. 

• You know:
• People who chose character A: P(A) = 600/1000
• People who chose character B: P(B) = 400/1000
• People who chose A and won, P(W | A): 75/100
• People who chose B and won, P(W | B): 69/100

• What is P(W)?

• P(W) =P(W | A)P(𝐴) + P(W | 𝐵) P(𝐵)
=75/100 × 600/1000 + 69/100 × 400/1000 = 0.75 × 0.6+0.69 × 0.4=0.726

www.quora.com/What-is-marginalization-in-probability

17

Exercise: Inference from the Joint

• Queries:
• What is the prior probability (knowing nothing else) of smart?
• What is the prior probability of study?
• What is the conditional probability of prepared, given study and smart?

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

Where do 
these come 

from?

18
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Exercise: Inference from the joint

• Queries:
• What is the prior probability of smart?
• What is the prior probability of study?
• What is the conditional probability of prepared, given study and smart?

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

P(smart) = .432 + .16 + .048 + .16  = 0.8

19

Exercise: Inference from the joint

• Queries:
• What is the prior probability of smart?
• What is the prior probability of study?
• What is the conditional probability of prepared, given study and smart?

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

P(study) = .432 + .048 + .084 + .036 = 0.6

20
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Exercise: Inference from the joint

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

P(prep|smart,study) = P(prep, smart, study)/P(smart, study)
= .432 / (.432 + .048) 

= 0.9

• Queries:
• What is the prior probability of smart?
• What is the prior probability of study?
• What is the conditional probability of prepared, given study and smart?

21

Independence: ⫫
• Independent: Two sets of propositions that do 

not affect each others’ probabilities

• Easy to calculate joint and conditional probability of independence:
• (A, B)  ó P(A Ù B) = P(A) P(B) or P(A | B) = P(A)

• Examples: 
• A = alarm M = moon phase

• B = burglary L = light level
• E = earthquake

A ⫫ B ⫫ E = ?
M ⫫ L = ? 
A ⫫ M = ?

A ⫫ B ⫫ E = f
M ⫫ L = f
A ⫫ M = t

23
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Independence Example

• {moon-phase, light-level} ⫫ {burglary, alarm, earthquake}
• But maybe burglaries increase in low light
• But, if we know the light level, moon-phase ⫫ burglary
• Once we’re burglarized, light level doesn’t affect whether the alarm goes off; 

{light-level} ⫫ {alarm}

• We need:
1. A more complex notion of independence
2. Methods for reasoning about these kinds of (common) relationships

24

Exercise: Independence

• Is smart independent of study?
• P(smart | study) = P(smart)

• Is prepared independent of study?
• P(prep | study) = P(prep)

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

25
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Exercise: Independence

• Is smart independent of study?
• P(smart | study) = P(smart)

• Is prepared independent of study?
• P(prep | study) = P(prep)

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

Smart Study
t t 0.432 + 0.48 0.480
t f 0.16 + 0.16 0.32
f t 0.084 + 0.008 0.092
f f 0.036 + 0.72 0.756

26

Exercise: Independence

• P(smart | study) = P(smart)

• P(smart | study) = P(smart, study) / P(study) 

• 0.8 = (.432 + .048) / .6

• 0.8 = 0.8

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

Smart Study
t t 0.432 + 0.48 0.480
t f 0.16 + 0.16 0.32
f t 0.084 + 0.008 0.092
f f 0.036 + 0.72 0.756

27
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Conditional Probabilities

• Describes dependent events
• Affect each other in some way

• Typical in the real world

• If we know some event has occurred, what does that tell us about 
the likelihood of another event?

28

Conditional Independence

• moon-phase and burglary are conditionally independent given 
light-level
• That is, M ⫫ B if we already know L

• Conditional independence is:
• Weaker than absolute independence
• Useful in decomposing full joint probability distributions

29
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Conditional Independence

• Absolute independence: A ⫫ B, if:
• P(A Ù B) = P(A) P(B)
• Equivalently, P(A) = P(A | B) and P(B) = P(B | A)

• A and B are conditionally independent given C if:
• P(A Ù B | C) = P(A | C) P(B | C)

• This lets us decompose the joint distribution:
• P(A Ù B Ù C) = P(A | C) P(B | C) P(C)

• What does this mean?

30

Exercise: Conditional Independence

• Queries: 
• Is smart conditionally independent of prepared, given study?

• Is study conditionally independent of prepared, given smart?

P (smart Ù
study Ù prep)

smart ¬smart
study ¬study study ¬study

prepared .432 .16 .084 .008
¬prepared .048 .16 .036 .072

31
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Probability

• Worlds, random variables, events, sample space

• Joint probabilities of multiple connected variables

• Conditional probabilities of a variable, given another variable(s)

• Marginalizing out unwanted variables

• Inference from the joint probability 

The big idea: figuring out the probability of variable(s) taking certain 
value(s)

32

Bayes’ Rule

• Derive the probability of some event, given another event
• Assumption of attribute independency 

(AKA the Naïve assumption)
• Naïve Bayes assumes that all attributes are independent. 

• Also the basis of modern machine learning

• Bayes’ rule is derived from the product rule

R&N 495

33
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Bayes’ Rule

• P(Y | X) = P(X | Y) P(Y) / P(X)

• Often useful for diagnosis. 

• If we have:
• X = (observable) effects, e.g., symptoms

• Y = (hidden) causes, e.g., illnesses
• A model for how causes lead to effects: P(X | Y)
• Prior beliefs about frequency of occurrence of effects: P(Y)

• We can reason from effects to causes: P(Y | X)

34

CSC 4510.9010 Spring 2015. Paula Matuszek

Naïve Bayes Algorithm

• Estimate the probability of each class:
• Compute the posterior probability (Bayes rule)

• Choose the class with the highest probability

• Assumption of attribute independency (Naïve assumption): Naïve Bayes 
assumes that all of the attributes are independent.  

35
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Bayesian Inference

• In the setting of diagnostic/evidential reasoning

• Know: prior probability of hypothesis
• conditional probability 
• Want to compute the posterior probability

• Bayes’ theorem (formula 1):

onsanifestatievidence/m                                      

hypotheses                                             

1 mj

i

EEE

 H

P(Hi | Ej ) = P(Hi )P(Ej |Hi ) / P(Ej )

)( iHP
)|( ij HEP

)|( ij HEP

)|( ji EHP

)( iHP

36

Simple Bayesian Diagnostic Reasoning

• We know:
• Evidence / manifestations:  E1, … Em

• Hypotheses / disorders:       H1, … Hn

• Ej and Hi are binary; hypotheses are mutually exclusive (non-overlapping) 
and exhaustive (cover all possible cases)

• Conditional probabilities:  P(Ej | Hi), i = 1, … n; j = 1, … m

• Cases (evidence for a particular instance): E1, …, Em

• Goal: Find the hypothesis Hi with the highest posterior
• Maxi P(Hi | E1, …, Em)

37
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Priors

• Four values total here:
• P(H | E) = (P(E | H) * P(H)) / P(E)

• P(H | E)  — what we want to compute

• Three we already know, called the priors
• P(E | H)
• P(H)
• P(E) (In ML later, we will use 

the training set to 
estimate the priors)

38

Bayesian Diagnostic Reasoning II

• Bayes’ rule says that
• P(Hi | E1, …, Em) = P(E1, …, Em | Hi) P(Hi) / P(E1, …, Em)

• Assume each piece of evidence Ei is conditionally independent of the 
others, given a hypothesis Hi, then:
• P(E1, …, Em | Hi) = Õl

j=1 P(Ej | Hi)

• If we only care about relative probabilities for the Hi, then we have:
• P(Hi | E1, …, Em) = α P(Hi) Õl

j=1 P(Ej | Hi)

39
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Bayes Exercise: Diagnosing Meningitis

• Your patient comes in with a stiff neck. 

• Is it meningitis?

• Suppose we know that
• Stiff neck is a symptom in 50% of meningitis cases
• Meningitis (m) occurs in 1/50,000 patients
• Stiff neck (s) occurs in 1/20 patients

• So probably not. But specifically?

)(/)|()()|( jijiji EPHEPHPEHP =

40

Bayes Exercise: Diagnosing Meningitis
• Stiff neck is a symptom in 50% of 

meningitis cases
• Meningitis (m) occurs in 1/50,000 patients
• Stiff neck (s) occurs in 1/20 patients

• Then: 
• P(s | m) = 0.5, P(m) = 1/50000, P(s) = 1/20
• P(m | s) = (P(s | m) P(m))/P(s)

= (0.5 x 1/50000) / 1/20  = .0002

• So we expect that one in 5000 patients 
with a stiff neck to have meningitis.

)(/)|()()|( jijiji EPHEPHPEHP =

41
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Bayes’ Nets: Big Picture

• Bayes’ nets: a technique for describing complex joint distributions 
(models) using simple, local distributions (conditional probabilities)
• A type of graphical models

• We describe how variables interact locally 
• Local interactions chain together to give global, indirect interactions

Weather Cavity

Toothache Catch

Slides derived from Matt E. Taylor, U Alberta

42

Example: Car Won’t Start

43

Slides derived from Matt E. Taylor, U Alberta
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Example: Insurance

44

Slides derived from Matt E. Taylor, U Alberta

44

Example: Toothache

• Random variables:
• How’s the weather?
• Do you have a toothache?

• Does the dentist’s probe catch when she pokes your tooth?
• Do you have a cavity?

45

Weather Cavity

Toothache Catch

Slides derived from Matt E. Taylor, U Alberta
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Graphical Model Notation 

• Nodes: variables (with domains) 

• Can be assigned (observed) or unassigned (hidden) 

• Arcs: interactions 
• Indicate “direct influence” between 
• Formally: encode conditional independence

• Toothache and Catch are conditionally independent, given Cavity

• For now: imagine that 
arrows mean causation
• (in general, they don’t!) 

Weather Cavity

Toothache Catch

Slides derived from Matt E. Taylor, U Alberta

46

Bayesian Belief Networks (BNs)

• Let’s formalize the semantics of a BN 
• A set of nodes, one per variable X

• A directed arc between each co-influential node
• X àY means X has an influence on Y

• A directed, acyclic graph 

π1 πn

π1 … πn

Slides derived from Matt E. Taylor, U Alberta
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Bayesian Belief Networks (BNs)

• Each node X has a conditional probability distribution:

• A collection of distributions over X
• One for each combination of parents’ values

• Quantifies the effects of the parents on a node

• CPT: conditional probability table
• Description of a noisy “causal” process

P(Xi | Parents(Xi))

Slides derived from Matt E. Taylor, U Alberta

π1 πn

π1 … πn

48

Conditional Probability Tables

• For Xi, CPD P(Xi | Parents(Xi)) quantifies effect of parents on Xi

• Parameters are probabilities in conditional probability tables (CPTs):

A P(A)

false 0.6

true 0.4

A B P(B|A)
false false 0.01

false true 0.99

true false 0.7
true true 0.3

B C P(C|B)

false false 0.4
false true 0.6

true false 0.9

true true 0.1

B D P(D|B)

false false 0.02

false true 0.98
true false 0.05

true true 0.95

A

B

C D

Example from web.engr.oregonstate.edu/~wong/slides/BayesianNetworksTutorial.ppt

49



9/27/22

24

For a given combination of 
values of the parents (B in 
this example), the entries for 
P(C=true | B) and 
P(C=false | B) must sum to 1

Example:
P(C=true | B=false) + 
P(C=false |B=false ) = 1

Example from web.engr.oregonstate.edu/~wong/slides/BayesianNetworksTutorial.ppt

CPTs cont’d

• Conditional Probability Distribution for C given B

• If you have a Boolean variable with k Boolean parents, this table has 
2k+1 probabilities

B C P(C|B)

false false 0.4
false true 0.6

true false 0.9

true true 0.1

A

B

C D

50

Bayesian Belief Networks (BNs)

51
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Bayesian Belief Networks (BNs)

Making a Bayesian Network BN: BN = (DAG, CPD)

• DAG: directed acyclic graph (BN’s structure)
• Nodes: random variables 

• Typically binary or discrete

• Methods exist for continuous variables
• Arcs: indicate probabilistic dependencies between nodes

• Lack of link signifies conditional independence

• CPD: conditional probability distribution (BN’s parameters)
• Conditional probabilities at each node, usually stored as a table (conditional 

probability table, or CPT)

52

Bayesian Belief Networks (BNs)

Making a Bayesian Network BN: BN = (DAG, CPD)

• DAG: directed acyclic graph (BN’s structure)

• CPD: conditional probability distribution (BN’s parameters)
• Conditional probabilities at each node, usually stored as a table (conditional 

probability table, or CPT)

• Root nodes are a special case
• No parents, so use priors in CPD:

P(xi |π i )  where π i  is the set of all parent nodes of xi

π i =∅,  so P(xi |π i ) = P(xi )

53
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Example BN

• We only specify P(A) etc., not P(¬A), since they have to sum to 
one

P(C|A) = 0.2    
P(C|¬A) = 0.005

P(B|A) = 0.3     
P(B|¬A) = 0.001
P(¬B|A) = 0.7  
P(¬B|¬A) = 0.999

P(A) = 0.001

P(D|B,C) = 0.1
P(D|B,¬C) = 0.01
P(D|¬B,C) = 0.01     
P(D|¬B,¬C) = 0.00001

P(E|C) = 0.4  
P(E|¬C) = 0.002

A

B C

D E

54

Probabilities in BNs

• Bayes’ nets implicitly encode joint distributions as a product of local 
conditional distributions. 

• To see probability of a full assignment, multiply all the relevant 
conditionals together: 

• Example: P(+cavity, +catch, ¬toothache) = ?

• This lets us reconstruct any entry of the full joint 

P(x1, x2,...xn ) = P(xi | parents(Xi )
i=1
∏ )

n

Cavity

Toothache Catch

Slides derived from Matt E. Taylor, U Alberta
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e

m

a

i

s

¬e e

0.7 0.3

¬m m

¬i, ¬e 0.6 0.4

¬i, e 0.9 0.1

i, ¬e 0.5 0.5

i, e 0.8 0.2

¬i i

0.8 0.2

¬s s

¬i 0.75 0.25

i 0.4 0.6

¬a a

¬m 0.6 0.4

m 0.9 0.1

P(a, m, i, e, s) = P(a | m) * P(m | i, e) * P(i) * P(e) * P(s | i)

P(¬a, ¬m, i, ¬e, s) =  P(¬a | ¬m) * P(¬m | i, ¬e) * P(i) * P(¬e) * P(s | i) = 0.6 * 0.5 * 0.2 * 0.7 * 0.6 = 0252

P(a, m, ¬i, e, ¬s) = P(a | m) * P(m | ¬i, e) * P(¬i) * P(e) * P(¬s | ¬i) = 0.1 * 0.1 * 0.8 * 0.3 * 0.75 = 0.0018

www.upgrad.com/blog/bayesian-network-example/
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Summary

• Probability review
• Distributions, conditional probability, marginalizing
• Independence
• Bayes’ rule

• Bayes’ nets (Bayesian Belief Networks)
• Graphical notation
• Conditional probability tables
• Probability distributions

• Next time
• Inference using Bayes’ nets
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