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Probabilistic Reasoning
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Probabilistic Reasoning

» So far, mostly, we’ve done deterministic problems.
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* This is a stepping stone to stochastic problem-solving.

*  We'll use many of the same techniques and core ideas!

« Like minimax = expectiminimax
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Probabilistic Reasoning

« We don’t (can’t!) know everything about most problems.

* Most problems are not:
* Deterministic

* Fully observable

* Or, we can’t calculate everything.

e Continuous problem spaces

* Probability lets us understand, quantify, and work with this uncertainty.

Probability

*  World: The complete set of possible states

*  “The number of blue squares we have pulled,” B

* Random variables: Problem aspects that take a value I%Eh D%'
e “The combined value of two dice we rolled,” C A B

* Event: Something that happens

« Sample Space: All the things (outcomes) that could happen in some set of
circumstances

* Pull 2 squares from envelope A: what is the sample space?
*  How about envelope B?

* World, redux: A complete assignment of values to variables
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Basic Probability

Each P is a non-negative value in [0,1]

« PH{1.1})=1/36 ’h%
* Total probability of the sample space is 1 @Q

P({1,1}) + P{1.2}) + P{1,3})+ ... + P({6,6}) =1

* For mutually exclusive events, the probability for at least one of them is
the sum of their individual probabilities

P(sunny) V P(cloudy) = P(sunny) + P(cloudy)
* Experimental probability: Based on frequency of past events

* Subjective probability: Based on expert assessment

Why Probabilities Anyway?

3 simple axioms = all rules of probability theory*

* All probabilities are between 0 and 1.
0<P) =<1

» Valid propositions (tautologies) have probability 1, and unsatisfiable
propositions have probability 0.

 P(true) =1
* P(false) =0

* The probability of a disjunction is:
P(a v b) = P(a) + P(b) — P(a A b)
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Compound Probabilities

* Describe independent events

* Do not affect each other in any way

* Joint probability of two independent events A and B
P(AAB)=P(A) * P(B)

* Union probability of two independent events A and B
P(AV B)=P(A) + P(B) - P(A A B)
=P(A) + P(B) - (P(A) * P(B))

9
Probability Theory
« Random variables: « Alarm (A), Burglary (B), Earthquake (E)
* Domain: possible values « Boolean, discrete, continuous
* Atomic event: *  A=true A B=true A E=false:
Ctorg‘mete specification of a « alarm A burglary A -earthquake
state
« P(B)=0.1
* Prior probability:
Degree of belief without any
new evidence alarm —alarm
] I e P(A B)= burglary | 0.09 0.01
Joint probability: “burglary| 0.1 03
* Matrix of combined
probabilities of a set of
variables, P(A,B)
10



9/27/22

Probability Distributions

» Adistribution is the probabilities of all possible values of a random
variable

* Ex: weather can be sunny, rainy, cloudy, or snowy
P(Weather = sun) = 0.6
P(Weather = rain) = 0.1
P(Weather = cloud) = 0.29
P(Weather = snow) = 0.01
P(Weather) = <0.6,0.1,0.29,0.01> < shortcut

* P(Weather): probability distribution on Weather

11
Probability Theory: Definitions
« Conditional probability: Probability of some effect given that we
know cause(s)
Example: P(alarm | burglary)
* (Technically, we only know b is correlated, not causal)
« Computing it:
P(a A D)
« P(alb)= Tb)
* P(b): normalizing constant (later we’ll call this alpha a or rho p)
12
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Probability Theory: Definitions

* Product rule: alarm | -alarm
P(a A b) =P(al b) P(b) burglary 0.09 0.01
= burglary 0.1 0.8

* Marginalizing (summing out):
Finding distribution over one or a subset of variables
Marginal probability of B summed over all alarm states:
P(B) = 2,P(B, a)

* P(B) =sum of P(B, a) for all possible values of A

* Conditioning over a subset of variables:
P(B) = S.P(B | a) P(a)

13
/ alarm | ~alarm
Let 5 Try It burglary [ 0.09 0.01
= burglary 0.1 0.8
» Cond’l probability
P(effect, cause][s]) * PAIB) = »
P b)=P b) / P(b
(alb) (a./_\)/() . PBIA) =
e P(b): normalizing constant (1/a)
* Product rule:
P(a A b)=P(a | b) P(b) - PBAA)= ?
* Marginalizing:
P(B) = ZaP(B, a)
P(B) =2aP(B | a) P(a) (conditioning) « P(4)= ?
14
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Marginalizing

* Marginalization: how to safely ignore variables.
* Two-variable example (A and B).

« If we know P(A=a,B=b) for all values of a and b:
* P(B=b)=3,P(A=a,B=Db).

* Here we "marginalized out" the variable A.

* Takes variable(s) in a out of consideration

15
Marginalizing
* Marginalizing (summing out):
* Finding distribution over one or a subset of variables
* Marginal probability of B summed over all alarm states:
- P(B)=X,P(B, a)
» Takes variable(s) in a out of consideration
16
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Marginalizing Example

You are a video games company, and you want to know the probability of a
new user winning, P(W). 1000 people already played. Your game has only two
characters to choose.

You know:

* People who chose character A: P(A) = 600/1000
*  People who chose character B: P(B) = 400/1000
* People who chose A and won, P(W | A): 75/100

* People who chose B and won, P(W | B): 69/100

What is P(W)?

P(W) =P(W | A)P(4) + P(W | B) P(B)
=75/100 x 600/1000 + 69/100 X 400/1000 = 0.75 X 0.6+0.69 X 0.4=0.726

17
Exercise: Inference from the Joint
* Queries: Where do
* What is the prior probability (knowing nothi these come
*  What is the prior probability of study? from?
* What is the conditional probability of prepared study and smart?
P (smart A smart // —smart
study A prep) | study | —study / study | —study
prepared| 432 | 16 | 084 | .008
—prepared| .048 16 .036 .072
18
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Exercise: Inference from the joint

* Queries:
*  What is the prior probability of smart?
*  What is the prior probability of study?

What is the conditional probability of prepared, given study and smart?

P (smart A smart —smart
study A prep) | study | —study | study | —study
prepared) 432 16 .084 .008
—prepared| .048 16 .036 .072

P(smart) = 432 + .16 + .048 + .16 = 0.8

19
Exercise: Inference from the joint
* Queries:
* What is the prior probability of smart?
*  What is the prior probability of study?
* What is the conditional probability of prepared, given study and smart?
P (smart A smart —smart
study A prep) \ study | —study | study | —study
prepared ] .432 16 .084 .008
—prepared | .048 16 .036 .072
P(study) = .432 +.048 + .084 + .036 = 0.6
20
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Exercise: Inference from the joint

e Queries:

*  What is the prior probability of smart?

*  What is the prior probability of study?

* What is the conditional probability of prepared, given study and smart?

P (smart A smart

—smart

study A prep) | study | —study

study | —study

prepared || 432

.16

.084 .008

—prepared] .048

.16

.036 .072

P(prep|smart,study)

= P(prep, smart, study)/P(smart, study)

= .432 / (.432 +.048)

=0.9
21
Independence: 1L
* Independent: Two sets of propositions that do
not affect each others’ probabilities
» Easy to calculate joint and conditional probability of independence:
« (A B) © P(AAB)=P(A)P(B)or P(A | B) = P(A)
 Examples:
. A =alarm M = moon phase ALBLE=f
. B = burglary L = light level MULL=f
. E = earthquake ALM=t¢
23
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Independence Example

* {moon-phase, light-level} I {burglary, alarm, earthquake}
* But maybe burglaries increase in low light
* But, if we know the light level, moon-phase L burglary

* Once we're burglarized, light level doesn’t affect whether the alarm goes off;
{light-level} W {alarm}

 We need:
1. A more complex notion of independence
2. Methods for reasoning about these kinds of (common) relationships

24
Exercise: Independence
* Is smart independent of study?
*  P(smart | study) = P(smart)
* Is prepared independent of study?
*  P(prep | study) = P(prep)
P(smart A smart —smart
study A prep) | study | —study | study | —study
prepared | .432 16 .084 .008
—prepared | .048 .16 .036 .072
25
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Exercise: Independence

* Is smart independent of study? Smart  Study

*  P(smart | study) = P(smart) t t 0.432+0.48 | 0.480

t f 1 016+0.16 032

* Is prepared independent of study? f t  0.084+0.008 0.092

*  P(prep | study) = P(prep) f f 0.036+0.72 0.756

P(smart A smart —smart
study A prep) | study | —study | study | —study
prepared| .432 16 .084 .008
—prepared | .048 16 .036 .072
26
Exercise: Independence
*  P(smart | study) = P(smart)
*  P(smart | study) = P(smart, study) / P(study)
« 0.8=(432+.048)/ .6
« 0.8=0.38
Smart  Study
P(smart A smart Tsmart t t  0432+048  0.480
study A prep) | study | —study | study | —study ¢ F 1 0.16+0.16 0.32
prepared| .432 .16 .084 .008 f ¢ 0.084 + 0.008 0.092
—prepared | .048 .16 .036 .072 f f 0.036+0.72 0.756
27
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Conditional Probabilities

* Describes dependent events

+ Affect each other in some way
» Typical in the real world

e |f we know some event has occurred, what does that tell us about
the likelihood of another event?

28

Conditional Independence

* moon-phase and burglary are conditionally independent given
light-level

Thatis, M 1L B if we already know L

* Conditional independence is:
Weaker than absolute independence

Useful in decomposing full joint probability distributions

29

13
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Conditional Independence

Absolute independence: A 1L B, if:
P(A A B) = P(A) P(B)
* Equivalently, P(A) =P(A I B) and P(B) =P(B 1 A)

* A and B are conditionally independent given C if:
PAABIC)=PAIC)PBIC)

* This lets us decompose the joint distribution:

P(AABAC)=PAIC)PBIC)PC)

* What does this mean?

30
Exercise: Conditional Independence
e Queries:
Is smart conditionally independent of prepared, given study?
Is study conditionally independent of prepared, given smart?
P (smart A smart —smart
study A prep) | study | —study | study | —study
prepared | 432 .16 .084 .008
—prepared | .048 .16 .036 072
31
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Probability

* Worlds, random variables, events, sample space

» Joint probabilities of multiple connected variables

« Conditional probabilities of a variable, given another variable(s)
* Marginalizing out unwanted variables

* Inference from the joint probability

The big idea: figuring out the probability of variable(s) taking certain

value(s)
32
7
Bayes' Rule
* Derive the probability of some event, given another event
* Assumption of attribute independency
(AKA the Naive assumption)
* Naive Bayes assumes that all attributes are independent.
* Also the basis of modern machine learning
* Bayes’ rule is derived from the product rule
33

15
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Bayes' Rule

PYTIX)=PXIY)P(Y)/P(X)
Often useful for diagnosis.

If we have:

X = (observable) effects, e.g., symptoms
Y= (hidden) causes, e.g., illnesses

A model for how causes lead to effects: P(X | Y)

e Prior beliefs about frequency of occurrence of effects: P(Y)

We can reason from effects to causes: P(Y | X)

34

Naive Bayes Algorithm

Estimate the probability of each class:

« Compute the posterior probability (Bayes rule)

P(c)P(D]|c,)
P(D)

P(Ci|D)=

* Choose the class with the highest probability

Assumption of attribute independency (Naive assumption): Naive Bayes
assumes that all of the attributes are independent.

35
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Bayesian Inference

* In the setting of diagnostic/evidential reasoning

H, pwH, hypotheses
P(W l\
E, E; E,  evidence/manifestations
* Know: prior probability of hypothesis P(H,)
. conditional probability P(E;|H,)

« Want to compute the posterior probability P(H;|E;)
 Bayes’ theorem (formula 1): P(H,|E;)=P(H)P(E,|H,)/ P(E;)

36
Simple Bayesian Diagnostic Reasoning
*  We know:
e Evidence / manifestations: E,, ... E,
« Hypotheses / disorders: H,, ... H,
+ E;and H; are binary; hypotheses are mutually exclusive (non-overlapping)
and exhaustive (cover all possible cases)
+ Conditional probabilities: P(E;jI Hj),i=1,...n;j=1,...m
» Cases (evidence for a particular instance): Eq, ..., E,
* Goal: Find the hypothesis H; with the highest posterior
e Max;PHIlE,,...,E,)
37

17
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Priors

* Four values total here:
P(H | E) = (P(E | H) * P(H)) / P(E)

 P(HIE) — what we want to compute

* Three we already know, called the priors
P(E | H)
P(H)
P(E)

(In ML later, we will use
the training set to
estimate the priors)

38

Bayesian Diagnostic Reasoning |l

* Bayes’ rule says that
P(H; | Ey, ..., En) = P(Ey, ..., En | Hy) P(Hy) 7/ P(Ey, ..., Epn)

« Assume each piece of evidence E; is conditionally independent of the
others, given a hypothesis H;, then:

P(Eh RS} Ern | Hl) = Hljzl P(EJ | Hl)

« If we only care about relative probabilities for the H;, then we have:
- PH; | Ey, ..., Em) = a P(H)) [T'=; P(E; | Hj)

39
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Bayes Exercise: Diagnosing Meningitis

P(H, |Ej)=P(Hi)P(Ej|Hi)/P(Ej)
* Your patient comes in with a stiff neck.

Is it meningitis?

Suppose we know that
Stiff neck is a symptom in 50% of meningitis cases
Meningitis (m) occurs in 1/50,000 patients
Stiff neck (s) occurs in 1/20 patients

So probably not. But specifically?

Bayes Exercise: Diagnosing Meningitis

~ |P(H,|E,) = P(H,)P(E,|H,)/ P(E))

Stiff neck is a symptom in 50% of
meningitis cases

Meningitis (m) occurs in 1/50,000 patients
Stiff neck (s) occurs in 1/20 patients

19
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Bayes’ Nets: Big Picture

* Bayes’ nets: a technique for describing complex joint distributions
(models) using simple, local distributions (conditional probabilities)

* Atype of graphical models

* We describe how variables interact locally

Local interactions chain together to give global, indirect interactions

TR

42

Example: Car Won't Start

43

20
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Example: Insurance

44
Example: Toothache
Random variables:

How'’s the weather?

Do you have a toothache?

Does the dentist’s probe catch when she pokes your tooth?

Do you have a cavity?

Cemn >

45

21



9/27/22

Graphical Model Notation

* Nodes: variables (with domains)
* Can be assigned (observed) or unassigned (hidden)

 Arcs: interactions

* Indicate “direct influence” between
* Formally: encode conditional independence
» Toothache and Catch are conditionally independent, given Cavity

* For now: imagine that
arrows mean causation @
+ (in general, they don’t!) @

46
Bayesian Belief Networks (BNs)
* Let’s formalize the semantics of a BN
* Aset of nodes, one per variable X
 Adirected arc between each co-influential node
* X =>Ymeans X has an influenceon Y
* Adirected, acyclic graph
47

22
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Bayesian Belief Networks (BNs)

* Each node X has a conditional probability distribution:

P(X; | Parents(X;))

* A collection of distributions over X
* One for each combination of parents’ values

* Quantifies the effects of the parents on a node

* CPT: conditional probability table

III

* Description of a noisy “causal” process

48
Conditional Probability Tables
* For X;, CPD P(X; | Parents(X;)) quantifies effect of parents on X;
« Parameters are probabilities in conditional probability tables (CPTs):
A B P(B|A)
A P(A) false | false | 0.01
false | 0.6 = false | true 0.99
true | 0.4 ..'~., true | false |0.7
N true | true 0.3
B |C P(C|B)
false | false |[0.4 B D P(D|B)
false | true | 0.6 ’0,0 false | false |0.02
true | false |0.9 ’.'.A false | true 0.98
true | true 0.1 Pra— true | false | 0.05
true | true 0.95
49
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CPTs cont'd

P(C|B)

false

false

false

true

0.4
0.6

true

false

0.9

true

true

@

* Conditional Probability Distribution for C given B

» If you have a Boolean variable with k Boolean parents, this table has
2k+1 probabilities

For a given combination of

values of the parents (B in

this example), the entries for

P(C=true | B) and

P(C=false | B) must sumto 1
Example:

Q P(C=true | B=false) +
P(C=false |B=false ) =1

50

Burglary

P(A[B,E)

e | w

R RNl oo

95
.94
.29
.001

P(B)

Bayesian Belief Networks (BNs)

P(E)
.002

Earthquake

P(J|A)

A [P(M|A)

F| .0l

51

24
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Bayesian Belief Networks (BNs)

Making a Bayesian Network BN: BN = (DAG, CPD)

* DAG: directed acyclic graph (BN’s structure)
* Nodes: random variables
» Typically binary or discrete
* Methods exist for continuous variables
* Arcs: indicate probabilistic dependencies between nodes

* Lack of link signifies conditional independence

* CPD: conditional probability distribution (BN’s parameters)

» Conditional probabilities at each node, usually stored as a table (conditional
probability table, or CPT)

52
Bayesian Belief Networks (BNs)
Making a Bayesian Network BN: BN = (DAG, CPD)
* DAG: directed acyclic graph (BN’s structure)
* CPD: conditional probability distribution (BN’s parameters)
» Conditional probabilities at each node, usually stored as a table (conditional
probability table, or CPT)
P(x, 1) where m, is the set of all parent nodes of x,
* Root nodes are a special case
* No parents, so use priors in CPD:
w, =3, so P(x;1m)=P(x,)
53
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Example BN

« We only specify P(A) etc., not P(-A), since they have to sum to
one

P(A) = 0.001

P(B|A)=0.3 P(C|A)=0.2
P(B|-A) =0.001 P(C|-A) = 0.005
P(—B|A)=10.7

P(—B|=A) = 0.999
(E) P(E|IC)=0.4
P(D|B,—C) = 0.01
P(D|-B,C) = 0.01
P(D|-B,—C) = 0.00001

54
Probabilities in BNs
* Bayes’ nets implicitly encode joint distributions as a product of local
conditional distributions.
* To see probability of a full assignment, multiply all the relevant
conditionals together:
n
P(x,,x,,..x, )= HP(xl. | parents(X,))
- Cean )
« Example: P(+cavity, +catch, -toothache) = ? @
* This lets us reconstruct any entry of the full joint
55
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Summary
* Probability review
» Distributions, conditional probability, marginalizing
* Independence
e Bayes’ rule
* Bayes’ nets (Bayesian Belief Networks)
* Graphical notation
* Conditional probability tables
*  Probability distributions
* Nexttime
* Inference using Bayes’ nets
57
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