
9/20/22

1

Constraint Satisfaction
Ch. 6.1–6.4 (skip 6.3.3))

Based on slides by: Marie desJardin, Paula Matuszek, Luke
Zettlemoyer, Dan Klein, Stuart Russell, Andrew Moore

Got through slide 25

1

Bookkeeping

• Homework 2 out tonight by midnight (on the schedule)

• Last time: local search, intro to constraint satisfaction problems

• Today: solving CSPs

2

9/20/22

2

Bookkeeping

• Homework 2 out tonight by midnight (on the schedule)

• Last time: local search, intro to constraint satisfaction problems

• Today: solving CSPs

3

Today’s Class

• What’s a Constraint Satisfaction Problem (CSP)?
• A.K.A., Constraint Processing / CSP paradigm

• How do we solve
them?
• Algorithms for CSPs

• Search Terminology

4

Constraint (n): A relation …
between the values of one or
more mathematical variables
(e.g., x>3 is a constraint on x).

Constraint satisfaction assigns
values to variables so that all
constraints are true.

– http://foldoc.org/constraint

4

9/20/22

3

Constraint Satisfaction

• Con•straint /kənˈstrānt/, (noun):
• Something that limits or restricts someone or something.1

• A relation … between the values of one or more mathematical variables (e.g.,
x>3 is a constraint on x), that assigns values to variables so that all constraints
are true.2

• In search, constraints exist on?

• General Idea
• View a problem as a set of variables

• To which we have to assign values
• That satisfy a number of (problem-specific) constraints

5

[1] Merriam-Webster online.
[2] The Free Online Computing Dictionary.

5

Overview

• Constraint satisfaction: a problem-solving paradigm

• Constraint programming, constraint satisfaction problems (CSPs),
constraint logic programming…

• Algorithms for CSPs
• Backtracking (systematic search)
• Constraint propagation (k-consistency)

• Variable and value ordering heuristics
• Backjumping and dependency-directed backtracking

6

6

9/20/22

4

Search Vocabulary

• We’ve talked about caring about goals (end states) vs. paths

• These correspond to…
• Planning: finding sequences of actions

• Paths have various costs, depths
• Heuristics to guide, frontier to keep backup possibilities
• Examples: chess moves; 8-puzzle; homework 2

• Identification: assignments to variables representing unknowns
• The goal itself is important, not the path
• Examples: Sudoku; map coloring; N queens, scheduling, planning

• CSPs are specialized for identification problems

7

7

Slightly Less Informal Definition of CSP

• CSP = Constraint Satisfaction Problem

• Given:
• A finite set of variables
• Each with a domain of possible values they can

take (often finite)

• A set of constraints that limit the values the
variables can take on

• Solution: an assignment of values to
variables that satisfies all constraints.

8

8

9/20/22

5

CSP Applications

• Decide if a solution exists

• Find some solution

• Find all solutions

• Find the “best solution”
• According to some metric (objective function)

• Does that mean “optimal”?

9

9

Informal Example: Map Coloring

• Given a 2D map, it is always possible to color it using three colors

• Such that:
• No two adjacent regions are the

same color
• Start thinking: What are the

values, variables, constraints?

10

E

D A

C
B

10

9/20/22

6

Slightly Less Informal
• Constraint satisfaction problems (CSPs): a special subset of search

problems where…

• State is defined by variables Xi with values
from a domain D
• D may be finite
• Sometimes D depends on i

• Goal test is a set of constraints specifying
allowable combinations of values for variables

11

Example: N-Queens (1)

• Formulation 1:
• Variables:
• Domains:

• Constraints:

12

9/20/22

7

Example: N-Queens (2)

• Formulation 2:
• Variables:
• Domains:

• Actually, tuples of {(1–N, 1–N)}
• Constraints:

Implicit:

Explicit:
-or-

13

Special case!

Example: SATisfiability

• Given a set of propositions containing variables, find an
assignment of the variables to {false, true} that satisfies them.

• For example, the clauses:
• (A Ú B Ú ¬C) Ù (¬A Ú D)
• (equivalent to (C ® A) Ú (B Ù D ® A))

• are satisfied by
• A = false
• B = true
• C = false
• D = false

14

14

9/20/22

8

Real-World Problems

• Scheduling

• Temporal reasoning

• Building design

• Planning

• Optimization/satisfaction

• Vision

15

• Graph layout

• Network management

• Natural language processing

• Molecular biology /
genomics

• VLSI design

15

Exercise: Map Coloring II

• Variables: A, B, C, D, E

• Domains: RGB = {red, green, blue}

• Constraints: A¹B, A¹C, A ¹ E, A ¹ D, B ¹ C, C ¹ D, D ¹ E

• One solution: A=red, B=green, C=blue, D=green, E=blue

16

E
D A
C

B

E
D A
C

B

16

9/20/22

9

Formal Definition: Constraint Network (CN)

A constraint network (CN) consists of

• A set of variables X = {x1, x2, … xn}
• Each with an associated domain of values {d1, d2, … dn}.
• The domains are typically finite

• A set of constraints {c1, c2 … cm} where
• Each constraint defines a predicate, which is a relation over some subset of X.

• E.g., ci involves variables {Xi1, Xi2, … Xik} and defines the relation
Ri Í Di1× Di2× … Dik

17

17

Constraint Restrictions

• Unary constraint: only involves one variable
• e.g.: C can’t be green.

• Binary constraint: only involves two variables
• e.g.: E ≠ D

E

D A

C

B

E

A D

CB

≠

“C ≠green”

18

9/20/22

10

Formal Definition of a CN (cont.)

• An instantiation is an assignment of a value dx ∈ D to some
subset of variables S.
• Any assignment of values to variables
• Ex: Q2 = {2,3} Ù Q3 = {1,1} instantiates Q2 and Q3

• An instantiation is legal iff it does not violate any constraints

• A solution is an instantiation of all variables
• A correct solution is a legal instantiation of all variables

19

19

Typical Tasks for CSP

• Solutions:
• Does a solution exist?
• Find one solution

• Find all solutions

• Given a partial instantiation, can we do these?

• Transform the CN into an equivalent CN that is easier to solve

20

E

A D

CB

20

9/20/22

11

Binary CSP

• Binary CSP: all constraints are binary or unary

• Can convert a non-binary CSP à binary CSP by:
• Introducing additional variables
• One variable per constraint

• One binary constraint for each pair of original constraints that share variables

• “Dual graph construction”

21

21

Binary CSPs: Why?

• Can always represent a binary CSP as a constraint graph with:
• A node for each variable
• An arc between two nodes iff there is a constraint on the two variables

• Unary constraint appears as a self-referential arc

22

C “C can’t be green”

22

9/20/22

12

Exercise: Sudoku

• Variables
• vi,j is the value in the

j th cell of the i th row

• Domains
• Di,j = D = {1, 2, 3, 4}

• Blocks
• B1 = {11, 12, 21, 22}, …, B4 = {33, 34, 43, 44}

23

3 1

1 4

3 4 1 2

4

v11 3 v13 1

v21 1 v23 4

3 4 1 2

v41 v42 4 v44

23

Running Example: Sudoku

• Constraints (implicit or intensional)
• CR : "i, Èj vij = D

(every value appears
in every row)

• CC : "j, Èi vij = D
(every value appears in every column)

• CB : "k, È (vij | ij ÎBk) = D
(every value appears in every block)

24

v11 3 v13 1

v21 1 v23 4

3 4 1 2

v41 v42 4 v44

24

9/20/22

13

Running Example: Sudoku

• Possible representation:
pairwise inequality
• IR : "i, j≠j’ : vij ≠ vij’

(no value appears twice in any row)
• IC : "j, i≠i’ : vij ≠ vi’j

(no value appears twice in any column)
• IB : "k, ij Î Bk, i’j’ Î Bk, ij ≠ i’j’ :vij ≠ vi’j ’

(no value appears twice in any block)

31

v11 3 v13 1

v21 1 v23 4

3 4 1 2

v41 v42 4 v44

All binary
constraints!

31

Exercise: Draw the Sudoku CN

1. IR : "i, j≠j’ : vij ≠ vij’ (no value appears twice in any row)

2. IC : "j, i≠i’ : vij ≠ vi’j (no value appears twice in any column)

3. IB : "k, ij Î Bk, i’j’ Î Bk, ij ≠ i’j’ :vij ≠ vi’j’ (no value appears twice in a
block)

32

v11

v44v42v41

v23v21

v133 1

1 4

3 4 1 2

4

v11 3 v13 1

v21 1 v23 4

3 4 1 2

v41 v42 4 v44

32

9/20/22

14

Solving Constraint Problems

• Systematic search
• Generate and test
• Backtracking

• Constraint propagation (consistency)

• Variable ordering heuristics

• Value ordering heuristics

• Variable elimination

• Backjumping and dependency-directed backtracking

33

33

Generate and Test: Sudoku

• Try every possible assignment of domain elements to variables until you
find one that works:

• Doesn’t check constraints until all variables have been instantiated

• Very inefficient way to explore the space of possibilities (47 for this
trivial Sudoku puzzle, mostly illegal)

34

1 3 1 1
1 1 1 4
3 4 1 2
1 1 4 1

1 3 1 1
1 1 1 4
3 4 1 2
1 1 4 2

1 3 1 1
1 1 1 4
3 4 1 2
1 1 4 3 …

34

9/20/22

15

Search: DFS

35

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

1 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

2 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

3 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

…

1 3 v13 1
1 1 v23 4
3 4 1 2
v41 v42 4 v44

1 3 v13 1
2 1 v23 4
3 4 1 2
v41 v42 4 v44

1 3 v13 1
3 1 v23 4
3 4 1 2
v41 v42 4 v44

…

1 3 1 1
1 1 v23 4
3 4 1 2
v41 v42 4 v44

1 3 2 1
1 1 v23 4
3 4 1 2
v41 v42 4 v44

1 3 3 1
1 1 v23 4
3 4 1 2
v41 v42 4 v44

v11 v21 v13

35

Consistency

• The goal is to find a solution that is consistent with (doesn’t violate)
constraints

• An instantiation (assignment
of values to variables) is
said to be consistent if
no constraints are
violated

36

E

A D

CB

36

9/20/22

16

Consistency

• The goal is to find a solution that is consistent with (doesn’t violate)
constraints

• An instantiation (assignment
of values to variables) is
said to be consistent if
no constraints are
violated

37

E=red

A D

CB

37

Consistency

• The goal is to find a solution that is consistent with (doesn’t violate)
constraints

• An instantiation (assignment
of values to variables) is
said to be consistent if
no constraints are
violated

38

E=red

A=blue D

CB

38

9/20/22

17

Consistency

• The goal is to find a solution that is consistent with (doesn’t violate)
constraints

• An instantiation (assignment
of values to variables) is
said to be consistent if
no constraints are
violated

39

E=red

A=blue D=blue

CB

✗

39

Consistency

• Once the whole graph is consistent, we have a solution (a legal
instantiation of values to all variables)

• There are multiple kinds of consistency

• Different kinds give us different guarantees for performance and
correctness

40

40

9/20/22

18

Node Consistency

• Node consistency: every value in node X’s domain (every value we
think it might take) is consistent with X’s unary constraints
• A graph is node-consistent if all nodes are node-consistent
• Let’s say C can’t be green
• C = {red, green, blue}

41

C “C can’t be green”

C = {r, b}

this domain of C makes
this node-consistent

41

Arc Consistency

• Arc consistency: A variable in a CSP is arc-consistent if every value in
its domain satisfies the variable’s binary constraints

• For every value x of X in Arc(X,Y):
• ∃y for Y
• That satisfies the constraint

represented by the arc

• A graph is arc-consistent if all
arcs are arc-consistent

42

E=red

A=? D=?

A = {g, b} D = {g, b}

42

9/20/22

19

Arc Consistency: Example
• For every value x of X in Arc(X,Y):∃y for Y that satisfies the constraint

represented by the arc

• Is this instantiation arc-consistent?

• So far, yes!

43

A = {g} D = {g}

E=blue

A=… D=...

C=blueB=red E=red

43

Arc Consistency: Example
• For every value x of X in Arc(X,Y):∃y for Y that satisfies the constraint

represented by the arc

• Is this instantiation arc-consistent?

44

D = {}

E=blue

A=green D=...

C=blueB=red E=red

44

9/20/22

20

Constraint Propagation

• To create arc consistency, we perform constraint propagation: that is,
we repeatedly reduce the domain of each variable to be consistent with
its arcs

• How do we find a set of consistent assignments?

• Constraints reduce # of legal values for a variable
• Which may then reduce legal values of another variable

• Key idea: local consistency
• Enforce nearby constraints
• Propagate

45

45

Constraint Propagation: Sudoku

46

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

v11

v44v42v41

v23v21

v13

2,4

321,2

2,32

2

Arc consistency

4

321

32

2

Node co
nsis

tency

…and we didn’t even need to search!

46

9/20/22

21

WA

NT

SA

Q

NSW
V

T

Example: Map-Coloring
• Variables:

• Domain:

• Constraints: adjacent regions
must have different colors
• Ex:

• Solutions are assignments satisfying all constraints, e.g.:

WA, NT, Q, NSW, V, SA, T

D = {red, green, blue }

WA ≠ NT
(WA, NT) ∈ {(red, green), (red, blue), (green, blue),

(green, red), (blue, red)}

{WA = red, NT = green, Q = red, NSW = green,
V = red, SA = blue, T = green }

47

Constraint Graphs

• Binary CSP: each constraint relates (at most) two variables

• Binary constraint graph: nodes are variables, arcs show constraints

• General-purpose CSP algorithms use the graph structure to speed up search. E.g.,
Tasmania is an independent subproblem!

48

9/20/22

22

Standard Search Formulation

• Standard search formulation of CSPs (incremental)

• Let’s start with a straightforward, dumb approach, then fix it

• States are defined by the values assigned so far
(ex: WA=red, T=red is a state)
• Initial state: the empty assignment, {}
• Successor function: assign a value to an unassigned variable

• Goal test: the current assignment is complete and satisfies all constraints

49

Search Methods

• What does BFS do?

• What does DFS do?

50

9/20/22

23

DFS: not good!

51

Backtracking Search

• DFS is bad. So how do we improve it?

• Idea 1: Only consider a single variable at each point
• Variable assignments are commutative, so fix the ordering

• Ex: [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assignments to a single variable at each step
• How many leaves are there now?

• Idea 2: Only allow fully legal assignments at each point
• Consider only values which do not conflict with existing assignments
• Might have to do some computation to figure out whether a value is ok
• “Incremental goal test”

52

9/20/22

24

Systematic Search: Backtracking (a.k.a. DFS!)

• Consider the variables in some order
• Pick an unassigned variable
• Give it a provisional value

• That is consistent with all of the constraints

• If no such assignment can be made, we’ve reached a dead end and
need to backtrack to the previous variable

• Continue this process until:
• A solution is found, or
• We backtrack to the initial variable and have exhausted all possible values

53

53

Backtracking Search

• Idea 1: Only consider a single variable at each point

• Idea 2: Only allow legal assignments at each point

• DFS for CSPs with these two improvements is called backtracking search
• We backtrack when there’s no legal assignment for the next variable

• Backtracking search is the basic uninformed algorithm for CSPs

• Can solve n-queens for n ≈ 25

54

9/20/22

25

Backtracking: Sudoku

55

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

2 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

4 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

4 3 v13 1
2 1 v23 4
3 4 1 2
v41 v42 4 v44

v11 v21 v13

4 3 2 1
2 1 v23 4
3 4 1 2
v41 v42 4 v44

…

55

Backtracking Example

57

9/20/22

26

Backtracking

58

Good Enough?

59

9/20/22

27

Problems with Backtracking

• Thrashing: keep repeating same
failed variable assignments
• Consistency checking can help

• Intelligent backtracking schemes can also help

• Inefficiency: can spend time exploring areas of search space that aren’t
likely to succeed
• Variable ordering can help
• IF there’s a meaningful way to order them

60

v11 3 v13 1

v21 1 v23 4
3 4 1 2
v41 v42 4 v44

60

Improving Backtracking

• General-purpose ideas give huge gains in speed

• Ordering (queueing function ++)
• Which variable should be assigned next?

• In what order should its values be tried?

• Filtering: Can we detect inevitable failure early?

• Structure: Can we exploit the problem structure?

61

9/20/22

28

Forward Checking

• Idea: Keep track of remaining legal values for unassigned variables
(using immediate constraints); terminate when any variable has no legal
values

62

Forward Checking

• Propagates information from assigned to adjacent unassigned variables

• Doesn’t detect more distant failures

• NT and SA cannot both be blue! Why didn’t we detect this?

• Constraint propagation enforces constraints locally
• This is a local maximum!

63

9/20/22

29

Are We
Done?

64

Arc Consistency
• Simplest form of propagation makes each arc consistent

• X → Y is consistent iff for every value x there is some allowed y

• If X loses a value, neighbors of X need to be rechecked!

• Arc consistency detects failure earlier than forward checking

• What’s the downside of arc consistency?

• Can be run as a preprocessor or after each assignment

65

9/20/22

30

K-consistency

• K-consistency generalizes the notion of arc consistency to sets of
more than two variables

• A graph is K-consistent if, for legal values of any K-1 variables in the
graph, and for any Kth variable Vk, there is a legal value for Vk

• Strong K-consistency = J-consistency for all J≤K

• Node consistency = strong 1-consistency

• Arc consistency = strong 2-consistency

• Path consistency = strong 3-consistency

66

66

Why Do We Care?

• A strongly N-consistent CSP with N variables can be solved without
backtracking

• For any CSP that is strongly K-consistent:
• If we find an appropriate variable ordering (one with “small enough”

branching factor)

• We can solve the CSP without backtracking

67

67

9/20/22

31

Ordered Constraint Graphs

• Select a variable ordering, V1, …, Vn

• Width of a node in this OCG is the number of arcs leading to earlier
variables:
• width(Vi) = count ((Vi, Vk) | k < i)

• Width of the OCG is the maximum width of any node:
• width(OCG) = max (width (Vi)), 1 ≤ i ≤ N

• Width of an unordered CG is the minimum width of all orderings of that
graph (best you can do)

68

68

Tree-Structured Constraint Graph

• A constraint tree rooted at V1 satisfies:
• There exists an ordering V1, …, Vn such that every node has zero or one

parents (i.e., each node only has constraints with at most one “earlier” node
in the ordering)

• Also known as an ordered constraint graph with width 1

• If this constraint tree is also node- and arc-consistent (a.k.a. strongly
2-consistent), it can be solved without backtracking
• (More generally, if the ordered graph is strongly k-consistent, and has width

w < k, then it can be solved without backtracking.)

69

V1
V8 V4 V7

V6
V10V9

V5V3V2

69

9/20/22

32

So What If We Don’t Have a Tree?

• Answer #1: Try interleaving constraint propagation and backtracking

• Answer #2: Try using variable-ordering heuristics to improve search

• Answer #3: Try using value-ordering heuristics during variable
instantiation

• Answer #4: See if iterative repair works better

• Answer #5: Try using intelligent backtracking methods

72

72

Possible Variable Orderings

• Intuition: choose variables that are highly constrained early in the
search process; leave easy ones for later.

• How?
• Minimum width ordering (MWO):

identify OCG with minimum width

• Maximum cardinality ordering:
approximation of MWO that’s cheaper to
compute: order variables by decreasing
cardinality (a.k.a. degree heuristic)

74

E

A D

CB

74

9/20/22

33

Possible Variable Orderings

• Fail first principle (FFP): choose variable with fewest remaining values
• AKA minimum remaining values (MRV))

• Static FFP: use domain size of variables

• Dynamic FFP (search
rearrangement method):
At each choice, select the
variable with the fewest
remaining values

75

E=red

A=… D=...

C=redB=blue

A = {g} D = {g,b}

75

Minimum Width
• Minimum remaining values (MRV):

• Choose the variable with the fewest remaining legal values

• Why min rather than max?
• Also called “most constrained variable”
• “Fail-fast” ordering

76

9/20/22

34

Variable Orderings II

• Maximal stable set: find largest set of variables with no constraints
between them, save these for last

• Cycle-cutset tree creation: Find a set of variables that, once
instantiated, leave a tree of uninstantiated variables; solve these, then
solve the tree without backtracking

• Tree decomposition: Construct a tree-structured set of connected
subproblems

77

77

ValueOrdering

• Intuition: Choose values that are the least constrained early on,
leaving the most legal values available for later variables

• Maximal options method (a.k.a. least-constraining-value heuristic): Choose
the value that leaves the most legal values for not-yet-instantiated variables

• Min-conflicts: For iterative repair search (Coming up)
• Symmetry: Introduce symmetry-breaking constraints to constrain search

space to ‘useful’ solutions (don’t examine more than one
symmetric/isomorphic solution)

78

78

9/20/22

35

Iterative Repair

• Start with an initial complete (but probably invalid) assignment

• Repair locally

• Min-conflicts: Select new values that minimally conflict with the other
variables
• Use in conjunction with hill climbing or simulated annealing or…

• Local maxima strategies
• Random restart

• Random walk

80

80

Min-Conflicts Heuristic

• Iterative repair method
1. Find some “reasonably good” initial solution

– E.g., in N-queens problem, use greedy search through rows, putting each queen
where it conflicts with the smallest number of previously placed queens,
breaking ties randomly

2. Pick a variable in conflict (randomly)
3. Select a new value that minimizes the number of constraint violations

– O(N) time and space

4. Repeat steps 2 and 3 until done Performance depends on
quality and informativeness of
initial assignment; inversely
related to distance to solution

81

9/20/22

36

Intelligent Backtracking

• Backjumping: if Vj fails, jump back to the variable Vi with greatest i such
that the constraint (Vi, Vj) fails (i.e., most recently instantiated variable
in conflict with Vj)

• Backchecking: keep track of incompatible value assignments computed
during backjumping

• Backmarking: keep track of which variables led to the incompatible
variable assignments for improved backchecking

82

82

Challenges

• What if not all constraints can be satisfied?
• Hard vs. soft constraints
• Degree of constraint satisfaction

• Cost of violating constraints

• What if constraints are of different forms?
• Symbolic constraints
• Numerical constraints [constraint solving]

• Temporal constraints
• Mixed constraints

84

84

9/20/22

37

More Challenges

• What if constraints are represented intensionally?
• Cost of evaluating constraints (time, memory, resources)

• What if constraints/variables/values change over time?
• Dynamic constraint networks

• Temporal constraint networks
• Constraint repair

• What if you have multiple agents or systems involved?
• Distributed CSPs
• Localization techniques

85

Summary

• Many problems can be represented as CSPs: assign variables some
value from a domain, then represent constraints among them

• CSPs can be represented as constraint networks that allow for
constraint propagation, tree structuring

• Perform constraint propagation to solve simple problems, or…
• …search through possible assignments of values to variables
• …considering most constrained variables first
• …considering the least constrained values first

• Worst-case CSPs are NP-complete, but in practice we can usually solve
quite hard problems!

86

