

Bookkeeping

- Homework 2 out tonight by midnight (on the schedule)
- Last time: local search, intro to constraint satisfaction problems
- Today: solving CSPs

Bookkeeping

- Homework 2 out tonight by midnight (on the schedule)
- Last time: local search, intro to constraint satisfaction problems
- Today: solving CSPs

Today's Class

- What's a Constraint Satisfaction Problem (CSP)?
 - A.K.A., Constraint Processing / CSP paradigm
- How do we solve them?
 - Algorithms for CSPs
- Search Terminology

Constraint (n): A relation ... between the values of one or more mathematical variables (e.g., x>3 is a constraint on x).

Constraint satisfaction assigns values to variables so that all constraints are true.

- http://foldoc.org/constraint

Constraint Satisfaction Con•straint /kənˈstrānt/, (noun): Something that limits or restricts someone or something.¹ A relation ... between the values of one or more mathematical variables (e.g., x>3 is a constraint on x), that assigns values to variables so that all constraints are true.² In search, constraints exist on? General Idea View a problem as a set of variables To which we have to assign values That satisfy a number of (problem-specific) constraints

Overview

- Constraint satisfaction: a problem-solving paradigm
- Constraint programming, constraint satisfaction problems (**CSPs**), constraint logic programming...
- Algorithms for CSPs
 - Backtracking (systematic search)
 - Constraint propagation (k-consistency)
 - Variable and value ordering heuristics
 - Backjumping and dependency-directed backtracking

Search Vocabulary

- We've talked about caring about *goals* (end states) vs. *paths*
- These correspond to...
 - Planning: finding sequences of actions
 - Paths have various costs, depths
 - Heuristics to guide, frontier to keep backup possibilities
 - Examples: chess moves; 8-puzzle; homework 2
 - Identification: assignments to variables representing unknowns
 - The goal itself is important, not the path
 - Examples: Sudoku; map coloring; N queens, scheduling, planning
- CSPs are specialized for identification problems

7

Slightly Less Informal Definition of CSP

- **CSP** = Constraint Satisfaction Problem
- Given:
 - A finite set of variables
 - Each with a **domain** of possible values they can take (often finite)
 - A set of **constraints** that limit the values the variables can take on
- **Solution**: an assignment of values to variables that satisfies all constraints.

CSP Applications

- Decide if a solution exists
- Find some solution
- Find all solutions
- Find the "best solution"
 - According to some metric (objective function)
 - Does that mean "optimal"?

Informal Example: Map Coloring

- Given a 2D map, it is always possible to color it using three colors
- Such that:
 - No two adjacent regions are the same color
 - Start thinking: What are the values, variables, constraints?

Slightly Less Informal

- Constraint satisfaction problems (CSPs): a special subset of search problems where...
- State is defined by variables X_i with values from a domain D
 - D may be finite
 - Sometimes D depends on i
- Goal test is a set of constraints specifying allowable combinations of values for variables

11

13

Example: SATisfiability

• Given a set of propositions containing variables, find an assignment of the variables to {false, true} that satisfies them.

Special case!

- For example, the clauses:
 - (A \lor B \lor \neg C) \land (\neg A \lor D)
 - (equivalent to (C \rightarrow A) \vee (B \wedge D \rightarrow A))
- are satisfied by
 - A = false
 - B = true
 - C = false
 - D = false

Real-World Problems

- Scheduling
- Temporal reasoning
- Building design
- Planning
- Optimization/satisfaction
- Vision

- Graph layout
- Network management
- Natural language processing
- Molecular biology / genomics
- VLSI design

Formal Definition: Constraint Network (CN)

A constraint network (CN) consists of

- A set of variables $X = \{x_1, x_2, \dots, x_n\}$
 - Each with an associated domain of values $\{d_1, d_2, \dots d_n\}$.
 - The domains are typically finite
- A set of constraints $\{c_1, c_2 \dots c_m\}$ where
 - Each constraint defines a **predicate**, which is a **relation** over some subset of *X*.
 - E.g., c_i involves variables $\{X_{i1}, X_{i2}, \dots X_{ik}\}$ and defines the relation $R_i \subseteq D_{i1} \times D_{i2} \times \dots D_{ik}$

- An instantiation is an assignment of a value d_x ∈ D to some subset of variables S.
 - Any assignment of values to variables
 - Ex: $Q_2 = \{2,3\} \land Q_3 = \{1,1\}$ instantiates Q_2 and Q_3
- An instantiation is legal iff it does not violate any constraints
- A solution is an instantiation of all variables
 - A correct solution is a legal instantiation of all variables

Binary CSP

- Binary CSP: all constraints are binary or unary
- Can convert a non-binary CSP \rightarrow binary CSP by:
 - Introducing additional variables
 - One variable per constraint
 - One binary constraint for each pair of original constraints that share variables
- "Dual graph construction"

Binary CSPs: Why?

- Can always represent a binary CSP as a constraint graph with:
 - A node for each variable
 - An arc between two nodes iff there is a constraint on the two variables
 - Unary constraint appears as a self-referential arc

"C can't be green"

Running Example: Sudoku Constraints (implicit or intensional) • 3 1 *v*₁₁ *v*₁₃ • C^R : $\forall i, \cup_j v_{ij} = D$ 1 4 *v*₂₃ *v*₂₁ (every value appears in every row) 3 4 1 2 • $C^C: \forall j, \cup_i v_{ij} = D$ 4 *v*₄₁ v_{42} *v*₄₄ (every value appears in every column) • $C^B: \forall k, \cup (v_{ij} \mid ij \in B_k) = D$ (every value appears in every block)

Running Example: Sudoku

- Possible representation: pairwise inequality
 - $I^R: \forall i, j \neq j': v_{ij} \neq v_{ij'}$ (no value appears twice in any row)
 - $I^C: \forall j, i \neq i': v_{ij} \neq v_{i'j}$ (no value appears twice in any column)

All binary constraints!

3

1

4

1

4

2

*v*₁₃

V23

1

*v*₁₁

*v*₂₁

3

Solving Constraint Problems

- Systematic search
 - Generate and test
 - Backtracking
- Constraint propagation (consistency)
- Variable ordering heuristics
- Value ordering heuristics
- Variable elimination
- Backjumping and dependency-directed backtracking

Generate and Test: Sudoku

• Try every possible assignment of domain elements to variables until you find one that works:

1	3	1	1	1	3	1	1	1	3	1	1
1	1	1	4	1	1	1	4	1	1	1	4
3	4	1	2	3	4	1	2	3	4	1	2
1	1	4	1	1	1	4	2	1	1	4	3

- Doesn't check constraints until all variables have been instantiated
- Very inefficient way to explore the space of possibilities (4⁷ for this trivial Sudoku puzzle, mostly illegal)

35

Consistency

The goal is to find a solution that is consistent with (doesn't violate) constraints

В

Ε

С

Α

D

 An instantiation (assignment of values to variables) is said to be consistent if no constraints are violated

Consistency

- The goal is to find a solution that is consistent with (doesn't violate) constraints
- An instantiation (assignment of values to variables) is said to be consistent if no constraints are violated
 A
 B
 C

37

<text>

Consistency

- Once the whole graph is consistent, we have a solution (a legal instantiation of values to all variables)
- There are multiple kinds of consistency
- Different kinds give us different guarantees for performance and correctness

Constraint Propagation

- To create arc consistency, we perform constraint propagation: that is, we repeatedly reduce the domain of each variable to be consistent with its arcs
- How do we find a set of consistent assignments?
- Constraints reduce # of legal values for a variable
 - Which may then reduce legal values of another variable
- Key idea: local consistency
 - Enforce nearby constraints
 - Propagate

Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let's start with a straightforward, dumb approach, then fix it
- States are defined by the values assigned so far (ex: WA=red, T=red is a state)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

Backtracking Search

- DFS is bad. So how do we improve it?
- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix the ordering
 - Ex: [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there now?

Idea 2: Only allow fully legal assignments at each point

- Consider only values which do not conflict with existing assignments
- Might have to do some computation to figure out whether a value is ok
- "Incremental goal test"

Systematic Search: Backtracking (a.k.a. DFS!)

- Consider the variables in some order
 - Pick an unassigned variable
 - Give it a provisional value
 - That is consistent with all of the constraints
- If no such assignment can be made, we've reached a dead end and need to backtrack to the previous variable
- Continue this process until:
 - A solution is found, or
 - We backtrack to the initial variable and have exhausted all possible values

Backtracking Search

- Idea 1: Only consider a single variable at each point
- Idea 2: Only allow legal assignments at each point
- DFS for CSPs with these two improvements is called backtracking search
 - We backtrack when there's no legal assignment for the next variable
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve *n*-queens for $n \approx 25$

Problems with Backtracking Thrashing: keep repeating same failed variable assignments Consistency checking can help • Intelligent backtracking schemes can also help • Inefficiency: can spend time exploring areas of search space that aren't likely to succeed • Variable ordering can help IF there's a meaningful way to order them

60

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering (queueing function ++)
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early? •
- Structure: Can we exploit the problem structure?

<i>v</i> ₁₁	3	<i>v</i> ₁₃	1
<i>v</i> ₂₁	1	<i>v</i> ₂₃	4
3	4	1	2
<i>v</i> ₄₁	<i>v</i> ₄₂	4	<i>v</i> ₄₄

<section-header> Forward Checking Propagates information from assigned to adjacent unassigned variables Doesn't detect more distant failures If the optimation optimati

64

Arc Consistency

- Simplest form of propagation makes each arc consistent
 - * $X \rightarrow Y$ is consistent iff for every value x there is some allowed y

- If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What's the downside of arc consistency?
- Can be run as a preprocessor or after each assignment

K-consistency

- K-consistency generalizes the notion of arc consistency to sets of more than two variables
- A graph is **K-consistent** if, for legal values of any K-1 variables in the graph, and for any Kth variable V_k, there is a legal value for V_k
- **Strong** K-consistency = J-consistency for all J≤K
- Node consistency = strong 1-consistency
- Arc consistency = strong 2-consistency
- Path consistency = strong 3-consistency

Why Do We Care?

- A strongly N-consistent CSP with N variables can be solved without backtracking
- For any CSP that is strongly K-consistent:
 - If we find an appropriate variable ordering (one with "small enough" branching factor)
 - We can solve the CSP without backtracking

Ordered Constraint Graphs

- Select a variable ordering, V₁, ..., V_n
- Width of a node in this OCG is the number of arcs leading to *earlier* variables:
 - width(V_i) = count ((V_i , V_k) | k < i)
- Width of the OCG is the maximum width of any node:
 - width(OCG) = max (width (V_i)), $1 \le i \le N$
- Width of an unordered CG is the minimum width of all orderings of that graph (best you can do)

So What If We Don't Have a Tree?

- Answer #1: Try interleaving constraint propagation and backtracking
- Answer #2: Try using variable-ordering heuristics to improve search
- Answer #3: Try using **value-ordering** heuristics during variable instantiation
- Answer #4: See if iterative repair works better
- Answer #5: Try using intelligent backtracking methods

Possible Variable Orderings

- Intuition: choose variables that are highly constrained early in the search process; leave easy ones for later.
- How?
 - Minimum width ordering (MWO): identify OCG with minimum width
 - Maximum cardinality ordering: approximation of MWO that's cheaper to compute: order variables by decreasing cardinality (a.k.a. degree heuristic)

Variable Orderings II

- **Maximal stable set**: find largest set of variables with no constraints between them, save these for last
- **Cycle-cutset tree creation**: Find a set of variables that, once instantiated, leave a tree of uninstantiated variables; solve these, then solve the tree without backtracking
- **Tree decomposition**: Construct a tree-structured set of connected subproblems

Value Ordering

- Intuition: Choose values that are the least constrained early on, leaving the most legal values available for later variables
 - Maximal options method (a.k.a. least-constraining-value heuristic): Choose the value that leaves the most legal values for not-yet-instantiated variables
 - Min-conflicts: For iterative repair search (Coming up)
 - Symmetry: Introduce symmetry-breaking constraints to constrain search space to 'useful' solutions (don't examine more than one symmetric/isomorphic solution)

Iterative Repair

- Start with an initial complete (but probably invalid) assignment
- Repair locally
- Min-conflicts: Select new values that minimally conflict with the other variables
 - Use in conjunction with hill climbing or simulated annealing or...
- Local maxima strategies
 - Random restart
 - Random walk

80

Min-Conflicts Heuristic

- Iterative repair method
 - 1. Find some "reasonably good" initial solution
 - E.g., in N-queens problem, use greedy search through rows, putting each queen where it conflicts with the smallest number of previously placed queens, breaking ties *randomly*
 - 2. Pick a variable in conflict (randomly)
 - 3. Select a new value that *minimizes* the number of constraint violations
 - O(N) time and space
 - 4. Repeat steps 2 and 3 until done

Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution

Intelligent Backtracking

- Backjumping: if V_j fails, jump back to the variable V_i with greatest i such that the constraint (V_i, V_j) fails (i.e., most recently instantiated variable in conflict with V_i)
- **Backchecking**: keep track of incompatible value assignments computed during backjumping
- **Backmarking**: keep track of which variables led to the incompatible variable assignments for improved backchecking

Challenges

- What if not all constraints can be satisfied?
 - Hard vs. soft constraints
 - Degree of constraint satisfaction
 - Cost of violating constraints
- What if constraints are of different forms?
 - Symbolic constraints
 - Numerical constraints [constraint solving]
 - Temporal constraints
 - Mixed constraints

More Challenges

- What if constraints are represented intensionally?
 - Cost of evaluating constraints (time, memory, resources)
- What if constraints/variables/values change over time?
 - Dynamic constraint networks
 - Temporal constraint networks
 - Constraint repair
- What if you have multiple agents or systems involved?
 - Distributed CSPs
 - Localization techniques

85

Summary

- Many problems can be represented as CSPs: assign variables some value from a domain, then represent constraints among them
- CSPs can be represented as constraint networks that allow for constraint propagation, tree structuring
- Perform constraint propagation to solve simple problems, or...
 - ...search through possible assignments of values to variables
 - ...considering most constrained variables first
 - ...considering the least constrained values first
- Worst-case CSPs are NP-complete, but in practice we can usually solve quite hard problems!