
9/15/22

1

Local Search
Ch. 4.1-4.2

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Dr.
Matuszek @ Villanova University, which are based on Hwee Tou Ng at Berkeley,

which are based on Russell at Berkeley. Some diagrams are based on AIMA.

1

Bookkeeping

• Upcoming: homework 1 due 9/19 at 11:59 PM (Monday)

• Guest lectures: 9/27 and 9/29

• Last time: informed (heuristic) search
• Greedy search
• A* and its variants

• Today:
• Local search

• Beginnings of constraint satisfaction?

2

2

9/15/22

2

Today’s Class

• Local Search
• Search as “landscape”
• Iterative improvement methods

• Hill climbing
• Simulated annealing

• Local beam search
• Genetic algorithms

• Online search

• Intro to Constraint Satisfaction

3

“If the path to the goal
does not matter… [we
can use] a single current
node and move to
neighbors of that node.”

– R&N pg. 121

3

Local Search Algorithms

• Sometimes the path to the goal is irrelevant
• Goal state itself is the solution
• ∃ an objective function to evaluate states

• In such cases, we can use local search algorithms

• Keep a single “current” state, try to improve it

4

9/15/22

3

Local Search Example: n-Queens

• Put n queens on an n×n board with no two queens on the same row,
column, or diagonal

• Does it matter how we got to D?

• We only need the state – not the history/path

• Once we reach D, can forget A, B/C

A B D

C

5

Local Search Algorithms

6

• Sometimes the path to the goal is irrelevant
• Goal state itself is the solution
• ∃ an objective function to evaluate states

• State space = set of “complete” configurations
• That is, all elements of a solution are present

• E.g., all the queens are on the board in some position
• All sudoku squares are filled in

• Find configuration satisfying constraints

• In such cases, we can use local search algorithms

• Keep a single “current” state, try to improve it

6

9/15/22

4

Landscapes

• Search graph can be a landscape

• Each node has successor(s) it can reach (called s)
• Its children, unless there are loops

• Each successor has some “goodness” (desirability) according to the
objective function

• h(n) – h(s) is a positive, negative, or 0

• Want to go “uphill” (moving
to a more desirable state)

7

Minor hassle:
Sometimes maximizing,
sometimes minimizing.

7

State Space (Landscape)

S

A 1 B 4

2

C
3

Maximizing (higher
h(n) is better)

8

9/15/22

5

State Space (Landscape)

S

A 1 B 4

2

f (S) = 2
f (A) = 1
f (B) = 4
f (C) = 3

C
3

Maximizing (higher
h(n) is better)

9

State Space (Landscape)

B

S

S

A 1 B 4

2

f (S) = 2
f (A) = 1
f (B) = 4
f (C) = 3

C
3

Maximizing (higher
f(n) is better)

10

9/15/22

6

State Space (Landscape)

A S

B

S

A 1 B 4

2

f (S) = 2
f (A) = 1
f (B) = 4
f (C) = 3

C
3

Maximizing (higher
h(n) is better)

11

State Space (Landscape)

A S

B

A S

B

S

A 1 B 4

2

f (S) = 2
f (A) = 1
f (B) = 4
f (C) = 3

C
3

Maximizing (higher
h(n) is better)

12

9/15/22

7

State Space (Landscape)

A S

B

A S

B

S

A 1 B 4

2

f (S) = 2
f (A) = 1
f (B) = 4
f (C) = 3

C
3

C

Maximizing (higher
h(n) is better)

13

State Space (Landscape)

A S

B

S

A 1 B 4

2

f (S) = 2
f (A) = 1
f (B) = 4
f (C) = 3

C
3

C

plateau/

Maximizing (higher
h(n) is better)

14

9/15/22

8

Iterative Improvement Search

• Start with an initial guess

• Gradually improve it until it is legal or optimal

• Some examples:
• Hill climbing
• Simulated annealing
• Constraint satisfaction

15

15

Hill Climbing on State Surface

• Concept: trying to reach
the “highest” (most
desirable) point (state)

• “Height” Defined by
Evaluation Function

• Use the negative of
heuristic cost function as
the objective function

16

16

9/15/22

9

Hill Climbing Search
• Looks one step ahead to determine if any successor is “better” than current

state, then moves to best choice

• If there exists a successor s for the current state n such that
• h(s) > h(n) – it’s better than where we are now
• h(s) >= h(t) for all the successors t of n – and better than other choices

then move from n to s. Otherwise, halt at n.

• A kind of Greedy search in that it uses h
• But, does not allow backtracking or jumping to an alternative path
• Doesn’t “remember” where it has been

• Not complete or optimal
• Search will terminate at local minima, plateaus, ridges.

17

17

2 8 3
1 6 4
7 5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

1 3
8 4

7 6 5

2

3
1 8 4
7 6 5

2

1 3
8 4
7 6 5

2
start goal

-5

h = -3

h = -3

h = -2

h = -1

h = 0h = -4

-5

-4

-4-3

-2

f(n) = -(number of tiles out of place)

Hill Climbing Example
(backwards moves omitted for

brevity, but algorithm must
consider them)

18

9/15/22

10

Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html

local maximum

ridge

plateau

Exploring the Landscape

• Local Maxima:
• Peaks that aren’t the highest point in

the whole space

• Plateaus:
• A broad flat region that gives the

search algorithm no direction (do a
random walk)

• Ridges:
• Flat like a plateau, but with drop-offs

to the sides; steps to the North and
South may go down, but a step to the
East and West is stable

19

Drawbacks of Hill Climbing

• Problems: local maxima, plateaus, ridges

• Remedies:
• Random restart: keep restarting the search from random locations until a goal

is found.
• Problem reformulation: reformulate the search space to eliminate these

problematic features

• Some problem spaces are great for hill climbing; others are terrible

20

20

9/15/22

11

Example of a Local Optimum

21

1 2 5
8 7 4

6 3
4

1 2 3
8
7 6 5

f = -6

f = 0

start goal
f = -7

2 5
7 4

8 6 3

1

move
up

1 2 5
8 7 4

3
f = -7

6

move
right

f = -(manhattan distance)

21

Some Extensions of Hill Climbing
• Simulated Annealing

• Escape local maxima by allowing some “bad” moves but gradually decreasing
their frequency

• Local Beam Search
• Keep track of k states rather than just one

• At each iteration:
• All successors of the k states are generated and evaluated
• Best k are chosen for the next iteration

22

22

9/15/22

12

Some Extensions of Hill Climbing
• Stochastic (probabilistic) Beam Search

• Chooses semi-randomly from “uphill” possibilities
• “Steeper” (better) moves have a higher probability of being chosen

• Random-Restart Climbing
• Can actually be applied to any form of search
• Pick random starting points until one leads to a solution

• Genetic Algorithms
• Each successor is generated from two predecessor (parent) states

23

23

Gradient Ascent / Descent

24

Images from http://en.wikipedia.org/wiki/Gradient_descent

24

9/15/22

13

Gradient Descent (or Ascent)
• Length of downward “steps” proportional to negative of the gradient

(slope) at the current state
• “Steepest descent” à long “steps”
• Jump to a node that is “farther away” if f (�) difference is large

• Gradient descent procedure for finding the argx min f(x)
• choose initial x0 randomly

• repeat:

• until the sequence x0, x1, …, xi, xi+1 converges

• Step size η (eta) is small (~0.1–0.05)

• Good for differentiable, continuous spaces

25

xi+1 ← xi – η f ’(xi)

25

Gradient Descent

26

https://www.youtube.com/watch?v=ClotAJHZ3oE

26

9/15/22

14

Gradient Methods vs. Newton’s Method

• Newton’s method (calculus):
• xi+1 ← xi – η f ’(xi) / f ’’(xi)

• Newton’s method uses 2nd order
information (the second derivative,
or, curvature) to take a more direct
route to the minimum.

• The second-order information is
more expensive to compute, but
converges more quickly.

Contour lines of a function (blue)
• Gradient descent (green)
• Newton’s method (red)

Images from http://en.wikipedia.org/wiki/Newton's_method_in_optimization

27

Simulated Annealing

• A hill-climbing algorithm that never makes “downhill” moves is
vulnerable to getting stuck in a local maximum
• For SA we’ll consider local minima and reverse the objective function

• Imagine a ball trying to reach the lowest state – it can get stuck in a “dip”
that’s above the lowest point

• A purely random walk that moves to a successor state whether it’s
“up” or “down” will eventually stumble on the global maximum, but
is extremely inefficient

• Therefore, let’s combine hill climbing with random walk

28

28

9/15/22

15

Simulated Annealing

• Conceptually: Escape local maxima by allowing some “bad” (locally
counterproductive) moves but gradually decreasing their frequency
• Our “ball” is allowed to bounce “up” occasionally

• Simulated annealing (SA): analogy between the way metal cools into a
minimum-energy crystalline structure and the search for a minimum
generally
• In very hot metal, molecules can move fairly freely
• They are slightly less likely to move out of a stable structure

• As metal cools, molecules are more likely to stay

29

29

Simulated Annealing

• Can avoid becoming trapped at local minima.

• Uses a random local search that:
• Accepts “moves” that decrease objective function f
• As well as some that increase it

• Uses a control parameter T
• By analogy with the original application

• Is known as the system “temperature”

• T starts out high and gradually decreases toward 0

30

freedom to
make “bad”
moves

30

9/15/22

16

Simulated Annealing: Examples
www.youtube.com/watch?v=VWtYLv-4oP0

31

Simulated Annealing

• f (n) represents the quality of state n (high is good)

• A “bad” move from A to B is accepted with probability
P(moveA→B) ≈ e(f (B) – f (A)) / T

• f (B) – f (A) is negative – ‘bad’ moves have low probability

• f (B) – f (A) is positive – ‘good’ moves have higher probability

• Temperature
• Higher temperature = more likely to make a “bad” move

• As T tends to zero, this probability tends to zero
• SA becomes more like hill climbing

• If T is lowered slowly enough, SA is complete and admissible.

• domain-specific
• sometimes hard to determine

32

9/15/22

17

Local Beam Search

• Begin with k random states
• k, instead of one, current state(s)

• Generate all successors of these states

• Keep the k best states across all successors

• Stochastic beam search
• Probability of keeping a state is a function of its heuristic value
• More likely to keep “better” successors

35

35

Genetic Algorithms

• The Idea:
• New states generated by “mutating”

a single state or “reproducing”
(combining) two parent states

• Selected for their fitness

• Similar to stochastic beam search

• Start with k random states (the initial population)
• Encoding used for the “genome” of an individual strongly affects the

behavior of the search
• Must have some combinable representation of state spaces
• Genetic algorithms / genetic programming are a research area

36

+

36

9/15/22

18

“Online” Search

• Interleave computation and action (search some, act some)
• Exploration: Don’t know outcomes of actions
• So agent must try them!

• Competitive ratio = Path cost found* / Path cost that could be found**
• * On average, or in an adversarial scenario (worst case)
• ** If the agent knew transition functions and could use offline search

• Relatively easy if actions are reversible

• LRTA* (Learning Real-Time A*): Update h(s) (in a state table) as new
nodes are found

38

More about online search and
nondeterministic actions next time…

38

Summary: Local Search (I)

• State space can be treated as a “landscape” of movement through
connected states

• We’re trying to find “high” (good) points

• Best-first search: a class of search algorithms where minimum-cost
nodes are expanded first

• Greedy search: uses minimal estimated cost h(n) to the goal state as
measure of goodness
• Reduces search time, but is neither complete nor optimal

39

39

9/15/22

19

Summary: Local Search (II)

• Hill-climbing algorithms keep only a single state in memory, but can get
stuck on local optima

• Simulated annealing escapes local optima, and is complete and optimal
given a “long enough” cooling schedule

• Genetic algorithms search a space by modeling biological evolution

• Online search algorithms are useful in state spaces with partial/no
information

40

Questions?
40

Class Exercise: Local Search for n-Queens

Q

Q

Q

Q

Q

Q

(more on constraint satisfaction heuristics next time...)

Heuristic?
State space?
Search algorithm?
Example moves?

Problems?

41

