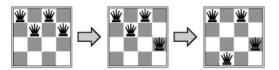
Local Search Ch. 4.1-4.2



Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Dr. Matuszek @ Villanova University, which are based on Hwee Tou Ng at Berkeley, which are based on Russell at Berkeley. Some diagrams are based on AIMA.

1

Bookkeeping

- Upcoming: homework 1 due 9/19 at 11:59 PM (Monday)
- Guest lectures: 9/27 and 9/29
- Last time: informed (heuristic) search
 - Greedy search
 - A* and its variants
- Today:
 - Local search
 - Beginnings of constraint satisfaction?

Today's Class

- Local Search
 - Search as "landscape"
 - Iterative improvement methods
 - Hill climbing
 - · Simulated annealing
 - Local beam search
 - · Genetic algorithms
 - · Online search
- Intro to Constraint Satisfaction

"If the path to the goal does not matter... [we can use] a single current node and move to neighbors of that node."

- R&N pg. 121

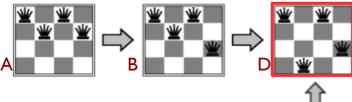
3

Local Search Algorithms

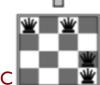
- · Sometimes the path to the goal is irrelevant
 - · Goal state itself is the solution
 - ∃ an **objective function** to evaluate states
- In such cases, we can use **local** search algorithms
- Keep a single "current" state, try to improve it

Local Search Example: n-Queens

 Put n queens on an n×n board with no two queens on the same row, column, or diagonal



- Does it matter how we got to D?
- We only need the state not the history/path
- Once we reach D, can forget A, B/C



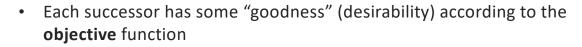
5

Local Search Algorithms

- Sometimes the path to the goal is irrelevant
 - · Goal state itself is the solution
 - \exists an **objective function** to evaluate states
- State space = set of "complete" configurations
 - That is, all elements of a solution are present
 - E.g., all the queens are on the board in some position
 - · All sudoku squares are filled in
 - · Find configuration satisfying constraints
- In such cases, we can use local search algorithms
- · Keep a single "current" state, try to improve it

Landscapes

- Search graph can be a landscape
- Each node has **successor(s)** it can reach (called s)
 - Its children, unless there are loops



- h(n) h(s) is a positive, negative, or 0
- Want to go "uphill" (moving to a more desirable state)

Minor hassle: Sometimes maximizing, sometimes minimizing.

7

State Space (Landscape)

S 2

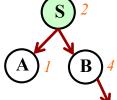
A 1 B 4

C

Maximizing (higher h(n) is better)

State Space (Landscape)

Maximizing (higher h(n) is better)



$$f(S) = 2$$

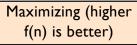
$$f(A) = 1$$

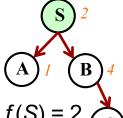
$$f(B) = 4$$

$$f(C) = 3$$

9

State Space (Landscape)



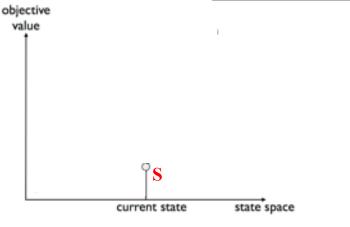


$$f(S) = 2$$

$$f(A) = 1$$

$$f(B) = 4$$

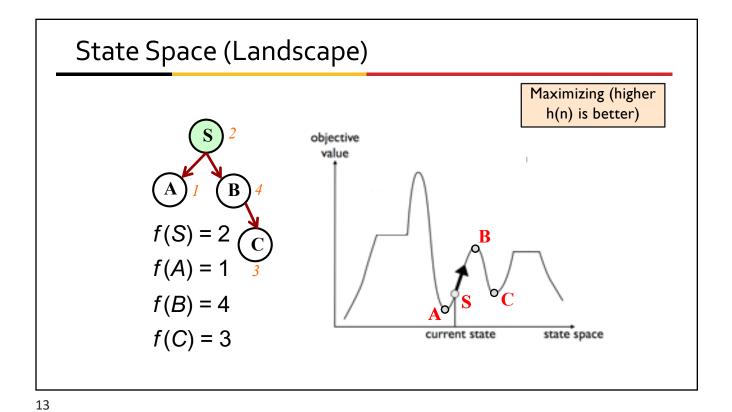
$$f(C) = 3$$

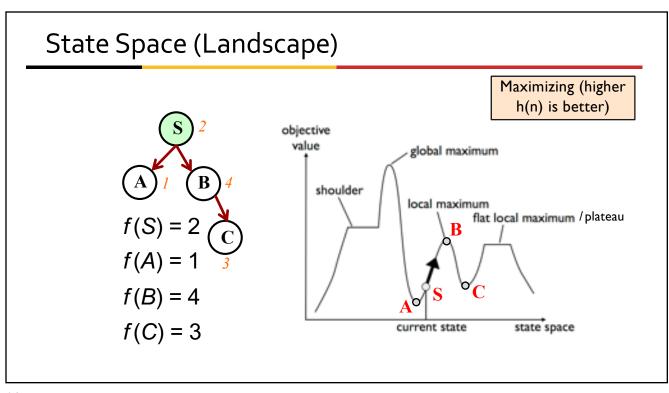




State Space (Landscape)

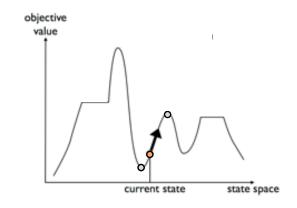
Maximizing (higher h(n) is better) f(S) = 2 f(A) = 1 f(B) = 4 f(C) = 3Current state space





Iterative Improvement Search

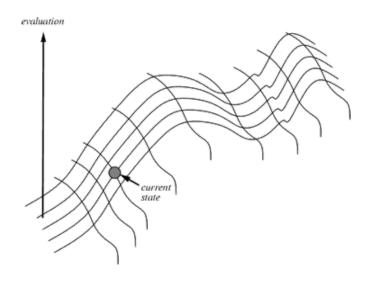
- Start with an initial guess
- Gradually improve it until it is legal or optimal
- Some examples:
 - · Hill climbing
 - · Simulated annealing
 - · Constraint satisfaction



15

Hill Climbing on State Surface

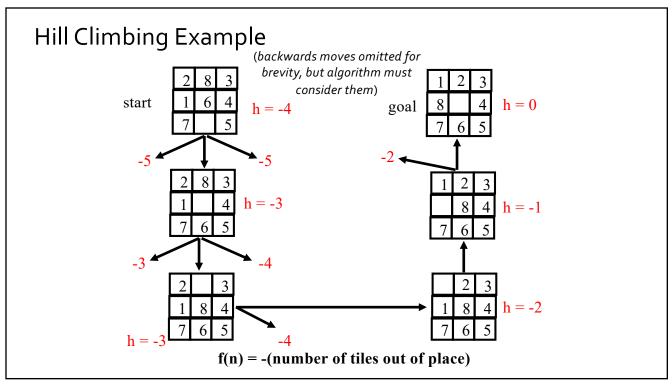
- Concept: trying to reach the "highest" (most desirable) point (state)
- "Height" Defined by Evaluation Function
- Use the negative of heuristic cost function as the objective function



Hill Climbing Search

- Looks one step ahead to determine if any successor is "better" than current state, then moves to best choice
- If there exists a successor s for the current state n such that
 - h(s) > h(n) it's better than where we are now
 - h(s) >= h(t) for all the successors t of n and better than other choices then move from n to s. Otherwise, halt at n.
- A kind of Greedy search in that it uses h
 - But, does not allow backtracking or jumping to an alternative path
 - Doesn't "remember" where it has been
- Not complete or optimal
 - Search will terminate at local minima, plateaus, ridges.

17



Exploring the Landscape

- Local Maxima:
 - Peaks that aren't the highest point in the whole space
- Plateaus:
 - A broad flat region that gives the search algorithm no direction (do a random walk)
- Ridges:
 - Flat like a plateau, but with drop-offs to the sides; steps to the North and South may go down, but a step to the East and West is stable

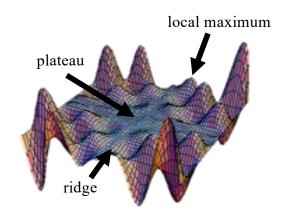
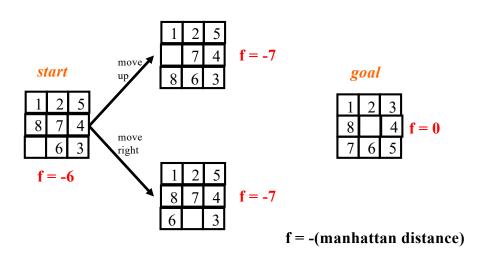


Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html

19

Drawbacks of Hill Climbing

- Problems: local maxima, plateaus, ridges
- Remedies:
 - Random restart: keep restarting the search from random locations until a goal is found.
 - **Problem reformulation:** reformulate the search space to eliminate these problematic features
- Some problem spaces are great for hill climbing; others are terrible



21

Some Extensions of Hill Climbing

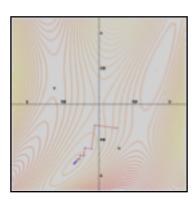
- Simulated Annealing
 - Escape local maxima by allowing some "bad" moves but gradually decreasing their frequency
- Local Beam Search
 - Keep track of k states rather than just one
 - At each iteration:
 - All successors of the k states are generated and evaluated
 - Best k are chosen for the next iteration

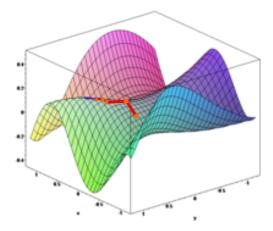
Some Extensions of Hill Climbing

- Stochastic (probabilistic) Beam Search
 - Chooses semi-randomly from "uphill" possibilities
 - "Steeper" (better) moves have a higher probability of being chosen
- · Random-Restart Climbing
 - · Can actually be applied to any form of search
 - Pick random starting points until one leads to a solution
- Genetic Algorithms
 - Each successor is generated from two predecessor (parent) states

23

Gradient Ascent / Descent





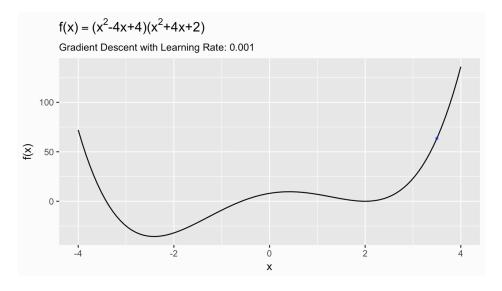
Images from http://en.wikipedia.org/wiki/Gradient_descent

Gradient Descent (or Ascent)

- Length of downward "steps" proportional to negative of the gradient (slope) at the current state
 - "Steepest descent" → long "steps"
 - Jump to a node that is "farther away" if $f(\cdot)$ difference is large
- Gradient descent procedure for finding the $arg_x min f(x)$
 - choose initial x₀ randomly
 - repeat: $X_{i+1} \leftarrow X_i \eta f'(X_i)$
 - until the sequence $x_0, x_1, ..., x_i, x_{i+1}$ converges
- Step size η (eta) is small (~0.1–0.05)
- · Good for differentiable, continuous spaces

25

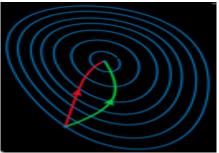
Gradient Descent



 $https://www.youtube.com/watch?v=ClotAJHZ3\,oE$

Gradient Methods vs. Newton's Method

- Newton's method (calculus):
 - $x_{i+1} \leftarrow x_i \eta f'(x_i) / f''(x_i)$
- Newton's method uses 2nd order information (the second derivative, or, curvature) to take a more direct route to the minimum.
- The second-order information is more expensive to compute, but converges more quickly.



Contour lines of a function (blue)

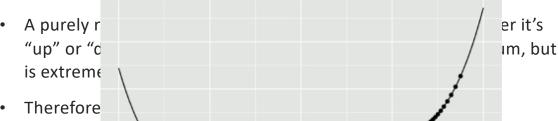
- Gradient descent (green)
- Newton's method (red)

 $Images\ from\ http://en.wikipedia.org/wiki/Newton's_method_in_optimization and the property of the property$

27

Simulated Annealing

- A hill-climbing algorithm that never makes "downhill" moves is vulnerable to getting stuck in a local maximum
 - For SA we'll consider local **minima** and reverse the objective function
 - Imagine a ball trying to reach the lowest state it can get stuck in a "dip" that's above the lowest point



Simulated Annealing

- Conceptually: Escape local maxima by allowing some "bad" (locally counterproductive) moves but gradually decreasing their frequency
 - Our "ball" is allowed to bounce "up" occasionally
- Simulated annealing (SA): analogy between the way metal cools into a minimum-energy crystalline structure and the search for a minimum generally
 - In very hot metal, molecules can move fairly freely
 - They are slightly less likely to move out of a stable structure
 - As metal cools, molecules are more likely to stay

29

Simulated Annealing

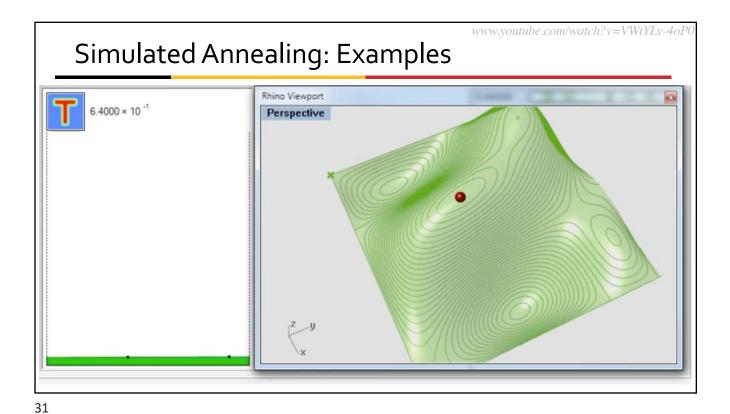
- · Can avoid becoming trapped at local minima.
- Uses a random local search that:
 - · Accepts "moves" that decrease objective function f
 - As well as some that increase it
- Uses a control parameter T
 - · By analogy with the original application
 - Is known as the system "temperature"

freedom to

make "bad"

moves

• T starts out high and gradually decreases toward 0



Simulated Annealing

- f(n) represents the quality of state n (high is good)
- A "bad" move from A to B is accepted with probability

 $P(move_{A \to B}) \approx e^{(f(B) - f(A)) / T}$

- f(B) f(A) is negative 'bad' moves have low probability
- f(B) f(A) is positive 'good' moves have higher probability
- Temperature
 - Higher temperature = more likely to make a "bad" move
 - As T tends to zero, this probability tends to zero
- domain-specific
- SA becomes more like hill climbing
- sometimes hard to determine
- If T is lowered slowly enough, SA is complete and admissible.

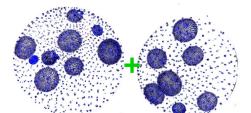
Local Beam Search

- Begin with *k* random states
 - *k*, instead of one, current state(s)
- Generate all successors of these states
- Keep the k best states across all successors
- Stochastic beam search
 - Probability of keeping a state is a function of its heuristic value
 - More likely to keep "better" successors

35

Genetic Algorithms

- The Idea:
 - New states generated by "mutating" a single state or "reproducing" (combining) two parent states
 - Selected for their fitness
- Similar to stochastic beam search
- Start with k random states (the initial population)
 - Encoding used for the "genome" of an individual strongly affects the behavior of the search
 - Must have some combinable representation of state spaces
 - Genetic algorithms / genetic programming are a research area



"Online" Search

- Interleave computation and action (search some, act some)
 - · Exploration: Don't know outcomes of actions
 - · So agent must try them!
- Competitive ratio = Path cost found* / Path cost that could be found**
 - * On average, or in an adversarial scenario (worst case)
 - ** If the agent knew transition functions and could use offline search
- Relatively easy if actions are reversible
- LRTA* (Learning Real-Time A*): Update h(s) (in a state table) as new nodes are found

More about online search and nondeterministic actions next time...

38

Summary: Local Search (I)

- State space can be treated as a "landscape" of movement through connected states
- We're trying to find "high" (good) points
- **Best-first search**: a class of search algorithms where minimum-cost nodes are expanded first
- Greedy search: uses minimal estimated cost h(n) to the goal state as measure of goodness
 - · Reduces search time, but is neither complete nor optimal

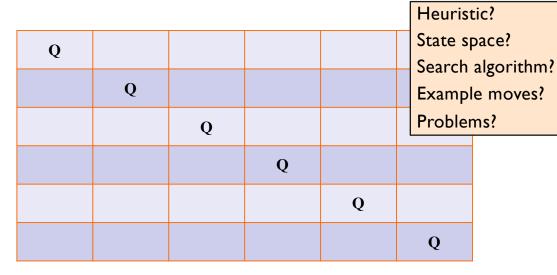
Summary: Local Search (II)

- **Hill-climbing algorithms** keep only a single state in memory, but can get stuck on local optima
- **Simulated annealing** escapes local optima, and is complete and optimal given a "long enough" cooling schedule
- Genetic algorithms search a space by modeling biological evolution
- Online search algorithms are useful in state spaces with partial/no information

Questions?

40

Class Exercise: Local Search for *n*-Queens



(more on constraint satisfaction heuristics next time...)