9/13/22

Informed Search (Ch. 3.5-3.7)

“An informed search strategy—one that uses problem
specific knowledge... can find solutions more efficiently then
an uninformed strategy.” — R&N pg. 92

Blind Search (Redux)

 Last time: * From the book:
« Search spaces * Bidirectional
« Problem states * Holy Grail Search

« Goal-based agents
« Breadth-first

« Depth-first

« Uniform-cost

* |terative deepening

9/13/22

Comparing Search Strategies

* bis branching factor, d is depth of the shallowest solution, m is the

maximum depth of the search tree, 1 is the depth limit

Complete Optimal Time complexity Space complexity

Breadth first search: yes @ O(bd) Gi . O(bd)
iven uni

arc costs
Depth first search no no O(b"')
Depth limitedsearch ifl>=d no O(bl)
depth first iterative yes yes O(bd)

deepening search

bi-directional search yes yes O(bd 2)

O(bm)
O(bl)
O(bd)

O(bd :)

Avoiding Repeated States

* Ways to reduce size of state space (with increasing computational costs)

* Inincreasing order of effectiveness and cost:
e Do not return to the state you just came from.
* Do not create paths with cycles in them.

* Do not generate any state that was ever created before.

» Effect depends on frequency of loops in state space.

* Worst case, storing as many nodes as exhaustive search!

9/13/22

State Space = An Exponentially Growing Search Space

Bi-directional Search

* Alternate searching from

start state - goal e‘ #

goal state - start

* Stop when the fTyypec 3 real world problem

- Works well only| Where you can’t generate | g
predecessors?

goal states

* Requires ability to generate “predecessor” states & aa

* Can (sometimes) find a solution fast é %

9/13/22

Holy Grail Search

Expanded node Nodes list

S0 {C8 A3B!} & & ©
C8 { GI3 A3 B!} ‘B/é\{‘ 0/{
G13 { A3 Bl } @

Solution path found is S C G, cost 13 (optimal)
Number of nodes expanded (including goal node) = 3

(minimum possible!)

Holy Grail Search

Why not go straight to the solution, without any wasted detours off to
the side?

If we knew where the solution was we wouldn’t be searching!

If only we knew where we were headed...

9/13/22

"Satisficing”

Wikipedia: “Satisficing is ... searching until

an acceptability threshold is met” Another piece of
problem
« Contrast with optimality definition

» Satisficable problems do not get more benefit from finding an optimal solution

* Ex: You have an A in the class. Studying for 8 hours will get you a 98 on

the final. Studying for 16 hours will get you a 100 on the final. What to
do?

* A combination of satisfy and suffice

* Introduced by Herbert A. Simon in 1956

9
I
Today's Class
* Heuristic search '
S Questions?
* Heuristic functions
L “An informed search
Admissibility strategy—one that uses
+ Best-first search problem specific
. knowledge... can find
* Greedy search, beam search, A solutions more efficiently
« Examples then an uninformed
. strategy.”
« Memory-conserving
.. — R&N pg.
variations of A* &N pg. 92
10

9/13/22

Definition: Heuristic

* Free On-line Dictionary of Computing®*: A rule of thumb, simplification,
or educated guess

« WordNet (r) 1.6*: Commonsense rule (or set of rules) intended to
increase the probability of solving some problem

* Reduces, limits, or guides search in particular domains

* Does not guarantee feasible solutions; often with no theoretical
guarantee

* Playing chess: try to take the opponent’s queen
* Getting someplace: head in that compass direction when possible

11
Heuristic Search
* Uninformed search is generic
* Node selection depends only on shape of tree and node expansion strategy
« Domain knowledge - better decisions (sometimes)
* Knowledge about the specific problem
* Often calculated based on state
12

9/13/22

Is It A Heuristic?

* A heuristic function is:

* An estimate of how close we are to a goal

* We don’t assume perfect knowledge

This seems

» That would be holy grail search pretty good

* So, the estimate can be wrong

@)
. I . o)
* Based on domain-specific information ° .
”
* Computable from the current state description -7
* A function over nodes that returns a value ==
* Node = particular problem state \\\
N

13
Heuristic Search
« Romania: Arad—> Bucharest (for example)
[] Oradea
Neamt
Ld Vaslui
=] Timisoara
L Hirsova
[] Mchadia
75
Drobeta [
Craiova [Giurgiu Eforie
14

9/13/22

Breadth-First Search

« Romania: Arad—> Bucharest (for example)

Jradea

Neamt

Ld Hirsova

Mechadia Urziceni

75
Drobeta [

Craiova] Giurgiu Eforie
15
Depth-First Search
« Romania: Arad—> Bucharest (for example)
Neamt
Ld Vaslui
LTimisuara
t \‘l,ugoj
7(1 L Hirsova
Mechadia
75
Drobeta L
Craiova] Giurgiu Eforie
16

9/13/22

Heuristic Search

e Romania:

« Eyeballing it 2 certain cities first

 The o where we are going
* Candomain

knowledge be

capturedina
heuristic?

17
Heuristics Examples
* 8-puzzle:
» #of tilesin wrong place
* 8-puzzle (better):
e Sum of distances from goal
e Captures distance and
number of nodes
* Romania:
* Straight-line distance from
current node to goal
* Captures “closer to Bucharest”
18

9/13/22

Heuristic Function

* All domain-specific knowledge is encoded in heuristic function h

 hissome estimate of how desirable a move is

How “close” (we think, maybe) it gets us to our goal This seems
like the goal is

e Usually: about 2 away

h(n) = 0: for all nodes n

h(n) =0: nis a goal node

h(n) = oo: nis a dead end (no goal ® PR

can be reached from n) k,/
----- Goal

19
Example Search Space Revisited
start state
’ arc cost
OO O
/ K / \h value
7 4 5
& O o
\ goal state
20

10

9/13/22

Weak vs. Strong Methods

e Weak methods:

Extremely general, not tailored to a specific situation

* Examples

Subgoaling: split a large problem into several smaller ones that can be solved
one at a time.

Space splitting: try to list possible solutions to a problem, then try to rule out
classes of these possibilities

Means-ends analysis: consider current situation and goal, then look for ways to
shrink the differences between the two

* Called “weak” methods because they do not take advantage of more
powerful domain-specific heuristics

21
Domain Information
* Informed methods add domain-specific information!
* Goal: select the best path to continue searching
* Uninformed methods (BFS, DFS, UCS) push nodes onto the search list based only
on the order in which they are encountered and the cost of reaching them
* Informed methods try to explore the best (“most likely looking”) nodes first
* Define h(n) to estimate the “goodness” of node n
* h(n) = estimated cost (or distance) of minimal cost path from n to a goal state
22

11

9/13/22

Straight Lines to Bucharest (km)
hsip(n)
Neamt
Arad 166
B harest 0
Cralova 160
Drobeta 242
Florke 161
Fagarm 176
Glargho ”
bd Vaslui :Lm' 1:"’
Timisoara L uge) 314
o Viehadia 4
Neamt 234
(W adea iR
Paeai 100
Bl Hirsovs Rimakeu Vilkea 190
irsova .\& 25‘
1 smooara 29
L rebceni L
\ "
Terind "4
Craiova [Giurgiu Eforie

23
Admissible Heuristics
* Admissible heuristics never overestimate cost
* They are optimistic — think goal is closer than it is
« h(n)<h™(n)
« where h'(n) is true cost to reach goal from n
* hgp(Lugoj) =244 This seems
* Can there be a shorter path? great!
24

12

Admissibility

* Admissibility is a property of heuristics
* They are optimistic — think goal is closer than it is T
* (Or, exactly right)

* Is“¥n, h(n)=1 kilometer” admissible?
* Admissible heuristics can be pretty bad!

* Using admissible heuristics guarantees that the first solution found will
be optimal, for some algorithms (A*).

25

Best-First Search

* A generic way of referring to informed methods

« Use an evaluation function f(n) for each node - estimate of
“desirability”

* f(n) incorporates domain-specific information
« Different f(n) > Different searches

* f(n) can incorporate knowledge from h(n)

26

9/13/22

13

9/13/22

Best-First Search (more)

Order nodes on the list by increasing value of f(n)

Expand most desirable unexpanded node

Implementation:

Order nodes in frontier in decreasing order of desirability

Special cases:
Greedy best-first search

A* search

27
Greedy Best-First Search
* Idea: always choose “closest node” to goal
* Most likely to lead to a solution quickly e
« So, evaluate nodes based only on n=2(h) (h) n-4
heuristic function
* fin)=hin) SMONOLE
 Sort nodes by increasing n=1 (d) h=0
values of f @
| w1 (@)
* Select node believed to be closest to a
goal node (hence “greedy”) h=0 @
That is, select node with smallest f value
28

14

9/13/22

Greedy Best-First Search

* Optimal?
* Why not?

* Example:
e Greedy search will find:
a2b—>c>d>e>g;cost=5
e Optimal solution:
a>h>i2j;cost=3

* Not complete (why?)

29
2] Oradea h
sep(n)
Neamt
Arad 166
B harest 0
Cralova 160
Drobeta 242
Florke 161
Fagarm 176
Glargin ”
L Vaslui :l.""”. 1:",
e Luge) 244
) Timisoara ags
Neamt 234
Oradea IR0
Freai 100
Bl Hirsova Rimaicu Vilcea 199
. - >
[] Mehadia Urziceni :& th:
B Bucharest e t rekceni :'
Drobeta [J ’-h‘ l”:
Craiova [Giurgiu Eforie
30

15

9/13/22

Greedy Best-First Search: Ex. 1

What can
Ard we say
Be| about the
Cn h
ey searc
:" space!
Glargho ”
Hirsova 151
Land 226
| ugn) 244
Mehadia 241
Neamit 234
(W adea i
Faeai 100
Rimakew Vilcea 190
Siben 24
T smooara 9
L rebceni M
N wsdui 1
Zermnd 14

Greedy Best-First Search: Ex. 2

366

16

9/13/22

Greedy Best-First Search: Ex. 2

’ 2537 7 77
33
Greedy Best-First Search: Ex. 2
=5 <= o
V
34

17

9/13/22

Greedy Best-First Search: Ex. 2

< Aad >
T
T e 320 a7+

356 380 193

.?

35
Beam Search
* Use an evaluation function f(n) = h(n), but the maximum size of the
nodes list is k, a fixed constant
* Only keeps k best nodes as candidates for expansion, and throws the
rest away
* More space-efficient than greedy search, but may throw away a node
that is on a solution path
* Not complete
* Not admissible
36

18

9/13/22

Example Search Space Revisited

start state

arc cost

h value

goal state

44
Example Search Space Revisited
: start state
parent pointer
arc cost
\h value

\ goal state

45

19

9/13/22

A* Search

with h(n), the cost of getting from the node to the goal.

« A* because h(n) < h*(n)

» Idea: Evaluate nodes by combining g(n), the cost of reaching the node,

e Evaluation function: 0
cost
f(n) = g(n) + h(n) 8~ h
e g(n)=costso farto reach n l
* h(n) = estimated cost from n to goal 8@ J
* f(n) = estimated total cost of path /\ R
through n to goal 13© i
46
Quick Terminology Reminders
 Whatis f(n)? « Whatis h*(n)?
« An evaluation function that gives... * A heuristic function that
* A cost estimate of... gives the...
. True cost to reach goal
e The distance fromnto G ¢
rom n
e Whatis h(n)? *+ Whydon’t we just use that?
* A heuristic function that... - Whatis g(n)?
* Encodes domain knowledge about... « The path cost of getting
* The search space from Ston
describes the “already
spent” costs of the current
search
47

20

9/13/22

Algorithm A*

« Use evaluation function f(n) = g(n) + h(n)

* g(n) = minimal-cost path from S to state n

* That is, the cost of getting to the node so far

* Ranks nodes on frontier by estimated cost
of solution

* From start node, through given node, to goal

* Not complete if h(n) can = o

8 (D)=4 C is chosen
h (D)= 9 next to expand
48
*
A" Search
* Avoid expanding paths that are already expensive
* Combines costs-so-far with expected-costs
* A*is complete iff
* Branching factor is finite
cost
* Every operator has a fixed positive cost 8/ h
* A*is admissible iff 8@ !
* h(n) is admissible
SN,
QO
49

21

9/13/22

A" Example 1

»

366=0+366

50

A" Example 1

393=140+253

447=118+329

51

22

9/13/22

A" Example 1

447=118+329

.ﬁ. ' 7..Faga|;s ..Cs:;dea ».'@ =

646=280+366 415=239+176 671=291+380 413=220+193

449=754374

52
A" Example 1
) D
447=118+329 449=75+374
646=280+366 415=239+176 611 2914380 —
526=366+160 417=317+100 553=300+253
53

23

9/13/22

A" Example 1

< Amd

imisoara,

447=118+329 449=754374

@

646=280+366 N 671=291+380

"

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

54

A" Example 1

b e)
R s n{m- e

447=118+329 449=75+374

@

646=280+366 N 671=291+380

--

591=338+4253 450=450+0 525-356+150 5534(1]-1-253

418=418+0 615=455+160 607=414+193

55

24

9/13/22

Algorithm A*

Algorithm A with constraint that h(n) < h*(n)

h*(n) = true cost of the minimal cost path from n to a goal.
» Therefore, h(n) is an underestimate of the distance to the goal

* h() is admissible when h(n) £ h*(n)

Guarantees optimality

* A*is complete whenever the branching factor is finite, and every
operator has a fixed positive cost

« A*is admissible

56
Example Search Space Revisited
: start state
parent pomter
)
arc cost
! ;\y h value
goal state
57

25

9/13/22

Example
n gn) h(m) fin) h*@n) ’ cost
s o0 8 8 9 / 5 g~ 1/,
A1 8 9 9
B 5 - 9 4 ICA) ¢ 54 8 3
C 8 3 11 5 f \% @
D 4 o0 o0 o0 7 %4ﬁ g
E 8 0 00 o0 4 :) o o0 .
G 9 0 9 0 ’

h*(n) is the (hypothetical) perfect heuristic.
Since h(n) < h*(n) for all n, h is admissible

Optimal path =S B G with cost 9.

58
Greedy Search
8
f(n) = h(n) cost
/ 5 8/ h
Node exp. node list k 1
{ s(8) } A) JOR
S { C(3) B(4) A(8) } /7% \%ﬂA
C { G(0) B(4) A(8) } ‘@“ . 0
G { B(4) A(8) }
* Solution path found is S C G, 3 nodes expanded.
e Fast!! But NOT optimal.
59

26

9/13/22

A* Search / N
f(n) = g() + h(n) . ® O

node exp. nodes list /7 \K 4%
{ 8(8) } é g
{ A(9) B(9) C(11) } @’ ;é
{ B(9) G(10) C(11l) D(x) E(%) }
{ G(9) G(10) C(11) D(x) E(%) }

Q W wn

{ C(11) D(») E(») }
* Solution path found is S B G, 4 nodes expanded..

« Still pretty fast, and optimal

60
Admissibility and Optimality
* Intuitively:
When A* finds a path of length k, it has already tried every other path which
can have length < k
Because all frontier nodes have been sorted in ascending order of
fln)=g(n)+h(n)
* Does an admissible heuristic guarantee optimality for greedy search?
Reminder: f(n) = h(n), always choose node “nearest” goal
No sorting beyond that
61

27

9/13/22

Proof of the Optimality of A*

* Assume that A* has selected G,, a goal state with a suboptimal solution

(9(G2) > f¥).

* We show that this is impossible.
Choose a node n on the optimal path to G.

Because h(n) is admissible, f(n) < f*.

If we choose G, instead of n for expansion, f(G,) < f(n).

This implies f(G,) < f*.

G,is a goal state: h(G,) =0, f(G,) = g(G)).
Therefore g(G2) < f*

Contradiction.

62
Admissible heuristics
* E.g., for the 8-puzzle:
hi(n) = number of misplaced tiles 7 M 21 4
h,(n) = total Manhattan distance u — u
* (i.e., # of squares each tile is from E] E
desired location) a3 E
« hy(S)=7 Start
.« hy(S)=? 1 f 2
B EE
ORE
Goal
63

28

9/13/22

Admissible heuristics

* E.g., for the 8-puzzle:
* hy(n) = number of misplaced tiles
* hy(n) = total Manhattan distance

* (i.e., # of squares each tile is from
desired location)

+ hy(S)=8

e hy(S)=3+142+2+2+3+3+2 =18

oaR

Start

a

64

Dealing with Hard Problems

For large problems, A* often requires too much space.

« Two variations conserve memory: IDA* and SMA*

* |IDA* —iterative deepening A*

* uses successive iteration with growing limits on f. For example,

« A* but don’t consider any node n where f(n) > 10

« A* but don’t consider any node n where f(n) > 20

* A* but don’t consider any node n where f(n) > 30, ...

« SMA* —Simplified Memory-Bounded A*

* Uses a queue of restricted size to limit memory use

* Throws away the “oldest” worst solution

65

29

9/13/22

What's a Good Heuristic?

If hy(n) < h,(n) < h*(n) for all n, then:
* Both are admissible
e h,is strictly better than (dominates) h;

How do we find one?

1. Relaxing the problem:
* Remove constraints to create a (much) easier problem
* Use the solution cost for this problem as the heuristic function

2. Combining heuristics:

e Take the max of several admissible heuristics
e Still have an admissible heuristic, and it’s better!

66

What's a Good Heuristic? (2)

3. Use statistical estimates to compute h
* May lose admissibility

4. ldentify good features, then use a learning algorithm to find a
heuristic function

* Also may lose admissibility

* Why are these a good idea, then?
* Machine learning can give you answers you don’t “think of”
e Can be applied to new puzzles without human intervention
+ Often works

67

30

9/13/22

Some Examples of Heuristics?

* 8-puzzle?

« Manhattan distance

* Driving directions?

Straight line distance

* Crossword puzzle?

* Making a medical diagnosis?

68
Summary: Informed Search
» Best-first search: general search where the minimum-cost nodes
(according to some measure) are expanded first.
* Greedy search: uses minimal estimated cost h(n) to the goal state as
measure. Reduces search time, but is neither complete nor optimal.
* A* search: combines UCS and greedy search
* f(n)=g(n) + h(n)
* A*is complete and optimal, but space complexity is high.
* Time complexity depends on the quality of the heuristic function.
* IDA* and SMA* reduce the memory requirements of A*,.
69

31

9/13/22

In-class Exercise: Creating Heuristics

Remove 5
8-Puzzle Boat Problems Sticks
an izl s }9 111
[E] E Z‘ [Z] cabbage - } sheep I I I
] =] o ?ﬁ& 1
N-Queens Water Jug Problem Route Planning
o g AR
-I.I.l.
: -‘- i - S
- [/\ [" N’amx’u‘t‘ . 0
- L€t g
LB B N FRANCE =
70
_ 8
After-Class Exercise
/P/ 1
COSt
/ % \ * / h value
Apply the following to search this space. At each search step, show:
the current node being expanded; g(n) (path cost so far); h(n) (heuristic
estimate); f(n) (evaluation function); and h*(n) (true goal distance).
Depth-first search Breadth-first search A* search
Uniform-cost search Greedy search
71

32

