9/8/22

Artificial Intelligence class 3: Search (Ch. 3.1—3.3)

H\.O+u<Fn M H M'\
e S SR
W m o oEn ® 0 EE
VN pl H

Bookkeeping

* Final reminder: readings, HW, etc. are on the class schedule
tiny.cc/ai-schedule

* Final reminder: the class Discord is available and useful
tiny.cc/ai-discord

« HW1is out, please verify that you can find it

9/8/22

Bits From Last Time

« Sequential: Require memory of past
actions to determine next best action

* Or: current action can influence all future
actions

* Episodic: A series of one-shot actions
e Only the current percept(s) are relevant

« Sensing/acting in episode(t) is
independent of episode(t-1)

* Single- vs. multi-agent: Is “your” agent

Properties of
the agent’s

environment
(PEAS)

>

the only one affecting the world? -’
Some Examples
Agent Type Performance Environment Actuators Sensors
Measure
Robot soccer | Winning game, Field, ball, Devices (e.g., | Camera, touch
player goals own team, legs) for sensors,
for/against other team, locomotion accelerometers,
own body and kicking orientation
Sensors, P EAS
wheel/joint
encoders
Internet Obtain Internet Follow link, Web pages,
book-shopping requested/ enter/submit user requests
agent Interesting data in fields,
books, display to user
minimize
expenditure
Task Observable | Deterministic [Episodic Static Discrete | Agents
Environment
Robot Partially Stochastic | Sequential [Dynamic | Continuous | Multi E nVi ronment
soccer
Internet Partially | Deterministic | Sequential | Static Discrete Single
book-
shopping

9/8/22

Pre-Reading: Questions?

» Search (a.k.a. state-space search)

* Concepts:

Initial state e Transition model
State space graph e Step cost
Goal test (cf. goal) e Path cost
Actions

Solution / optimal solution

* Open-loop/closed-loop systems

* Expanding vs. generating a state

* The frontier (a.k.a. open list)

What's a “State”?

* The current value of everything in the agent’s “world”

“State space”: all possible states

* Everything in the problem representation

* Values of all parameters at a particular point in time

* Examples:

Chess board: 8x8 grid, location of all pieces
Tic-tac-toe: 3x3 grid, whether each is X, O, or open

Robot soccer: Location of all players, location of ball, possibly last known
trajectory of all players (if sequential)

Travel: Cities, distances between cities, agent’s current city

9/8/22

Today's Class

» Representing states and operators
* Example problems

* Generic state-space search algorithm

* Everything in Al comes down to search.

* Goal: understand search, and understand why.

Why Search?

« Traditional (non-Al) problems are likely tractable.
» Either they can be solved by listing all possible states...

X X X ofo|o

(6] o]0 ofo|o
e o0

X X ofo|o

Tic-tac-toe: 3° = 19,683 states (3 values for each cell, nine cells)*
Small enough that a computer can explore all possible choices during play

e Orthere’s a mechanical approach to finding a solution

345,781,000 X 234,567,431,000

» Can’t memorize the space of answers, but you don’t need to

* Of course, there are fewer valid states

8

9/8/22

Why Search? (2)

* “Intelligent” problems are usually intractable.

» Either the state space is too large to enumerate...

HONEY.. T JUST ORDERED SOME OLIVE Ol
ON AMAZON, AND THE RECOMMENDATIONS
ARE JUST. REALLY WERD?

"YOU MIGHT ENJOY
THESE OTHER LIQUID
HYDROCARBONS"

« We don’t know what a good
solution is until we find it...

 Or, somehow, we have more
states than we can explore.

9
Why Search? (3)
 We can’t search intractable problems exhaustively, so we must consider
them cleverly.
* Understanding the problem space is the first step.
H\, Q+up) M M ‘ H'\
S A
N
) wwow
10

9/8/22

Search: The Core Idea

For any problem:

* World is (always) in some state

» Agents take actions, which
change the state

We need a sequence of
actions that gets the world

into a particular goal state.

To find it, we search the
space of actions and states.

Some
world
state

some some other

action Al A4 A2 action

State State
2 3
A3 A5 A6/ Ay
State State State
4 5 6

Searching is not (always) the same as doing!

11

Building Goal-Based Agents

To build a goal-based agent we need to decide:

* What is the goal to be achieved?

* What are the possible actions?

What relevant information must be encoded...

e To describe the state of the world?

* To describe the available transitions?

* To solve the problem?

13

9/8/22

What is the Goal?

» Asituation we want to achieve
» Aset of properties that we want to hold

« Must define a “goal test” (a function over states)
* What does it mean to achieve it?
 Have we done so?

» Defining goals is a hard question that is rarely tackled in Al!
+ Often, we assume the system designer or user will specify the goal

* For people, we stress the importance of establishing clear goals as the
first step towards solving a problem.

* What are your goals?
* What problem(s) are you trying to solve?

14
What Are Actions?
* Primitive actions or events:
* Make changes in the world
* In order to achieve a (sub)goal
* Actions are also known as operators or moves
 Examples:
Low-level: High-level :
* Chess: “advance a pawn” * Chess: “clear a path for a queen”
* Navigation: “take a step” * Navigation: “go home”
* Finance: “sell 10% of stock X” ¢ Finance: “sell best-return shares”
15

9/8/22

Actions and Determinism

* Current world state + chosen action fully specifies:

« Whether that action can be done in current world

e Isitapplicable? (E.g.: Do | own any of stock X to sell?)

e Isitlegal? (E.g.: Can’t just move a pawn sideways.)

* World state after action is performed

In a deterministic world there is no uncertainty in an action’s effects

16
Representing Actions
* Actions here are:
. Some
e Discrete events werld
« That occur at an instant of time state
* For example: M A A
» State: “Mary is in class” State State
* Action “Go home” 2 3
* New state: “Mary is at home”
* There is no representation of a state where she is in between (i.e., in the
state of “going home”).
17

9/8/22

Sliding Tile Puzzles

* 15-puzzles, 8-puzzles

* How do we represent states?

* How do we represent actions?

Tile-1 moves north
Tile-1 moves west
Tile-1 moves east

Tile-1 moves south
Tile-2 moves north
Tile-2 moves west

13] 2 | 3 |12
9 11| 1|10
[6] a]1a
15]8]7]s
mae
als|e|7
8 |o9l10]11
12 |13[14 |15
N

18
Representing Actions
* Number of actions / operators depends on representation used in
describing a state
* 8-puzzle: 118 1] 2
+ Could specify 4 possible 4 415
moves (actions) for each 7 1 6 7 | 8
of the 8 tiles:
initial state goal state
4*8=32 operators.
e Or, could specify four moves for the “blank” square:
4 operators!
» Careful representation can simplify a problem!
19

9/8/22

Representing States

* What information about the world sufficiently describes all aspects
relevant to solving the goal?

* Thatis: what knowledge must be in a state description to adequately
describe the current state of the world?

* The size of a problem is usually described in terms of the number of
states that are possible

This is ten
quintillion
states.

* Tic-Tac-Toe has about 3? states.

« Checkers has about 100 states.
* Rubik’s Cube has about 1019 states.

* Chess has about 10120 states in a typical game.

20
Some Example Problems
* Toy problems and micro-worlds
PROBLEM:
o 8-Puzzle R [’HE.BOHTONLYI‘K)LDSTUQ BUT YoU
CANT LEAVE. THE GOAT WITH THE
* Boat Problems (ABBAGE OR THE WOLF WITH THE GOAT.
) Cryptarithmetic %\WWAA
* Remove 5 Sticks
* Water Jug Problem
(wHY DID You HAVE. A WoLF?] ??
22

10

9/8/22

8-Puzzle

* Given an initial configuration of 8 sliding numbered tilesona 3 x 3
board, move the tiles in such a way so as to produce a desired goal
configuration of the tiles.

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

23
8-Puzzle
» State: 3 x 3 array describing where tiles are
* Operators: Move blank square Left, Right,
Up or Down
* Thisis a more efficient encoding of the 5 4
operators!
.. . . . 6 1 8
» Initial State: Starting configuration of the
board - 3 2
* Goal: Some specific board configuration
24

11

9/8/22

The 8-Queens Problem

* Place eight (or N) queens on a chessboard such that no queen can reach
any other

25
Boat Problems
* 1sheep, 1 wolf, 1 cabbage, 1 boat g §
* Goal: Move everything across the river.
* Constraints:
e The boat can hold you plus one thing.
* Wolf can never be alone with sheep.
Sheep can never be alone with cabbage.
» State: location of sheep, wolf, cabbage on shores and boat.
* Operators: Move ferry containing some set of occupants across
the river (in either direction) to the other side.
26

12

9/8/22

Remove 5 Sticks

* Given the following configuration of sticks, remove exactly 5 sticks in
such a way that the remaining configuration forms exactly 3 squares.

27
Some Real-World Problems
* Route finding
* Touring (traveling salesman)
« Logistics /\ /r\//\\//\ - s
« VLSI layout k : S 2 '{
 Robot navigation . /\ g \/ ‘S
* Learning N \{\ r \ ' ‘
29

13

9/8/22

Knowledge Representation Issues

* What’s in a state?

* Isthe color of the tiles relevant to solving an 8-puzzle?

* Is sunspot activity relevant to predicting the stock market?

* What to represent is a very hard problem!

e Usually left to the system designer to specify.

* What level of abstraction to describe the world?
e Too fine-grained and we “miss the forest for the trees”

e Too coarse-grained and we miss critical information

30
Knowledge Representation Issues
* Number of states depends on:
* Representation choices
* Level of abstraction
* In the Remove-5-Sticks problem:
* If we represent individual sticks, then there are 17-choose-5 possible ways of
removing 5 sticks (6188)
* If we represent the “squares” defined by 4 sticks, there are 6 squares initially
and we must remove 3
* So, 6-choose-3 ways of removing 3 squares (20)
31

14

9/8/22

Formalizing Search in a State Space

« A state space is a graph (V, E):

e Vs aset of nodes (states)

e Eisasetofarcs (actions)

-
]
b

—[\‘
?\
" ~1—{t
e
- {40

e Each arcis directed from a node
to another node

e How does that work for 8-
puzzle?

~4—{t
a

32
Formalizing Search in a State Space
* V:Anode is a data structure that contains:
» State description
* Bookkeeping information: parent(s) of the node, name of operator that
generated the node from that parent, etc.
« E: Each arcis aninstance (single occurrence) of one operator.
* When operator is applied to the arc’s source node (state), then
* Resulting state is associated with the arc’s destination node
2[813
1164
71 15
T/
1]o0[4
LD
33

15

9/8/22

Formalizing Search

* Each arc has a fixed, positive cost
* Corresponding to the cost of the operator
* What is “cost” of doing that action?

* Each node has a set of successor nodes
« Corresponding to all operators (actions) that can apply at source node’s state

» Expanding a node is generating successor nodes, and adding them (and
associated arcs) to the state-space graph

* We don’t know all states initially — we have to apply operators and calculate the
successor nodes

34
Formalizing Search Il
* One or more nodes are designated as start nodes
* A goal test predicate is applied to a state to determine if its associated
node is a goal node
2[8[3
116]4
¥4 3\
/ v
2183 2[8[3
1[6]4 1714
715 71615
i |
2183 21813 2] 13 21813
[E! S 1184 14
11715 71615 716[5 71615
N 7
7813 PAE] 2EE BB
o 14 [T]8@ —I 18 [R3
I'|/3 7(|)3 /7(|)> 71615
35

16

9/8/22

Water Jug Problem as Search

Given a full 5-gallon jug

and an empty 2-gallon Operator table

jug, the goal is to fill the .y

2-gallon jug with exactly Name Cond. Transition Effect

one gallon of water. Empty5 . A Ernoty 5 gal jug
—_ \ —)\U,y) [Q - .

State = (x,y), where x is f -ﬁq -

the number of gallons of Empty2 B Empty 2-gal. jug

water in the 5-gallon jug (@] \

andy is # of gallons in 2to5 x <3 ,(\ r 2-gal. into 5-

the 2-gallon jug
y=2 :

Initial State = (5,0) 5to2 >2 -2,2) ﬂ’otjrj‘i—gal. into 2-

0 gal

Goal State = (*,1) y

(* means any amount) Sto2part y <2 (1,y)—(0,y+1) Pour partial 5-gal.
x =1 into 2-gal.

17

9/8/22

(5,0)

e 2

(3]

p

0,0) || (5,0) 32| *
T %k "

(0,2) | | (3,0)

W

0,0 (30 * (12 *

38

Formalizing Search llI

A solution is a sequence of operators that is associated with a path in a
state space from a start node to a goal node.

5t02, empty2, 5to2, empty2, 5to2part

The cost of a solution is the sum of the arc costs on the solution path.

If all arcs have the same (unit) cost, then the solution cost is just the length of
the solution (number of steps / state transitions)

39

18

9/8/22

Formalizing Search IV

» State-space search: searching through a state space for a solution by
making explicit a sufficient portion of an implicit state-space graph to
find a goal node
« Initially V={S}, where S is the start node

* When Sis expanded, its successors are generated; those nodes are added to V
and the arcs are added to E

* This process continues until a goal node is found

* Itisn’t usually practical to represent entire space

40
Formalizing SearchV
* Each node implicitly or explicitly represents a partial solution path (and
its cost) from start node to given node.
* In general, from a node there are many possible paths (and therefore solutions)
that have this partial path as a prefix
7813
T[o]4
/7 l D\
783 783 2813
T[6/4 1 4 T[o[4
715 71615 715
REIK] TR13 T3 DRI 2813
! 14 1814 T4 [
11715 7615 Tl6[5 TIo15 71514
X 7N\
41

19

9/8/22

State-Space Search Algorithm

function general-search (problem, QUEUEING-FUNCTION)
;; problem describes start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; returns either a goal node or failure

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

loop
if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds
then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

ST

A1

A2

S2

S3

A3

A6 A7

problem.OPERATORS))

S4

S5

S6

end

;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops

42
Generation vs. Expansion
» Selecting a state means making that node current
* Expanding the current state means applying every legal action to the
current state
* Which generates a new set of nodes
>® 0.
> G
43

20

9/8/22

Key Procedures

 EXPAND

* Generate all successor nodes of a given node

e« “What nodes can | reach from here
(by taking what actions)?”

e GOAL-TEST

» Test if state satisfies goal conditions

* QUEUEING-FUNCTION

* Used to maintain a ranked list of nodes that are candidates for expansion
* “What should | explore next?”

44
Algorithm Bookkeeping
* Typical node data structure includes:
» State at this node
e Parent node
* Operator applied to get to this node
* Depth of this node
* That is, number of operator applications since initial state
* Cost of the path
* Sum of each operator application so far
45

21

9/8/22

Some Issues

» Search process constructs a search tree, where:
* Rootis the initial state and
* Leaf nodes are nodes that are either:
* Not yet expanded (i.e., they are in the list “nodes”) or

* Have no successors (i.e., they're “dead ends”, because no operators can be
applied, but they are not goals)

» Search tree may be infinite
* Even for small search space

e How?

46
Some Issues
* Return a path or a node depending on problem
* In 8-queens return a node
* 8-puzzle return a path
* What about Sheep & Wolves?
« Changing definition of Queueing-Function = different search strategies
* How do you choose what to expand next?
47

22

9/8/22

Evaluating Search Strategies

Completeness:
* Guarantees finding a solution if one exists

Time complexity:
* How long (worst or average case) does it take to find a solution?
e Usually measured in number of states visited/nodes expanded

Space complexity:
* How much space is used by the algorithm?
* Usually measured in maximum size of the “nodes” list during search

Optimality / Admissibility:
» If asolution is found, is it guaranteed to be optimal (the solution with minimum

cost)?
48
Summary
Search is at the heart of Al.
Formalizing states, actions, &c. makes them searchable.
49

23

9/8/22

Class Exercise

* Representing a Sudoku puzzle as a search space

* What are the states?
* What are the operators?

* What are the constraints
(on operator application)?

* What is the description
of the goal state?

* Let'stryit!

50

Sudoku, Naively

» State space: 4x4 matrix, divided into four 2x2 matrices:

containing values [1-4]

* Operators:
e Puta2insquare <x,y>
* Preconditions:
o <X, y>is empty l
o <X, (yE1)>#2;<x, (yEX2)>22;.. 3

o <(xE1),y>#2;..<(xx3),y>#2 3
« if<xy>inA then3 ¢A,; ... 4

* How many operators is that? How many preconditions?

e @Goal: all blocks are filled

x 4

, B, C, D, cells

51

24

9/8/22

Sudoku, Naively

« State space: 4x4 matrix, divided into four 2x2 matrices:
containing values [1-4]

* Operators:

, B, C, D, cells

e Puta2insquare <x,y>

* Preconditions: 3
e <X,y>is empty | 1
o X, (yX1)>22;<x, (yE£2)>22;... 3 < 4 3 %
o <(x=x1),y>#2;.<(xx3),y>%2 3 >
4

* if<x,y>inA,then3 €A; ..

« How many operators is that?

e Goal: all blocks are filled

52

Sudoku, Naively

» State space: 4x4 matrix, divided into four 2x2 matrices:
containing values [1-4]

* Operators:

, B, C, D, cells

e Puta2insquare <x,y>
e Preconditions:

v <x,y> is empty l

o X (yEL)>22;<x, (yE£2)>22; .. 3 4 3

o <(xE1),y>#2;..<(xx3),y>#2 3

« if<xy>inA then3 ¢A,; ... 4

« How many operators is that?

e @Goal: all blocks are filled

53

25

9/8/22

Sudoku, Naively

« State space: 4x4 matrix, divided into four 2x2 matrices:
containing values [1-4]

* Operators:

, B, C, D, cells

e Puta2insquare <x,y>

* Preconditions: 3
v\ <x,y>is empty | 1
vo<x, (yE1)>#£2;<x, (yX2)>22; ... 3 < 4 3 2
o <(x=x1),y>#2;.<(xx3),y>%2 3 >
4

* if<x,y>inA,then3 €A; ..

« How many operators is that?

e Goal: all blocks are filled

54

Sudoku, Naively

» State space: 4x4 matrix, divided into four 2x2 matrices:
containing values [1-4]

* Operators:

, B, C, D, cells

e Puta2insquare <x,y>
e Preconditions:

v/ <x,y>is empty

vox, (yE1)>#2;<x, (yE2)>22; ... < 4 3

]
3
v <(xE1),y>#2;..<(xE3),y>22 3
« if<xy>inA then3 ¢A,; ... 4

« How many operators is that?

e @Goal: all blocks are filled

55

26

9/8/22

Sudoku, Naively

« State space: 4x4 matrix, divided into four 2x2 matrices:

containing values [1-4]

* Operators:

, B, C, D, cells

e Puta2insquare <x,y>

* Preconditions: 3
v\ <x,y>is empty | 1
vVox, (yx1)>22;<x, (yE£2)>22; ... 3 < 4 3 %
v o <(xE1),y>#2;...<(xx3),y>%2 3 >
4

X if<x,y>inA,then3 €A; ...

« How many operators is that?

e Goal: all blocks are filled

56

Sudoku, Naively

» State space: 4x4 matrix, divided into four 2x2 matrices:
containing values [1-4]

* Operators:

, B, C, D, cells

e Puta2insquare <x,y>
e Preconditions:

v/ <x,y>is empty l

VX (yEL)>#2;<x, (yE2)>22; .. 3 4 3

v o<(xE1),y>#2;...<(x*t4),y>#2 3

X if<x,y>in A, then3 €A; ... 4

« How many operators is that?

e @Goal: all blocks are filled

57

27

9/8/22

Artificial Intelligence
Uninformed Search (Ch. 3.4)

(and a little more formalization)

7 TN
0 0 O
&

58

Questions?

* Bread-first, depth-first, uniform cost search

* Generation and expansion

* Goal tests

* Queueing function

* Complexity, completeness, and optimality
59

28

9/8/22

Key Procedures

 EXPAND

e Generate all successor
nodes of a given node

SIS
=1

6

« “What nodes can | reach from here
(by taking what actions)?”

o A B e
1A
EZES

[o{—ed
el

 GOAL-TEST

» Test if state satisfies goal conditions

* QUEUEING-FUNCTION

* Maintain a ranked list of nodes that are expansion candidates
“What should | explore next?”

60
Uninformed vs. Informed Search
* Uninformed (aka “blind”) search
* Use no information about the “direction” of the goal node(s)
* No way tell know if we’re “doing well so far”
* Breadth-first, depth-first, depth-limited, uniform-cost, depth-first iterative
deepening, bidirectional
* Informed (aka “heuristic”) search (next class)
e Use domain information to (try to) (usually) head in the general direction of the
goal node(s)
« Hill climbing, best-first, greedy search, beam search, A, A*
62

29

9/8/22

Why Apply Goal Test Late?

 Why does it matter when the goal test is applied (expansion time vs.
generation time)?

* Optimality and complexity of the algorithms are strongly affected!

YN
Jolclpe

63
Breadth-First
* Engueue nodes in FIFO (first-in, first-out) order
* Characteristics:
* Complete (meaning?)
e Optimal (i.e., admissible) if all operators have the same cost
* Otherwise, not optimal but finds solution with shortest path length
+ Exponential time and space complexity, O(b9), where:
* disthe depth of the solution
* bis the branching factor (number of children) at each node
» Takes a long time to find long-path solutions
64

30

9/8/22

BFS

>@

65

BFS

>

66

31

9/8/22

BFS

67

BFS

>O ® O O

68

32

9/8/22

BFS

PO © ©

69
Breadth-First: Analysis
* Takes a long time to find long-path solutions
Must look at all shorter length possibilities first
A complete search tree of depth d where each non-leaf node has b children:
e 1+b+b2+..4+bd=(b¥!-1)/(b-1) nodes
* Checks a lot of short-path solutions quickly
70

33

9/8/22

Breadth-First: O(Example)

e 1+b+b2+ .. +bd=(b¥!-1)/(b-1) nodes

* Tree where: d=12

* Every node at depths O, ..., 11 has 10 children (b=10)
* Every node at depth 12 has O children

e 1+10+ 100+ 1000 + ... +1012=(1013-1)/9 = O(1012) nodes in the
complete search tree

« If BFS expands 1000 nodes/sec and each node uses 100 bytes of storage

Will take 35 years to run in the worst case
Will use 111 terabytes of memory

71
Depth-First (DFS)
* Engueue nodes in LIFO (last-in, first-out) order
That is, nodes used as a stack data structure to order nodes
» Characteristics:
Might not terminate without a “depth bound”
l.e., cutting off search below a fixed depth D (“depth-limited search”)
Not complete
With or without cycle detection, and with or without a cutoff depth
Exponential time, O(b%), but only linear space, O(bd)
Loops?
Infinite search spaces?
72

34

9/8/22

DFS

73

DFS

>(2)

74

35

9/8/22

DFS

75

DFS

76

36

9/8/22

DFS

77

DFS

78

37

9/8/22

DFS

79

DFS

80

38

9/8/22

DFS

20

81

DFS

82

39

9/8/22

DFS

83

DFS

84

40

9/8/22

Depth-First (DFS): Analysis

* DFS:
* Can find long solutions quickly if lucky
* And short solutions slowly if unlucky

* When search hits a dead end
« Canonly back up one level at a time*

e Even if the “problem” occurs because of a bad operator choice near the
top of the tree

* Hence, only does “chronological backtracking”

e *Why?

85
Uniform-Cost (UCS)
* Enqueue nodes by path cost:
e Let g(n) = cost of path from start node to current node n
* Sort nodes by increasing value of g
* ldentical to breadth-first search if all operators have equal cost
* “Dijkstra’s Algorithm” in algorithms literature
* “Branch and Bound Algorithm” in operations research literature
* Complete (*)
« Optimal/Admissible (*)
* Admissibility depends on the goal test being applied when a node is removed from
the nodes list, not when its parent node is expanded and the node is first generated
« Exponential time and space complexity, O(bd)
86

41

9/8/22

Example: Path Costs

I Romania with step costs in km

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui

[] Giurgiu Zerind

Straight—line distance

366
0

160
242
161
178

77
151
226
244
241
234
380

98
193
253
329

80
199
374

87
UCS Implementation
* For each frontier node, save the total cost of the path from the initial
state to that node
* Expand the frontier node with the lowest path cost
* Equivalent to breadth-first if step costs all equal
* Equivalent to Dijkstra’s algorithm in general
88

42

9/8/22

l | n i Animation of
the Uniform-
Cost search v

Algorithm

https://www.youtube.com/watch?v=XyoucHYKYSE

89

Uniform-cost search example

Expansion order:

(S,p,d,b,e,a,rfe,G)

90

43

9/8/22

Depth-First Iterative Deepening (DFID)

1. DFStodepthO (i.e., treat start node until solution found do:
as having no successors) oL ":'l"‘ CLOIFin GIE &
c=c

2. Iff no solution, do DFS to depth 1
* Complete

« Optimal/Admissible if all operators have the same cost
* Otherwise, not optimal, but guarantees finding solution of shortest length

» Time complexity is a little worse than BFS or DFS

* Nodes near the top of the tree are generated multiple times

* Because most nodes are near the bottom of a tree, worst case time complexity is still
exponential, O(bd)

92
lterative deepening search (c=1)
Nodes visited: 3
93

44

9/8/22

lterative deepening search (c=2)

Limit = 2 @ @ @
» .G
@ @ @
./<.>\
>(®) © >(©)

Nodes visited: 3+4 = 7

lterative deepening search (c=3)
Nodes visited: 3+4+8 = |5

45

9/8/22

lterative deepening search (c=3)

Next: 3+4+8+16 = 3|
Next: 3+4+8+16+32 = 63
Next: 3+4+8+16+32+64 = 127 |©

Limit =

—{ The point: because cost is

exponential, you’re not really
g redomg that much work'

Nodes visited: 3+4+8 = |5

96

Depth-First Iterative Deepening

If branching factor is b and solution is at depth d, then nodes at depth d
are generated once, nodes at depth d-1 are generated twice, etc.
Hence bd + 2b@WD + . +db <bd/ (1 - 1/b)?> = O(bY).

If b=4, then worst case is 1.78 * 49, i.e., 78% more nodes searched than exist at
depth d (in the worst case).

Linear space complexity, O(bd), like DFS

Has advantage of both BFS (completeness) and DFS (limited space, finds
longer paths more quickly)

Generally preferred for large state spaces where solution depth is
unknown

97

46

9/8/22

Example for Illustrating Search Strategies

7

98

Depth-First Search

Expanded node Nodes list <?\5\A

{9} ©
50 {A3B!CB} /3/ \ 9/
A3 { D6 ElO G18 Bl C8
D6 { ElO G18 Bl C8 }
ElO { GlS Bl C8 }
GlS { Bl CS }

Solution path found is SA G, cost 18

Number of nodes expanded (including goal node) =5

99

47

9/8/22

Breadth-First Search

Expanded node Nodes list

o ol @

NS { A3B1C8 }

A3 { Bl Cc8 D6 E10 18 } i 7& 2(/
B! { C8 D6 E10 618 GZl } @ é é) 5
CS { D6 ElO G18 GZl Gl3 }

D6 { E10 G18 G21 13 }

E10 { Gl8 GG }

G18 { G2l g1 }

Solution path found isSA G, cost 18
Number of nodes expanded (including goal node) =7

100

Uniform-Cost Search

Expanded node Nodes list
{9} Ed
SO {B1A3C8} ‘

1
28, °

(B
Bl { A3 C8 GZl }
A3 { D6 C8 ElO Gl8 GZl } @}/é&é

D6 {C8 E10 g18 Gl}
c8 { E10 g3 g18d 21 }
E10 { G13 gld g }
G13 { Gld g1 }

Solution path found is S C G, cost 13
Number of nodes expanded (including goal node) = 7

101

48

9/8/22

How they Perform

L]

Depth-First Search:
Expanded nodes: SADE G f 1
Solution found: S A G (cost 18)
* Breadth-First Search: @ 5 @ @
 Expanded nodes:SABCDEG / 20 5
e Solution found: S A G (cost 18) @
* Uniform-Cost Search:
Expanded nodes: SADBCEG

* Solution found: S C G (cost 13)
This is the only uninformed search that worries about costs.

* Iterative-Deepening Search:

nodes expanded:SSABCSADEG
Solution found: S A G (cost 18)

102
Comparing Search Strategies
Complete Optimal Time complexity Space complexity
Breadth first search: yes yes O(bd) O(bd)
Depth first search no no O(bm) O(bm)
Depth limitedsearch ifl==d no O(bl) O(bl)
depth first iterative yes yes O(bd) O(bd)
deepening search
bi-directional search ~ yes yes O(bdz) O(bdz)
b is branching factor, d is depth of the shallowest solution,
m is the maximum depth of the search tree, 1 is the depth limit
103

49

9/8/22

Avoiding Repeated States

* Ways to reduce size of state space (with increasing computational costs)

* Inincreasing order of effectiveness:

1. Do not return to the state you just came from.
2. Do not create paths with cycles in them.

3. Do not generate any state that was ever created before.

» Effect depends on frequency of loops in state space.

Worst case, storing as many nodes as exhaustive search!

104
State Space = An Exponentially Growing Search Space
A
B
C
D
105

50

9/8/22

Bi-directional Search

* Alternate searching from

¢ start state = goal

« goal state - start

» Stop when the frontiers intersect.

* Works well only when there are
unique start and goal states

* Requires ability to generate

“predecessor” states.

* Can (sometimes) find a solution fast

106
Bi-directional Search
* Alternate searching from
start state = goal
goal state - start Q‘ #
» Stop when the frontiers intersect. 7 /\
. . [)
. Workswd For next time: What's a real,
unique st world problem where you can’t
Requi generate predecessors!
* Requires .
“predecessor” states. @%
* Can (sometimes) find a solution fast
107

51

9/8/22

Holy Grail Search

Expanded node Nodes list
(s} e

SO {C8A3B!}
G13 { A3 Bl }
Solution path found 1s S C G, cost 13 (optimal)

Number of nodes expanded (including goal node) = 3

(minimum possible!)

@& ® ©
Cs {GIBA3BI} @j’gﬁé%

108

Holy Grail Search

Why not go straight to the solution, without
any wasted detours off to the side?

If we knew where the solution was we wouldn’t be searching!

If only we knew where we were headed...

109

52

9/8/22

8-Puzzle Revisited

What’s a good algorithm?

* Depth-first search? 5 P
e Breadth-first search? ﬁ
« Uniform-cost? 6 ||| 1 S 2
e |terative deepening?
p g = 3 l
2 3
4 |G
6 5

110
"Satisficing”
* Wikipedia: “Satisficing is ... searching until
an acceptability threshold is met” Another piece of
problem
« Contrast with optimality definition
» Satisficable problems do not get more
benefit from finding an optimal solution
* Ex: You have an A in the class. Studying for four hours will get you a 98
on the final. Studying for eight hours will get you a 100 on the final.
What to do?
* A combination of satisfy and suffice
* Introduced by Herbert A. Simon in 1956
111

53

