
9/8/22

1

Artificial Intelligence class 3: Search (Ch. 3.1–3.3)

Some material adopted from notes by Charles R. Dyer, University of Wisconsin-Madison

1

Bookkeeping

• Final reminder: readings, HW, etc. are on the class schedule

tiny.cc/ai-schedule

• Final reminder: the class Discord is available and useful

tiny.cc/ai-discord

• HW1 is out, please verify that you can find it

2

9/8/22

2

Bits From Last Time

• Sequential: Require memory of past
actions to determine next best action
• Or: current action can influence all future

actions

• Episodic: A series of one-shot actions
• Only the current percept(s) are relevant
• Sensing/acting in episode(t) is

independent of episode(t-1)

• Single- vs. multi-agent: Is “your” agent
the only one affecting the world?

en.wikibooks.org/wiki/Artificial_Intelligence/AI_Agents_and_their_Environments
jeffclune.com/courses/media/courses/2014-Fall-AI/lectures/L04-AI-2014.pdf

Properties of
the agent’s
environment

(PEAS)

3

Some Examples
Agent Type Performance

Measure
Environment Actuators Sensors

Robot soccer
player

Winning game,
goals

for/against

Field, ball,
own team,
other team,
own body

Devices (e.g.,
legs) for

locomotion
and kicking

Camera, touch
sensors,

accelerometers,
orientation

sensors,
wheel/joint
encoders

Internet
book-shopping

agent

Obtain
requested/
Interesting

books,
minimize

expenditure

Internet

Follow link,
enter/submit
data in fields,
display to user

Web pages,
user requests

PEAS

Task
Environment

Observable Deterministic Episodic Static Discrete Agents

Robot
soccer

Partially Stochastic Sequential Dynamic Continuous Multi

Internet
book-

shopping

Partially Deterministic Sequential Static

Discrete Single

Environment

4

9/8/22

3

Pre-Reading: Questions?

• Search (a.k.a. state-space search)

• Concepts:
• Initial state • Transition model
• State space graph • Step cost
• Goal test (cf. goal) • Path cost
• Actions • Solution / optimal solution

• Open-loop/closed-loop systems

• Expanding vs. generating a state

• The frontier (a.k.a. open list)

5

5

What’s a “State”?

• The current value of everything in the agent’s “world”
• “State space”: all possible states

• Everything in the problem representation

• Values of all parameters at a particular point in time

• Examples:
• Chess board: 8x8 grid, location of all pieces
• Tic-tac-toe: 3x3 grid, whether each is X, O, or open
• Robot soccer: Location of all players, location of ball, possibly last known

trajectory of all players (if sequential)
• Travel: Cities, distances between cities, agent’s current city

6

6

9/8/22

4

Today’s Class

• Representing states and operators

• Example problems

• Generic state-space search algorithm

• Everything in AI comes down to search.

• Goal: understand search, and understand why.

7

7

Why Search?

• Traditional (non-AI) problems are likely tractable.
• Either they can be solved by listing all possible states…

• Tic-tac-toe: 39 = 19,683 states (3 values for each cell, nine cells)*

• Small enough that a computer can explore all possible choices during play

• Or there’s a mechanical approach to finding a solution

• Can’t memorize the space of answers, but you don’t need to

8

X

O

X
…

X

O O

X

X O O O

O O O

O O O

* Of course, there are fewer valid states

345,781,000 ✕ 234,567,431,000

8

9/8/22

5

Why Search? (2)

• “Intelligent” problems are usually intractable.
• Either the state space is too large to enumerate…

• We don’t know what a good
solution is until we find it…

• Or, somehow, we have more
states than we can explore.

examples.gurobi.com/traveling-salesman-problem, en.wikipedia.org/wiki/Free_Internet_Chess_Server, www.smbc-comics.com/comic/recommendations

9

Why Search? (3)

• We can’t search intractable problems exhaustively, so we must consider
them cleverly.

• Understanding the problem space is the first step.

needpix.com, machinelearnings.co/understanding-alphago-948607845bb1

10

9/8/22

6

Search: The Core Idea

• For any problem:
• World is (always) in some state
• Agents take actions, which

change the state

• We need a sequence of
actions that gets the world
into a particular goal state.

• To find it, we search the
space of actions and states.

• Searching is not (always) the same as doing!

11

Some
world
state

State
3

State
4

State
5

State
6

some
action

some other
actionA1 A2A4

A3 A6 A7A5

State
2

State
3

State
6

11

Building Goal-Based Agents

• To build a goal-based agent we need to decide:
• What is the goal to be achieved?
• What are the possible actions?

• What relevant information must be encoded…
• To describe the state of the world?

• To describe the available transitions?
• To solve the problem?

13

Initial
state

Goal
stateActions

13

9/8/22

7

What is the Goal?
• A situation we want to achieve

• A set of properties that we want to hold

• Must define a “goal test” (a function over states)
• What does it mean to achieve it?
• Have we done so?

• Defining goals is a hard question that is rarely tackled in AI!
• Often, we assume the system designer or user will specify the goal

• For people, we stress the importance of establishing clear goals as the
first step towards solving a problem.
• What are your goals?
• What problem(s) are you trying to solve?

14

14

What Are Actions?

• Primitive actions or events:
• Make changes in the world
• In order to achieve a (sub)goal

• Actions are also known as operators or moves

• Examples:

15

Low-level:
• Chess: “advance a pawn”
• Navigation: “take a step”
• Finance: “sell 10% of stock X”

High-level :
• Chess: “clear a path for a queen”
• Navigation: “go home”
• Finance: “sell best-return shares”

15

9/8/22

8

Actions and Determinism

• In a deterministic world there is no uncertainty in an action’s effects

• Current world state + chosen action fully specifies:

• Whether that action can be done in current world
• Is it applicable? (E.g.: Do I own any of stock X to sell?)
• Is it legal? (E.g.: Can’t just move a pawn sideways.)

• World state after action is performed

16

After last
pt:
•No need
for
“history”
information
•Everythin
g is
encapsulat
ed by state

Wha?
16

Representing Actions

• Actions here are:
• Discrete events
• That occur at an instant of time

• For example:
• State: “Mary is in class”
• Action “Go home”
• New state: “Mary is at home”

• There is no representation of a state where she is in between (i.e., in the
state of “going home”).

17

Some
world
state

State
3

A1 A2A4

State
2

17

9/8/22

9

Sliding Tile Puzzles

• 15-puzzles, 8-puzzles

• How do we represent states?

• How do we represent actions?
• Tile-1 moves north
• Tile-1 moves west
• Tile-1 moves east
• Tile-1 moves south
• Tile-2 moves north
• Tile-2 moves west
• …

commons.wikimedia.org/wiki/File:15-puzzle-shuffled.svg,		commons.wikimedia.org/wiki/File:15-puzzle-loyd-bis2.svg

18

Representing Actions

• Number of actions / operators depends on representation used in
describing a state

• 8-puzzle:
• Could specify 4 possible

moves (actions) for each
of the 8 tiles:

4*8=32 operators.
• Or, could specify four moves for the “blank” square:

4 operators!

• Careful representation can simplify a problem!

19

…

19

9/8/22

10

Representing States

• What information about the world sufficiently describes all aspects
relevant to solving the goal?

• That is: what knowledge must be in a state description to adequately
describe the current state of the world?

• The size of a problem is usually described in terms of the number of
states that are possible
• Tic-Tac-Toe has about 39 states.
• Checkers has about 1040 states.
• Rubik’s Cube has about 1019 states.
• Chess has about 10120 states in a typical game.

20

This	is	ten	
quintillion	
states.

20

Some Example Problems

• Toy problems and micro-worlds
• 8-Puzzle
• Boat Problems

• Cryptarithmetic
• Remove 5 Sticks

• Water Jug Problem

22

https://xkcd.com/1134

…

22

9/8/22

11

8-Puzzle

• Given an initial configuration of 8 sliding numbered tiles on a 3 x 3
board, move the tiles in such a way so as to produce a desired goal
configuration of the tiles.

23

23

8-Puzzle

• State: 3 x 3 array describing where tiles are

• Operators: Move blank square Left, Right,
Up or Down
• This is a more efficient encoding of the

operators!

• Initial State: Starting configuration of the
board

• Goal: Some specific board configuration

24

24

9/8/22

12

The 8-Queens Problem

• Place eight (or N) queens on a chessboard such that no queen can reach
any other

25

25

Boat Problems

• 1 sheep, 1 wolf, 1 cabbage, 1 boat

• Goal: Move everything across the river.

• Constraints:
• The boat can hold you plus one thing.
• Wolf can never be alone with sheep.
• Sheep can never be alone with cabbage.

• State: location of sheep, wolf, cabbage on shores and boat.

• Operators: Move ferry containing some set of occupants across
the river (in either direction) to the other side.

26

https://xkcd.com/1134
26

9/8/22

13

Remove 5 Sticks

• Given the following configuration of sticks, remove exactly 5 sticks in
such a way that the remaining configuration forms exactly 3 squares.

27

27

Some Real-World Problems

• Route finding

• Touring (traveling salesman)

• Logistics

• VLSI layout

• Robot navigation

• Learning

29

29

9/8/22

14

Knowledge Representation Issues

• What’s in a state?
• Is the color of the tiles relevant to solving an 8-puzzle?
• Is sunspot activity relevant to predicting the stock market?

• What to represent is a very hard problem!
• Usually left to the system designer to specify.

• What level of abstraction to describe the world?
• Too fine-grained and we “miss the forest for the trees”
• Too coarse-grained and we miss critical information

30

30

Knowledge Representation Issues

• Number of states depends on:
• Representation choices
• Level of abstraction

• In the Remove-5-Sticks problem:
• If we represent individual sticks, then there are 17-choose-5 possible ways of

removing 5 sticks (6188)
• If we represent the “squares” defined by 4 sticks, there are 6 squares initially

and we must remove 3
• So, 6-choose-3 ways of removing 3 squares (20)

31

31

9/8/22

15

Formalizing Search in a State Space

• A state space is a graph (V, E):
• V is a set of nodes (states)
• E is a set of arcs (actions)

• Each arc is directed from a node
to another node

• How does that work for 8-
puzzle?

32

32

Formalizing Search in a State Space

• V: A node is a data structure that contains:
• State description
• Bookkeeping information: parent(s) of the node, name of operator that

generated the node from that parent, etc.

• E: Each arc is an instance (single occurrence) of one operator.
• When operator is applied to the arc’s source node (state), then
• Resulting state is associated with the arc’s destination node

33

33

9/8/22

16

Formalizing Search

• Each arc has a fixed, positive cost
• Corresponding to the cost of the operator
• What is “cost” of doing that action?

• Each node has a set of successor nodes
• Corresponding to all operators (actions) that can apply at source node’s state
• Expanding a node is generating successor nodes, and adding them (and

associated arcs) to the state-space graph
• We don’t know all states initially – we have to apply operators and calculate the

successor nodes

34

34

Formalizing Search II

• One or more nodes are designated as start nodes

• A goal test predicate is applied to a state to determine if its associated
node is a goal node

35

35

9/8/22

17

Water Jug Problem as Search

Name Cond. Transition Effect

Empty5 – (x,y)→(0,y) Empty 5-gal. jug

Empty2 – (x,y)→(x,0) Empty 2-gal. jug

2to5 x ≤ 3
y = 2

(x,2)→(x+2,0) Pour 2-gal. into 5-
gal.

5to2 x ≥ 2
y = 0

(x,0)→(x-2,2) Pour 5-gal. into 2-
gal.

5to2part y < 2
x = 1

(1,y)→(0,y+1) Pour partial 5-gal.
into 2-gal.

Given a full 5-gallon jug
and an empty 2-gallon
jug, the goal is to fill the
2-gallon jug with exactly
one gallon of water.

State = (x,y), where x is
the number of gallons of
water in the 5-gallon jug
and y is # of gallons in
the 2-gallon jug

Initial State = (5,0)

Goal State = (*,1)
(* means any amount)

36

Operator table

36

empty5 empty2 2to5 5to2 part5to2

empty5 empty2 2to5 5to2 part5to2

empty5 empty2 5to2 part5to22to5

37

9/8/22

18

(5,0)
empty5 empty2 2to5 5to2 part5to2

(3,2)(5,0)(0,0)
empty5 empty2 2to5 5to2 part5to2

(0,2) (3,0)

(0,0) (3,0)
empty5 empty2 5to2 part5to22to5

(1,2)

38

Formalizing Search III

• A solution is a sequence of operators that is associated with a path in a
state space from a start node to a goal node.
• 5to2, empty2, 5to2, empty2, 5to2part

• The cost of a solution is the sum of the arc costs on the solution path.
• If all arcs have the same (unit) cost, then the solution cost is just the length of

the solution (number of steps / state transitions)

39

39

9/8/22

19

Formalizing Search IV

• State-space search: searching through a state space for a solution by
making explicit a sufficient portion of an implicit state-space graph to
find a goal node
• Initially V={S}, where S is the start node
• When S is expanded, its successors are generated; those nodes are added to V

and the arcs are added to E

• This process continues until a goal node is found

• It isn’t usually practical to represent entire space

40

40

Formalizing Search V

• Each node implicitly or explicitly represents a partial solution path (and
its cost) from start node to given node.
• In general, from a node there are many possible paths (and therefore solutions)

that have this partial path as a prefix

41

41

9/8/22

20

State-Space Search Algorithm
function general-search (problem, QUEUEING-FUNCTION)

;; problem describes start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; returns either a goal node or failure

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

loop
if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds

then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))

end
;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops

42

S1

S3

S4 S5 S6

A1 A2

A3 A6 A7

S2

42

Generation vs. Expansion

• Selecting a state means making that node current

• Expanding the current state means applying every legal action to the
current state
• Which generates a new set of nodes

43

R&N pg. 68, 80

43

9/8/22

21

Key Procedures

• EXPAND
• Generate all successor nodes of a given node

• “What nodes can I reach from here
(by taking what actions)?”

• GOAL-TEST
• Test if state satisfies goal conditions

• QUEUEING-FUNCTION
• Used to maintain a ranked list of nodes that are candidates for expansion

• “What should I explore next?”

44

44

Algorithm Bookkeeping

• Typical node data structure includes:
• State at this node
• Parent node

• Operator applied to get to this node
• Depth of this node

• That is, number of operator applications since initial state
• Cost of the path

• Sum of each operator application so far

45

45

9/8/22

22

Some Issues

• Search process constructs a search tree, where:
• Root is the initial state and
• Leaf nodes are nodes that are either:

• Not yet expanded (i.e., they are in the list “nodes”) or
• Have no successors (i.e., they're “dead ends”, because no operators can be

applied, but they are not goals)

• Search tree may be infinite
• Even for small search space

• How?

46

46

Some Issues

• Return a path or a node depending on problem
• In 8-queens return a node
• 8-puzzle return a path

• What about Sheep & Wolves?

• Changing definition of Queueing-Function à different search strategies
• How do you choose what to expand next?

47

47

9/8/22

23

Evaluating Search Strategies
• Completeness:

• Guarantees finding a solution if one exists

• Time complexity:
• How long (worst or average case) does it take to find a solution?
• Usually measured in number of states visited/nodes expanded

• Space complexity:
• How much space is used by the algorithm?
• Usually measured in maximum size of the “nodes” list during search

• Optimality / Admissibility:
• If a solution is found, is it guaranteed to be optimal (the solution with minimum

cost)?

48

48

Summary

• Search is at the heart of AI.

• Formalizing states, actions, &c. makes them searchable.

49

49

9/8/22

24

Class Exercise

• Representing a Sudoku puzzle as a search space
• What are the states?
• What are the operators?

• What are the constraints
(on operator application)?

• What is the description
of the goal state?

• Let's try it!

50

3

1

3

2

50

Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

• <x,y> is empty
• <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that? How many preconditions?

• Goal: all blocks are filled

51

3

1

3

2

1
3
3
4

x 4

51

9/8/22

25

Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

• <x,y> is empty
• <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

52

3

1

3 2

2

1
3
3
4

x 4

52

Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

ü <x,y> is empty
• <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

53

3

1

3 2

2

1
3
3
4

x 4

53

9/8/22

26

Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

ü <x,y> is empty
ü <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

54

3

1

3 2

2

1
3
3
4

x 4

54

Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

ü <x,y> is empty
ü <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
ü <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

55

3

1

3 2

2

1
3
3
4

x 4

55

9/8/22

27

Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

ü <x,y> is empty
ü <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
ü <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
✘ if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

56

3

1

3 2

2

1
3
3
4

x 4

56

Sudoku, Naïvely
• State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells

containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:

ü <x,y> is empty
ü <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
ü <(x±1), y> ≠ 2; ... <(x±4), y> ≠ 2
✘ if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

57

3

1

3

2

1
3
3
4

x 4

57

9/8/22

28

Artificial Intelligence
Uninformed Search (Ch. 3.4)

(and a little more formalization)

Some material adapted from slides by Gang Hua of Stevens Institute of Technology
Some material adapted from slides by Charles R. Dyer, University of Wisconsin-Madison

S

CBA

D GE

3 1 8

15
20 5

3
7

58

Questions?

• Bread-first, depth-first, uniform cost search

• Generation and expansion

• Goal tests

• Queueing function

• Complexity, completeness, and optimality

• Heuristic functions (for informed search)

• Admissibility

59

59

9/8/22

29

Key Procedures

• EXPAND
• Generate all successor

nodes of a given node
• “What nodes can I reach from here

(by taking what actions)?”

• GOAL-TEST
• Test if state satisfies goal conditions

• QUEUEING-FUNCTION
• Maintain a ranked list of nodes that are expansion candidates

• “What should I explore next?”

60

60

Uninformed vs. Informed Search

• Uninformed (aka “blind”) search
• Use no information about the “direction” of the goal node(s)

• No way tell know if we’re “doing well so far”

• Breadth-first, depth-first, depth-limited, uniform-cost, depth-first iterative
deepening, bidirectional

• Informed (aka “heuristic”) search (next class)
• Use domain information to (try to) (usually) head in the general direction of the

goal node(s)
• Hill climbing, best-first, greedy search, beam search, A, A*

62

62

9/8/22

30

Why Apply Goal Test Late?

• Why does it matter when the goal test is applied (expansion time vs.
generation time)?

• Optimality and complexity of the algorithms are strongly affected!

63

S

CBA

D GE

3 1 8

15 20 5
3
7

63

Breadth-First

• Enqueue nodes in FIFO (first-in, first-out) order

• Characteristics:
• Complete (meaning?)
• Optimal (i.e., admissible) if all operators have the same cost

• Otherwise, not optimal but finds solution with shortest path length
• Exponential time and space complexity, O(bd), where:

• d is the depth of the solution

• b is the branching factor (number of children) at each node

• Takes a long time to find long-path solutions

64

64

9/8/22

31

BFS

65

BFS

66

9/8/22

32

BFS

67

BFS

68

9/8/22

33

BFS

D

69

Breadth-First: Analysis

• Takes a long time to find long-path solutions
• Must look at all shorter length possibilities first
• A complete search tree of depth d where each non-leaf node has b children:

• 1 + b + b2 + ... + bd = (bd+1 - 1)/(b-1) nodes

• Checks a lot of short-path solutions quickly

70

70

9/8/22

34

Breadth-First: O(Example)

• 1 + b + b2 + ... + bd = (bd+1 - 1)/(b-1) nodes

• Tree where: d=12

• Every node at depths 0, ..., 11 has 10 children (b=10)

• Every node at depth 12 has 0 children

• 1 + 10 + 100 + 1000 + ... + 1012 = (1013-1)/9 = O(1012) nodes in the
complete search tree

• If BFS expands 1000 nodes/sec and each node uses 100 bytes of storage
• Will take 35 years to run in the worst case
• Will use 111 terabytes of memory

71

71

Depth-First (DFS)

• Enqueue nodes in LIFO (last-in, first-out) order
• That is, nodes used as a stack data structure to order nodes

• Characteristics:
• Might not terminate without a “depth bound”

• I.e., cutting off search below a fixed depth D (“depth-limited search”)
• Not complete

• With or without cycle detection, and with or without a cutoff depth

• Exponential time, O(bd), but only linear space, O(bd)

72

Loops?

Infinite search spaces?

72

9/8/22

35

DFS

73

DFS

74

9/8/22

36

DFS

75

DFS

76

9/8/22

37

DFS

77

DFS

78

9/8/22

38

DFS

79

DFS

80

9/8/22

39

DFS

81

DFS

82

9/8/22

40

DFS

83

DFS

84

9/8/22

41

Depth-First (DFS): Analysis

• DFS:
• Can find long solutions quickly if lucky
• And short solutions slowly if unlucky

• When search hits a dead end
• Can only back up one level at a time*
• Even if the “problem” occurs because of a bad operator choice near the

top of the tree
• Hence, only does “chronological backtracking”

• * Why?

85

85

Uniform-Cost (UCS)
• Enqueue nodes by path cost:

• Let g(n) = cost of path from start node to current node n
• Sort nodes by increasing value of g
• Identical to breadth-first search if all operators have equal cost

• “Dijkstra’s Algorithm” in algorithms literature

• “Branch and Bound Algorithm” in operations research literature

• Complete (*)

• Optimal/Admissible (*)
• Admissibility depends on the goal test being applied when a node is removed from

the nodes list, not when its parent node is expanded and the node is first generated

• Exponential time and space complexity, O(bd)

86

86

9/8/22

42

Example: Path Costs

87

87

UCS Implementation

• For each frontier node, save the total cost of the path from the initial
state to that node

• Expand the frontier node with the lowest path cost

• Equivalent to breadth-first if step costs all equal

• Equivalent to Dijkstra’s algorithm in general

88

9/8/22

43

Uniform-cost Search Example

https://www.youtube.com/watch?v=XyoucHYKYSE
89

Uniform-cost search example

Expansion order:

(S,p,d,b,e,a,r,f,e,G)

90

9/8/22

44

Depth-First Iterative Deepening (DFID)

1. DFS to depth 0 (i.e., treat start node
as having no successors)

2. Iff no solution, do DFS to depth 1

• Complete

• Optimal/Admissible if all operators have the same cost
• Otherwise, not optimal, but guarantees finding solution of shortest length

• Time complexity is a little worse than BFS or DFS

• Nodes near the top of the tree are generated multiple times
• Because most nodes are near the bottom of a tree, worst case time complexity is still

exponential, O(bd)

92

until solution found do:
DFS with depth cutoff c;
c = c+1

92

Iterative deepening search (c=1)

Nodes visited: 3

93

9/8/22

45

Iterative deepening search (c=2)

Nodes visited: 3+4 = 7

94

Iterative deepening search (c=3)

Nodes visited: 3+4+8 = 15

95

9/8/22

46

Iterative deepening search (c=3)

Nodes visited: 3+4+8 = 15

Next: 3+4+8+16 = 31

Next: 3+4+8+16+32 = 63

Next: 3+4+8+16+32+64 = 127

The point: because cost is
exponential, you’re not really

redoing that much work!

96

Depth-First Iterative Deepening
• If branching factor is b and solution is at depth d, then nodes at depth d

are generated once, nodes at depth d-1 are generated twice, etc.
• Hence bd + 2b(d-1) + ... + db ≤ bd / (1 - 1/b)2 = O(bd).
• If b=4, then worst case is 1.78 * 4d, i.e., 78% more nodes searched than exist at

depth d (in the worst case).

• Linear space complexity, O(bd), like DFS

• Has advantage of both BFS (completeness) and DFS (limited space, finds
longer paths more quickly)

• Generally preferred for large state spaces where solution depth is
unknown

97

97

9/8/22

47

Example for Illustrating Search Strategies

98

S

CBA

D GE

3 1 8

15 20 5
3
7

98

Depth-First Search

Expanded node Nodes list
{ S0 }

S0 { A3 B1 C8 }
A3 { D6 E10 G18 B1 C8 }
D6 { E10 G18 B1 C8 }
E10 { G18 B1 C8 }
G18 { B1 C8 }

Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) = 5

99

S

CBA

D GE

3 1 8

15 20 5
3 7

99

9/8/22

48

Breadth-First Search
Expanded node Nodes list

{ S0 }
S0 { A3 B1 C8 }
A3 { B1 C8 D6 E10 G18 }
B1 { C8 D6 E10 G18 G21 }
C8 { D6 E10 G18 G21 G13 }
D6 { E10 G18 G21 G13 }
E10 { G18 G21 G13 }
G18 { G21 G13 }

Solution path found is S A G , cost 18
Number of nodes expanded (including goal node) = 7

100

S

CBA

D GE

3 1 8

15 20 5
3 7

100

Uniform-Cost Search
Expanded node Nodes list

{ S0 }
S0 { B1 A3 C8 }
B1 { A3 C8 G21 }
A3 { D6 C8 E10 G18 G21 }
D6 { C8 E10 G18 G1 }
C8 { E10 G13 G18 G21 }
E10 { G13 G18 G21 }
G13 { G18 G21 }

Solution path found is S C G, cost 13
Number of nodes expanded (including goal node) = 7

101

S

CBA

D GE

3 1 8

15 20 5
3 7

101

9/8/22

49

How they Perform
• Depth-First Search:

• Expanded nodes: S A D E G
• Solution found: S A G (cost 18)

• Breadth-First Search:
• Expanded nodes: S A B C D E G
• Solution found: S A G (cost 18)

• Uniform-Cost Search:
• Expanded nodes: S A D B C E G
• Solution found: S C G (cost 13)
• This is the only uninformed search that worries about costs.

• Iterative-Deepening Search:
• nodes expanded: S S A B C S A D E G
• Solution found: S A G (cost 18)

S

CBA

D GE

3 1 8

15 20 5
3 7

102

Comparing Search Strategies

103

103

9/8/22

50

Avoiding Repeated States

• Ways to reduce size of state space (with increasing computational costs)

• In increasing order of effectiveness:
1. Do not return to the state you just came from.
2. Do not create paths with cycles in them.

3. Do not generate any state that was ever created before.

• Effect depends on frequency of loops in state space.
• Worst case, storing as many nodes as exhaustive search!

104

104

State Space à An Exponentially Growing Search Space

105

105

9/8/22

51

Bi-directional Search

• Alternate searching from
• start state à goal
• goal state à start

• Stop when the frontiers intersect.

• Works well only when there are
unique start and goal states

• Requires ability to generate
“predecessor” states.

• Can (sometimes) find a solution fast

106

106

Bi-directional Search

• Alternate searching from
• start state à goal
• goal state à start

• Stop when the frontiers intersect.

• Works well only when there are
unique start and goal states

• Requires ability to generate
“predecessor” states.

• Can (sometimes) find a solution fast

107

For next time: What’s a real
world problem where you can’t

generate predecessors?

107

9/8/22

52

Holy Grail Search
Expanded node Nodes list

{ S0 }

S0 {C8 A3 B1 }

C8 { G13 A3 B1 }

G13 { A3 B1 }

Solution path found is S C G, cost 13 (optimal)

Number of nodes expanded (including goal node) = 3

(minimum possible!)

108

S

CBA

D GE

3 1 8

15 20 5
3 7

108

Holy Grail Search

• Why not go straight to the solution, without
any wasted detours off to the side?

• If we knew where the solution was we wouldn’t be searching!

If only we knew where we were headed…

109

109

9/8/22

53

8-Puzzle Revisited

• What’s a good algorithm?
• Depth-first search?
• Breadth-first search?

• Uniform-cost?
• Iterative deepening?

110

S

G

?

110

“Satisficing”

• Wikipedia: “Satisficing is … searching until
an acceptability threshold is met”

• Contrast with optimality
• Satisficable problems do not get more

benefit from finding an optimal solution

• Ex: You have an A in the class. Studying for four hours will get you a 98
on the final. Studying for eight hours will get you a 100 on the final.
What to do?

• A combination of satisfy and suffice

• Introduced by Herbert A. Simon in 1956

111

Another piece of
problem

definition

111

