

Bookkeeping

• Final reminder: readings, HW, etc. are on the class schedule

tiny.cc/ai-schedule

• Final reminder: the class Discord is available and useful

tiny.cc/ai-discord

• HW1 is out, please verify that you can find it

2
-

Agent Type	Perform	nance	Envir	onment	Actuator	s	Ser	ISOTS	
5 · ·)1 ·	Meas								
Robot soccer				i, ball,	Devices (e.			a, touch	
player	goa			team,	legs) for			sors,	
	for/aga	unst		r team,	locomotio			ometers,	
			own	body	and kickir	ng		tation	PEAS
								sors, l/joint	,
								oders	
Internet	Obta	in	Int	ernet	Follow lin	k.		pages,	
book-shopping	g reques	ted/			enter/subn			equests	
agent	Interes	ting			data in fiel	ds,		_	
	book	xs,			display to u	ser			
	minin								
	expend	iture							
Task	Observable	Determin	viatio	Episodic	Static	Dia	crete	Agonta	
Environment	Observable	Determin	iisue	Episoule	Static	DIS	CICIC	Agents	
Robot	Partially	Stochas	stic	Sequential	Dynamic	Cont	inuous	Multi	Environment
soccer	,			•	-				
Internet	Partially	Determin	nistic	Sequential	Static	Dis	crete	Single	
book-									
shopping									

Pre-Reading: Questions?

- Search (a.k.a. state-space search)
- Concepts:
 - Initial state
- Transition modelStep cost
- State space graph
- Goal test (cf. goal) Path cost
- Actions
- Solution / optimal solution
- Open-loop/closed-loop systems
- Expanding vs. generating a state
- The frontier (a.k.a. open list)

What's a "State"?

- The current value of everything in the agent's "world"
 - "State space": all possible states
- Everything in the problem representation
- Values of all parameters at a particular point in time
- Examples:
 - Chess board: 8x8 grid, location of all pieces
 - Tic-tac-toe: 3x3 grid, whether each is X, O, or open
 - Robot soccer: Location of all players, location of ball, possibly last known trajectory of all players (if sequential)
 - Travel: Cities, distances between cities, agent's current city

Today's Class

- Representing states and operators
- Example problems
- Generic state-space search algorithm
- Everything in AI comes down to search.
- Goal: understand search, and understand why.

Why Search? (3)

- We can't search intractable problems exhaustively, so we must consider them cleverly.
- Understanding the problem space is the first step.

Search: The Core Idea

- For any problem:
 - World is (always) in some state
 - Agents take actions, which change the state
- We need a sequence of actions that gets the world into a particular goal state.
- To find it, we search the space of actions and states.
- Searching is not (always) the same as doing!

Some

world

state

44

A۶

some

action

Δ3

State

4

State

2

some other

action

State

6

AT

State

3

A

A6

State

5

What is the Goal?

- A situation we want to achieve
- A set of properties that we want to hold
- Must define a "goal test" (a function over states)
 - What does it mean to achieve it? •
 - Have we done so?
- Defining goals is a hard question that is rarely tackled in AI!
 - Often, we assume the system designer or user will specify the goal •
- For people, we stress the importance of establishing clear goals as the first step towards solving a problem.
 - What are your goals?
 - What problem(s) are you trying to solve?

What Are Actions?

- Primitive actions or events:
 - Make changes in the world
 - In order to achieve a (sub)goal
 - Actions are also known as operators or moves
- Examples:

Low-level:

High-level :

- Chess: "advance a pawn"
- Chess: "clear a path for a queen" Navigation: "go home"
- Navigation: "take a step"
- Finance: "sell 10% of stock X" Finance: "sell best-return shares"

Actions and Determinism

- In a deterministic world there is no uncertainty in an action's effects
- Current world state + chosen action fully specifies:
- Whether that action can be done in current world
 - Is it applicable? (E.g.: Do I own any of stock X to sell?)
 - Is it legal? (E.g.: Can't just move a pawn sideways.)
- World state after action is performed

16

Representing Actions

- Actions here are:
 - Discrete events
 - That occur at an instant of time
- For example:
 - State: "Mary is in class"
 - Action "Go home"
 - New state: "Mary is at home"
 - There is no representation of a state where she is in between (i.e., in the state of "going home").

Representing States

- What information about the world sufficiently describes all aspects relevant to solving the goal?
- That is: what knowledge must be in a state description to adequately describe the current state of the world?
- The size of a problem is usually described in terms of the number of states that are possible
 - Tic-Tac-Toe has about 3⁹ states.
 - Checkers has about 10⁴⁰ states.
 - Rubik's Cube has about 10¹⁹ states.
 - Chess has about 10¹²⁰ states in a typical game.

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

8-Puzzle

• Given an initial configuration of 8 sliding numbered tiles on a 3 x 3 board, move the tiles in such a way so as to produce a desired goal configuration of the tiles.

Start State

23

The 8-Queens Problem

 Place eight (or N) queens on a chessboard such that no queen can reach any other

25

Boat Problems

- 1 sheep, 1 wolf, 1 cabbage, 1 boat
- Goal: Move everything across the river.
- Constraints:
 - The boat can hold you plus one thing.
 - Wolf can never be alone with sheep.
 - Sheep can never be alone with cabbage.
- State: location of sheep, wolf, cabbage on shores and boat.
- Operators: Move ferry containing some set of occupants across the river (in either direction) to the other side.

https://xkcd.com/1134

Knowledge Representation Issues

- What's in a state?
 - Is the color of the tiles relevant to solving an 8-puzzle?
 - Is sunspot activity relevant to predicting the stock market?
- What to represent is a very hard problem!
 - Usually left to the system designer to specify.
- What level of abstraction to describe the world?
 - Too fine-grained and we "miss the forest for the trees"
 - Too coarse-grained and we miss critical information

30

Knowledge Representation Issues

- Number of states depends on:
 - Representation choices
 - Level of abstraction
- In the Remove-5-Sticks problem:
 - If we represent individual sticks, then there are 17-choose-5 possible ways of removing 5 sticks (6188)
 - If we represent the "squares" defined by 4 sticks, there are 6 squares initially and we must remove 3
 - So, 6-choose-3 ways of removing 3 squares (20)

Formalizing Search in a State Space V: A node is a data structure that contains: State description Bookkeeping information: parent(s) of the node, name of operator that generated the node from that parent, etc.

- E: Each arc is an instance (single occurrence) of one operator.
 - When operator is applied to the arc's source node (state), then
 - Resulting state is associated with the arc's destination node

Formalizing Search

- Each arc has a fixed, positive cost
 - Corresponding to the cost of the operator
 - What is "cost" of doing that action?
- Each node has a set of **successor nodes**
 - Corresponding to all operators (actions) that can apply at source node's state
 - **Expanding** a node is generating successor nodes, and adding them (and associated arcs) to the state-space graph
 - We don't know all states initially we have to apply operators and calculate the successor nodes

34

Water Jug Problem as Search Given a full 5-gallon jug Operator table and an empty 2-gallon jug, the goal is to fill the Cond. Transition Effect Name 2-gallon jug with exactly one gallon of water. (**x**)→(0,y) Empty 5-gal. jug Empty5 **State** = (x,y), where x is Empty2 Empty 2-gal. jug the number of gallons of water in the 5-gallon jug and y is # of gallons in ır 2-gal. into 5-2to5 x ≤ 3 the 2-gallon jug y = 2our \$-gal. into 2-Initial State = (5,0) 5to2 2,2) x ≥ 2 gal. = 0 Ŷ Goal State = (*, 1)Pour partial 5-gal. (* means any amount) 5to2part y < 2 $(1,y) \rightarrow (0,y+1)$ into 2-gal. x = 1

36

37

38

Formalizing Search III

- A **solution** is a sequence of operators that is associated with a path in a state space from a start node to a goal node.
 - 5to2, empty2, 5to2, empty2, 5to2part
- The **cost** of a solution is the sum of the arc costs on the solution path.
 - If all arcs have the same (unit) cost, then the solution cost is just the length of the solution (number of steps / state transitions)

Formalizing Search IV

- State-space search: searching through a state space for a solution by making explicit a sufficient portion of an implicit state-space graph to find a goal node
 - Initially V={S}, where S is the start node
 - When S is expanded, its successors are generated; those nodes are added to V and the arcs are added to E
 - This process continues until a goal node is found
- It isn't usually practical to represent entire space

 $\frac{283}{164}$

 $\frac{283}{14}$

 $\frac{2}{184}$

 $\frac{234}{18}$

 $\frac{234}{185}$

 $\frac{123}{784}$

 $\frac{283}{164}$

 $\frac{283}{765}$

 $\frac{283}{164}$

 $\frac{283}{14}$

 $\frac{23}{186}$

23 184 765 754

Key Procedures

- EXPAND
 - Generate all successor nodes of a given node
 - "What nodes can I reach from here (by taking what actions)?"
- GOAL-TEST
 - Test if state satisfies goal conditions
- QUEUEING-FUNCTION

• "What should I explore next?"

44

Algorithm Bookkeeping

- Typical node data structure includes:
 - State at this node
 - Parent node
 - Operator applied to get to this node
 - Depth of this node
 - That is, number of operator applications since initial state
 - Cost of the path
 - Sum of each operator application so far

Some Issues

- Search process constructs a search tree, where:
 - Root is the initial state and
 - Leaf nodes are nodes that are either:
 - Not yet expanded (i.e., they are in the list "nodes") or
 - Have no successors (i.e., they're "dead ends", because no operators can be applied, but they are not goals)
- Search tree may be infinite
 - Even for small search space
 - How?

46

Some Issues

- Return a path or a node depending on problem
 - In 8-queens return a node
 - 8-puzzle return a path
 - What about Sheep & Wolves?
- Changing definition of Queueing-Function \rightarrow different search strategies
 - How do you choose what to expand next?

Evaluating Search Strategies

Completeness:

• Guarantees finding a solution if one exists

Time complexity:

- How long (worst or average case) does it take to find a solution?
- Usually measured in number of states visited/nodes expanded

Space complexity:

- How much space is used by the algorithm?
- Usually measured in maximum size of the "nodes" list during search

Optimality / Admissibility:

• If a solution is found, is it guaranteed to be optimal (the solution with minimum cost)?

48

Summary

- Search is at the heart of AI.
- Formalizing states, actions, &c. makes them searchable.

Class Exercise

- Representing a Sudoku puzzle as a search space
 - What are the states?
 - What are the operators?
 - What are the constraints (on operator application)?
 - What is the description of the goal state?
- Let's try it!

50

Sudoku, Naïvely State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells containing values [1-4] **Operators:** Put a 2 in square <x,y> 3 Preconditions: 1 • <x,y> is empty • $\langle x, (y \pm 1) \rangle \neq 2; \langle x, (y \pm 2) \rangle \neq 2; \dots \frac{3}{3} \times 4$ 3 • $\langle (x \pm 1), y \rangle \neq 2; \dots \langle (x \pm 3), y \rangle \neq 2$ 3 2 4 • if $\langle x, y \rangle$ in A, then $3 \notin A$; ... How many operators is that? How many preconditions? Goal: all blocks are filled

Sudoku, Naïvely

State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells containing values [1-4]

- 4

- **Operators:**
 - Put a 2 in square <x,y>
 - Preconditions:
 - <x,y> is empty
 - $\langle x, y \rangle$ is empty 1 $\langle x, (y \pm 1) \rangle \neq 2; \langle x, (y \pm 2) \rangle \neq 2; \dots 3 \times 4$
 - $<(x\pm 1), y> \neq 2; ... < (x\pm 3), y> \neq 2$ 3
 - if $\langle x, y \rangle$ in A, then $3 \notin A$; ...
- How many operators is that?
- Goal: all blocks are filled

	3		
			1
3			2
		2	

52

Sudoku, Naïvely State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells containing values [1-4] **Operators:** Put a 2 in square <x,y> 3 Preconditions: 1 \checkmark <x,y> is empty • $\langle x, (y \pm 1) \rangle \neq 2; \langle x, (y \pm 2) \rangle \neq 2; \dots \frac{3}{3} \times 4$ 2 3 • $<(x\pm 1), y> \neq 2; ... < (x\pm 3), y> \neq 2$ 3 2 • if $\langle x, y \rangle$ in A, then $3 \notin A$; ... How many operators is that? Goal: all blocks are filled

Sudoku, Naïvely

State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells containing values [1-4]

- 4

- **Operators:**
 - Put a 2 in square <x,y>
 - Preconditions:
 - \checkmark <x,y> is empty

 - $<(x\pm 1), y> \neq 2; ... < (x\pm 3), y> \neq 2$ 3
 - if $\langle x, y \rangle$ in A, then $3 \notin A$; ...
- How many operators is that?
- Goal: all blocks are filled

	3		
			1
3			2
		2	

54

Sudoku, Naïvely State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells containing values [1-4] **Operators:** Put a 2 in square <x,y> 3 Preconditions: 1 \checkmark <x,y> is empty \checkmark <x, (y±1)> \neq 2; <x, (y±2)> \neq 2; ... $\frac{1}{3} \times 4$ 2 3 \checkmark <(x±1), y> \neq 2; ... <(x±3), y> \neq 2 3 2 • if $\langle x, y \rangle$ in A, then $3 \notin A$; ... How many operators is that? Goal: all blocks are filled

Sudoku, Naïvely State space: 4x4 matrix, divided into four 2x2 matrices: A, B, C, D, cells containing values [1-4] **Operators:** Put a 2 in square <x,y> 3 • Preconditions: \checkmark <x,y> is empty 1 \checkmark <x, (y±1)> \neq 2; <x, (y±2)> \neq 2; ... 3 x 4 2 3 \checkmark <(x±1), y> \neq 2; ... <(x±3), y> \neq 2 3 2 4 X if <x,y> in A, then 3 ∉ A; ... How many operators is that? Goal: all blocks are filled

Artificial Intelligence Uninformed Search (Ch. 3.4)

(and a little more formalization)

Some material adapted from slides by Gang Hua of Stevens Institute of Technology Some material adapted from slides by Charles R. Dyer, University of Wisconsin-Madison

58

Questions?

- Bread-first, depth-first, uniform cost search
- Generation and expansion
- Goal tests
- Queueing function
- Complexity, completeness, and optimality
- Heuristic functions (for informed search)
- Admissibility

 $\frac{283}{164}
 75$

 $\frac{283}{14}$

 $\frac{2}{184}$

 $\frac{234}{18}$

 $\frac{234}{18}$

 $\frac{123}{784}$

 $\frac{283}{164}$

 $\begin{array}{r}
 2 & 8 & 3 \\
 1 & 4 \\
 7 & 6 & 5
 \end{array}$

 $\frac{283}{164}$

 $\begin{array}{c}
 2 & 8 & 3 \\
 1 & 6 \\
 7 & 5 & 4
 \end{array}$

 $\frac{2}{186}$

 $\frac{283}{14}$

 $\frac{23}{184}$

 $\begin{array}{r}
 2 \\
 8 \\
 \overline{3} \\
 7 \\
 5 \\
 4
 \end{array}$

 $\frac{23}{186}$

Key Procedures

- EXPAND
 - Generate all successor nodes of a given node
 - "What nodes can I reach from here (by taking what actions)?"
- GOAL-TEST
 - Test if state satisfies goal conditions
- QUEUEING-FUNCTION
 - Maintain a ranked list of nodes that are expansion candidates
 - "What should I explore next?"

Uninformed vs. Informed Search

- Uninformed (aka "blind") search
 - Use no information about the "direction" of the goal node(s)
 - No way tell know if we're "doing well so far"
 - Breadth-first, depth-first, depth-limited, uniform-cost, depth-first iterative deepening, bidirectional
- Informed (aka "heuristic") search (next class)
 - Use domain information to (try to) (usually) head in the general direction of the goal node(s)
 - Hill climbing, best-first, greedy search, beam search, A, A*

Why Apply Goal Test Late?

- Why does it matter when the goal test is applied (expansion time vs. generation time)?
- Optimality and complexity of the algorithms are strongly affected!

63

Breadth-First

- Enqueue nodes in FIFO (first-in, first-out) order
- Characteristics:
 - Complete (meaning?)
 - Optimal (i.e., admissible) if all operators have the same cost
 - Otherwise, not optimal but finds solution with shortest path length
 - Exponential time and space complexity, O(b^d), where:
 - d is the depth of the solution
 - b is the branching factor (number of children) at each node
- Takes a long time to find long-path solutions

Breadth-First: Analysis

- Takes a long time to find long-path solutions
 - Must look at all shorter length possibilities first
 - A complete search tree of depth d where each non-leaf node has b children:
- $1 + b + b^2 + \dots + b^d = (b^{d+1} 1)/(b-1)$ nodes
- Checks a lot of short-path solutions quickly

Breadth-First: O(Example)

- $1 + b + b^2 + ... + b^d = (b^{d+1} 1)/(b-1)$ nodes
- Tree where: d=12
- Every node at depths 0, ..., 11 has 10 children (b=10)
- Every node at depth 12 has 0 children
- 1 + 10 + 100 + 1000 + ... + 10¹² = (10¹³⁻¹)/9 = O(10¹²) nodes in the complete search tree
- If BFS expands 1000 nodes/sec and each node uses 100 bytes of storage
 - Will take 35 years to run in the worst case
 - Will use 111 terabytes of memory

Depth-First (DFS)

- Enqueue nodes in LIFO (last-in, first-out) order
 - That is, nodes used as a stack data structure to order nodes
- Characteristics:
 - Might not terminate without a "depth bound"
 - I.e., cutting off search below a fixed depth D ("depth-limited search")
 - Not complete
 - With or without cycle detection, and with or without a cutoff depth
 - Exponential time, O(b^d), but only linear space, O(bd)

Loops?

Infinite search spaces?

Depth-First (DFS): Analysis

• DFS:

- Can find long solutions quickly if lucky
- And short solutions slowly if unlucky
- When search hits a dead end
 - Can only back up one level at a time*
 - Even if the "problem" occurs because of a bad operator choice near the top of the tree
 - Hence, only does "chronological backtracking"
- * Why?

85

Uniform-Cost (UCS)

- Enqueue nodes by **path cost**:
 - Let g(n) = <u>cost of path from start node to current node n</u>
 - Sort nodes by increasing value of g
 - Identical to breadth-first search if all operators have equal cost
- "Dijkstra's Algorithm" in algorithms literature
- "Branch and Bound Algorithm" in operations research literature
- Complete (*)
- Optimal/Admissible (*)
 - Admissibility depends on the goal test being applied *when a node is removed from the nodes list,* not when its parent node is expanded and the node is first generated
- Exponential time and space complexity, O(b^d)

UCS Implementation

- For each frontier node, save the total cost of the path from the initial state to that node
- Expand the frontier node with the lowest path cost
- Equivalent to breadth-first if step costs all equal
- Equivalent to Dijkstra's algorithm in general

Depth-First Iterative Deepening (DFID) 1. DFS to depth 0 (i.e., treat start node as having no successors) 2. Iff no solution, do DFS to depth 1 Complete Optimal/Admissible if all operators have the same cost Otherwise, not optimal, but guarantees finding solution of shortest length

- Time complexity is a little worse than BFS or DFS
- Nodes near the top of the tree are generated multiple times
 - Because most nodes are near the bottom of a tree, worst case time complexity is still exponential, O(bd)

Depth-First Iterative Deepening

- If branching factor is *b* and solution is at depth *d*, then nodes at depth *d* are generated once, nodes at depth *d*-1 are generated twice, etc.
 - Hence $b^d + 2b^{(d-1)} + ... + db \le b^d / (1 1/b)^2 = O(b^d)$.
 - If b=4, then worst case is 1.78 * 4^d, i.e., 78% more nodes searched than exist at depth d (in the worst case).
- Linear space complexity, O(bd), like DFS
- Has advantage of both BFS (completeness) and DFS (limited space, finds longer paths more quickly)
- Generally preferred for large state spaces where solution depth is unknown

	Complete	Optimal T	ime complexity	Space complexity
Breadth first search	i: yes	yes	$O(b^d)$	$O(b^d)$
Depth first search	no	no	$O(b^m)$	O(bm)
Depth limited searc	$if 1 \ge d$	no	$O(b^l)$	O(bl)
depth first iterative deepening search	yes	yes	$O(b^d)$	O(bd)
bi-directional searc	h yes	yes	$O(b^{d/2})$	$O(b^{d/2})$

Avoiding Repeated States

- Ways to reduce size of state space (with increasing computational costs)
- In increasing order of effectiveness:
 - 1. Do not return to the state you just came from.
 - 2. Do not create paths with cycles in them.
 - 3. Do not generate any state that was ever created before.
- Effect depends on frequency of loops in state space.
 - Worst case, storing as many nodes as exhaustive search!

Bi-directional Search

- Alternate searching from
 - start state \rightarrow goal
 - goal state \rightarrow start
- Stop when the frontiers intersect.
- Works well only when there are unique start and goal states
- Requires ability to generate "predecessor" states.
- Can (sometimes) find a solution fast

Holy Grail Search

- Why not go straight to the solution, without any wasted detours off to the side?
- If we knew where the solution was we wouldn't be searching!

If only we knew where we were headed...

