

Bookkeeping

- HW5 due 12/3
- Today: Clustering, EM (briefly), ethics of AI
- Next time: Applications robotics
- Final exam: 12/13 (in class)

<section-header><list-item><list-item><list-item><table-container>

A Different Example

- How would you group
 - 'The price of crude oil has increased significantly'
 - 'Demand for crude oil outstrips supply'
 - 'Some people do not like the flavor of olive oil'
 - 'The food was very oily'
 - 'Crude oil is in short supply'
 - 'Oil platforms extract oil'
 - 'Canola oil is supposed to be healthy'
 - 'Iraq has significant oil reserves'
 - 'There are different types of cooking oil'

A note: you might or might not know how many clusters to look for.

5

A Different Example

- How would you group
 - 'The price of crude oil has increased significantly'
 - 'Demand for crude oil outstrips supply'
 - 'Some people do not like the flavor of olive oil'
 - 'The food was very oily'
 - 'Crude oil is in short supply'
 - 'Oil platforms extract oil'
 - 'Canola oil is supposed to be healthy'
 - 'Iraq has significant oil reserves'
 - 'There are different types of cooking oil'

<section-header><text><list-item><list-item><list-item><list-item><list-item><table-container>

Measures of Similarity

- To do clustering we need some measure of similarity.
- This is basically our "critic"
- Computed over a vector of values representing instances
- Types of values depend on domain:
 - Documents: bag of words, linguistic features
 - Purchases: cost, purchaser data, item data
 - Census data: most of what is collected
- Multiple different measures exist

Measures of Similarity

- Semantic similarity (but that's hard)
 - For example, olive oil/crude oil
- Similar attribute counts
 - Number of attributes with the same value
 - Appropriate for large, sparse vectors
 - Bag-of-Words: BoW
- More complex vector comparisons:
 - Euclidean Distance
 - Cosine Similarity

Euclidean Distance

• Euclidean distance: distance between two measures summed across each feature (between points in n-dimensional space)

 $dist(xi, xj) = sqrt((xi1-xj1)^2 + (xi2-xj2)^2 + .. + (xin-xjn)^2)$

• Squared differences give more weight to larger differences

• dist([1,2],[3,8]) = sqrt((1-3)²+(2-8)²) =
sqrt((-2)²+(-6)²) =
sqrt(4+36) =
sqrt(40) =
$$\sim 6.3$$

Euclidean Distance vs Cosine Similarity vs Other

- Cosine Similarity:
 - Measures relative proportions of various features
 - Ignores magnitude
 - When all the correlated dimensions between two vectors are in proportion, you get maximum similarity
- Euclidean Distance:
 - Measures actual distance between two points
 - More concerned with absolutes
- Either can deal with many dimensions
- · Often similar in practice, especially on high dimensional data
- Consider meaning of features/feature vectors for your domain

Justin Washtell @ semanticvoid.com/blog/2007/02/23/similarity-measure-cosine-similarity-or-euclidean-distance-or-both/

17

Clustering Algorithms

- Flat:
 - K means
- Hierarchical:
 - Bottom up
 - Top down (not common)
- Probabilistic:
 - Expectation Maximization (E-M)

Partitioning (Flat) Algorithms

- Partitioning method
 - Construct a **partition** of *n* instances into a set of *k* clusters
- Given: a set of documents and the number k
- Find: a partition of *k* clusters that optimizes the chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions.
 - Usually too expensive.
 - Effective heuristic methods: k-means algorithm.

www.csee.umbc.edu/~nicholas/676/MRSslides/lecture17-clustering.ppt

19

k-means Clustering

- Simplest hierarchical method, widely used
- Create clusters based on a centroid; each instance is assigned to the closest centroid
 - Centroid means "approximate center"
- K is given as a parameter
- Heuristic and iterative

k-means Algorithm

- Choose k (the number of clusters)
- Randomly choose k instances to center clusters on
- Assign each point to the centroid it's closest to, forming clusters +
- Recalculate centroids of new clusters
- Reassign points based on new centroids
- Iterate until...
- Convergence (no point is reassigned) or after a fixed number of iterations.

k-means

- Tradeoff between having more clusters (better focus within each cluster) and having too many clusters.
 - Overfitting is a possibility with too many!
- Results depend on random seed selection.
 - Some seeds can result in slow convergence or convergence to poor clusters
- Algorithm is sensitive to outliers
 - Data points that are very far from other data points
 - Could be errors, special cases, ...

Strengths of k-means

- Strengths:
 - Simple: easy to understand and to implement
 - Efficient: Time complexity: O(tkn),
 - where n is the number of data points,
 - k is the number of clusters, and
 - t is the number of iterations.
 - Since both k and t are small. k-means is considered a linear algorithm.
- K-means is most popular clustering algorithm.
- In practice, performs well, especially on text.

k-means Weaknesses

- Must choose k
 - Poor k \rightarrow poor clusters
 - But sometimes we don't know
- Clusters may differ in size or density
- All attributes are weighted
- Heuristic, based on initial random seeds; clusters may differ from run to run

Expectation Maximization Clustering

- Expectation-Maximization is a core ML algorithm
 - Not just for clustering!
- Basic idea: assign instances to clusters **probabilistically** rather than **absolutely**
 - Instead of assigning membership in a group, learn a probability function for each group
- Instead of absolute assignments, output is probability of **each instance** being in **each cluster**
- Like K-means with soft assignment.
 - Assign point partly to all clusters based on probability it belongs to each
 - Compute weighted averages (centers, and covariances)

Expectation Maximization (EM)

- Probabilistic method for soft clustering
- Idea: learn k classifications from unlabeled data
- Assumes k clusters:{c₁, c₂,... c_k}
- "Soft" version of k-means
- Assumes a probabilistic model of categories (such as Naive Bayes)
- Allows computing $P(c_i \mid I)$ for each category, c_i , for a given instance I

	K-means	EM
Cluster Representation	mean	mean, variance, and weight
Cluster Initialization	randomly select K means	initialize K Gaussian distributions
Expectation	assign each point to closest mean	soft-assign each point to each distribution
Maximization	compute means of current clusters	compute new params of each distribution

Gaussian Mixture Example: Start

EMCLUSTERING ALGORITHM Goal: maximize overall probability of data Iterate between: Expectation: estimate probability that each instance belongs to each cluster Maximization: recalculate parameters of probability distribution for each cluster Until convergence or iteration limit.

(Slightly) More Formally

- Iteratively learn probabilistic categorization model from unsupervised data
- Initially assume random assignment of examples to categories
 - "Randomly label" data
- Learn initial probabilistic model by estimating model parameters θ from randomly labeled data
- Iterate until convergence:
 - Expectation (E-step):
 - Compute P(ci | I) for each instance (example) given the current model
 - Probabilistically re-label the examples based on these posterior probability estimates
 - Maximization (M-step): Re-estimate model parameters, θ, from re-labeled data

EM Summary

- Basically a probabilistic k-means.
- Has many of same advantages and disadvantages
 - Results are easy to understand
 - Have to choose k ahead of time
- Useful in domains when we want likelihood that an instance belongs to more than one cluster
 - Natural language processing for instance
 - "Oil is a valuable commodity" 80% crude, 20% food?

Ethics in AI

Some interesting questions from 20,000 feet

55

Meta-Questions

- Questions we will not answer today:
 - What do "right" and "wrong" mean?
 - Who gets to decide what's right and wrong?
 - How do/should those decisions be made?
 - What should we do about things that are wrong?
- We'll use commonly understood ideas of wrong:
 - It's wrong to harm people
 - Physically, emotionally, financially...
 - It's wrong to discriminate against people
 - It's wrong to steal from people
 - It's wrong to invade people's privacy
 - It's wrong to be **unfair** to people

"Without extenuating circumstances," and understanding that sometimes there's no "right" alternative

BigQuestions	
Can computers "hurt" people?	Absolutely.
What about robots?	Yes.
 Can a machine be "unfair"? An algorithm? 	Sort of. There's a GIGO aspect.
 Why do we, as computing professionals, care? 	Ethics and morals, legal liability
 What are some ways in which AI is doing wrong, right now? 	Let us count the ways

Topics

- We will drive the discussion with current examples:
 - Self-driving cars (and other robots)
 - Discrimination and machine learning
 - Privacy, machine learning, and big data
- ...but we will try to generalize from that

Self-Driving Cars

- Cars can hurt or kill people.
 - How many fatalities is acceptable?
 - Is it enough to not cause accidents?
- People cause accidents!
 - ~38,000 deaths per year in the U.S.
 - Lately it's been going up
 - How many of you text and drive?

Do cars have to be perfect? Just better than humans? Somewhere in between?

59

Harder Questions

- What about naked self-driving cars?
 - No control mechanisms inside at all
- Should it be legal for a person to drive?
 - Even if cars are demonstrably better at it?
- Why?
 - Because I wanna?
 - Because we dislike giving up control?
- Even if you accept the risks, what about my rights?

this is a big question
 that will affect the future

The Hardest One

- When an accident is inevitable...
 - Should the car occupants get hurt?
 - That is, the person who paid for it?
 - If it's not their fault?

Would you buy a car that could hurt or kill you?

- If it could be avoided by hurting or killing someone else?
- But consider:
 - Would you swerve to avoid a kid in the road?
 - What about a baby stroller?
- Who should be deciding these things? Uber?

Discrimination and ML

- Machine learning is only as good as its training data
- GIGO: Garbage In, Garbage Out.
- If we're drawing training data from some source, we perpetuate any bias in that source
- So a "fair" algorithm can yield biased results
 - Depends on source of training data
 - Depends on representation choices
 - Depends on chosen application

Case 1: Predictive Policing

- Predict where more/more serious crimes will occur and concentrate police presence there
 - People there are more likely to be caught/arrested
- "But it works!"
 - Because... more people are arrested in those places?
 - Where you have more police? What about all of them?
 - Studies: it doesn't work better than existing best practices
- Sending someone to jail is one of the few known things that causes subsequent criminal behavior
 - Causes, not correlates with

63

CEO Barbie

- A study of image search results for professions (e.g., CEO)
- Compare gender of results to ground truth from BLS
- Results of study:
 - Women are under-represented in higher-paid fields, over-represented in lower-paid ones
 - 2. People's guess as to the percentage split is affected by images viewed there are real-world consequences

the only

oman

returned in a GIS for "CEO"

How Did This Happen?

- Google Translate is not a "translation" algorithm.
 - It is a pattern-matching, predictive algorithm
- It reproduces patterns, whether or not they are good/appropriate translations
 - Mostly they are, and translations come out
 - Sometimes they are not!
- Why not just hardcode gender-neutrality?
 - Very little of it is hardcoded or even seen by human eyes

* completely

(Why) Is It a Problem?

- Some translations are wrong
 - made-up fake Consider: "President's Erdogan's cook travels with him; ← example her advice is indispensible"*
 - This may be importantly wrong.
- It's self-reinforcing
 - Once published, text becomes part of Google's statistical model
- It affects people's ideas of who can/should do what
 - As mentioned in the CEO Barbie study and others
 - These results and representations do affect minds
 - Think they don't affect yours? Let's look at those survey results.

Government and Privacy

- AI makes it possible to collect more data, correlate it better, analyze it better (clustering, anyone?)
 - Often framed as a dichotomy: "Privacy or safety"
 - We can disagree on the appropriate balance, but...
 - Only if loss of privacy actually leads to improved security
- "Nothing to hide* is, ethically speaking, nonsense
 - You can want to have privacy for many reasons
 - AKA: "I have nothing to hide (*that I think is actually bad, and that could be found out*) and (*I think*) nobody would ever target me for harassment."

Commerce and Privacy

- Read this terrifying longform:
 - http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
- Google vs. Privacy
 - https://techcrunch.com/2013/04/02/google-unified-privacy-policy-vseuropean-data-protection-regulators
- Short summary: Target knows everything.