
11/22/22

1

Sequential Decision Making
Under Uncertainty

material from Marie desJardin, Lise Getoor,
Jean-Claude Latombe, Daphne Koller, Stuart

Russell, Dawn Song, Mark Hasegawa-
Johnson, Svetlana Lazebnik, Pieter Abbeel,

Dan Klein, Lisa Torrey

1

Bookkeeping

• HW5 out tonight, due 12/3
• Planning
• Sequential decision making

• Reinforcement learning

• Today
• Finding policies
• Reinforcement learning

• Next class: (some) project work day
• Bring computers

2

11/22/22

2

Review: The Big Idea

• “Planning”: Find a sequence of steps to accomplish a goal.
• Given start state, transition model, goal functions…

• This is a kind of sequential decision making.
• Transitions are deterministic.

• What if they are stochastic (probabilistic)?
• One time in ten, you drop your sock instead of putting it on

• Probabilistic Planning: Make a plan that accounts for probability by
carrying it through the plan.

3

3

Review: Transition Model

• A transition model is a specification of the outcome probabilities for
each action in each possible state.

• T(s,a,s’) denotes the probability of reaching state s’ if action a is done
on state s.

• Make Markov Assumption, i.e., the probability of reaching state s’
from s depends only on s and not on the history of earlier states.

4

4

11/22/22

3

Review: Policies

• In every state, we need to know what to do
• The goal doesn’t change
• A policy (P) is a complete mapping from
states to actions
• “If in [3,2], go up; if in [3,1], go left; if in…”

-1

+1

2

3

1

4321

5

Review: Optimal Policy

• An Optimal policy is a policy that yields the highest expected utility.

• Optimal policy is denoted by π*.

• Once a π* is computed for a problem, then the agent, once identifying
the state (s) that it is in, consults π*(s) for the next action to execute.

6

6

11/22/22

4

Review: Policies

• A policy p gives an action for each state,
p: S → A

• In deterministic single-agent search
problems, we wanted an optimal plan,
or sequence of actions, from start to a
goal

• For MDPs, we want an optimal policy
p*: S → A
• An optimal policy maximizes expected utility
• An explicit policy defines a reflex agent

7

Computing the optimal policy π*

• Additive utility

• State utilities

• Action sequences

• The Bellman equation

• Value iteration

• Policy iteration

8

11/22/22

5

Additive Utility

• History H = (s0,s1,…,sn)

• The utility of H is additive iff:
U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = S R(i)

9

Reward
• The reward accumulates

as you step through
states.

9

Additive Utility

• History H = (s0,s1,…,sn)

• The utility of H is additive iff:
U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = S R(i)

• Robot navigation example:
• R(n) = +1 if sn = [4,3]

• R(n) = -1 if sn = [4,2]

• R(i) = -1/25 if i = 0, …, n-1

10

-1

+1

10

11/22/22

6

Defining the optimal policy

• Given a policy p, we can define the expected utility over all possible
state sequences produced by following that policy:

• The optimal policy should maximize this utility

• But how to define the utility of a state sequence?
• Sum of rewards of individual states

• Problem: infinite state sequences

U π (s0) = P(sequence)U(sequence)
state sequences
starting from s0

∑

11

Utilities of state sequences
• Normally, we would define the utility of a state sequence as the sum of the

rewards of the individual states

• Problem: infinite state sequences

• Solution: discount the individual state rewards by a factor g between 0 and 1:

• Sooner rewards “count” more than later rewards

• Makes sure the total utility stays bounded

• Helps algorithms converge

)10(
1

)(

)()()(]),,,([

max

0

2
2

10210

<<
-

£=

+++=

å
¥

=

g
g

g

gg
RsR

sRsRsRsssU

t
t

t

!!

12

11/22/22

7

Sum of discounted rewards
• To define the utility of a state sequence, discount the individual state rewards

by a factor g between 0 and 1:

• When g = 1 this is just additive utility

U([s0, s1, s2,...]) = R(s0)+γR(s1)+γ
2R(s2)+...

13

Utilities of states

• Expected utility obtained by policy p starting in state s:

𝑈" 𝑠 = %
&'(') &)*+),-)&
&'(.'/,0 1.23 &

𝑃 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒|𝑠, 𝑎 = 𝜋 𝑠 𝑈 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

• The “true” utility of a state, denoted U(s), is the best possible
expected sum of discounted rewards
• if the agent executes the best possible policy starting in state s

• Reminiscent of minimax values of states

14

11/22/22

8

Defining State Utility

Problem:

• When making a decision, we only know the reward so far, and the
possible actions

• We’ve defined utility retroactively (i.e., the utility of a history is known
once we finish it)

• What is the utility of a particular state in the middle of decision
making?

• Need to compute expected utility of possible future histories

17

17

Finding the utilities of states

• If state s’ has utility U(s’), then
what is the expected utility of
taking action a in state s?

• How do we choose the optimal
action?

U(s’)

Max node

Chance
node

P(s’ |
s, a)

• What is the recursive expression for U(s) in terms of the
utilities of its successor states?

18

11/22/22

9

Finding the utilities of states

• If state s’ has utility U(s’), then
what is the expected utility of
taking action a in state s?

• How do we choose the optimal
action?

å
'

)'(),|'(
s

sUassP

U(s’)

Max node

Chance
node

P(s’ |
s, a)

• What is the recursive expression for U(s) in terms of the
utilities of its successor states?

19

Finding the utilities of states

• If state s’ has utility U(s’), then
what is the expected utility of
taking action a in state s?

• How do we choose the optimal
action?

å
'

)'(),|'(
s

sUassP

U(s’)

Max node

Chance
node

å
Î

=
')(

*)'(),|'(maxarg)(
ssAa

sUassPsp
P(s’ |
s, a)

• What is the recursive expression for U(s) in terms of the
utilities of its successor states?

20

11/22/22

10

Finding the utilities of states

• If state s’ has utility U(s’), then
what is the expected utility of
taking action a in state s?

• How do we choose the optimal
action?

å
'

)'(),|'(
s

sUassP

U(s’)

Max node

Chance
node

å
Î

=
')(

*)'(),|'(maxarg)(
ssAa

sUassPsp
P(s’ |
s, a)

• What is the recursive expression for U(s) in terms of the
utilities of its successor states?

å+=
'

)'(),|'(max)()(
s

a sUassPsRsU g

21

The Bellman equation

• Recursive relationship between the utilities of successive states:

å
Î

+=
')(

)'(),|'(max)()(
ssAa

sUassPsRsU g

End up here with P(s’ | s, a)
Get utility U(s’)

(discounted by g)

Receive reward R(s)

Choose optimal action a

22

11/22/22

11

The Bellman equation

• Recursive relationship between the utilities of successive states:

• For N states, we get N equations in N unknowns
• Solving them solves the MDP

• The “max” means that there is no closed-form solution. Need to use an
iterative solution method, which might not converge to the globally optimum
solution.

• Two solution methods: value iteration and policy iteration

å
Î

+=
')(

)'(),|'(max)()(
ssAa

sUassPsRsU g

23

Method 1: Value iteration

• Start out with iteration 𝑖 = 0, every 𝑈/ (𝑠) = 0

• Iterate until convergence
• During the ith iteration, update the utility of each state according to this rule:

• So we’re looking at utility of each state based on its successors

• In the limit of infinitely many iterations, guaranteed to find the correct
utility values.
• Error decreases exponentially, so in practice, don’t need infinite iterations

å
Î+ +¬

')(1)'(),|'(max)()(
s

isAai sUassPsRsU g

24

11/22/22

12

The Value Iteration Algorithm
function ValueIteration(𝕊, A, p, R, 𝛾, 𝜀)

N = size of 𝕊.
U′ =new array of doubles, of size N.
Initialize all values of U′ to 0.
repeat:

U = copy of array U′
δ = 0
for each state s in 𝕊:

UN 𝑠 = 𝑅 𝑠 + 𝛾 max
(∈U &

∑&W 𝑝 𝑠N 𝑠, 𝑎)U 𝑠′

if UN 𝑠 − U 𝑠 > δ then δ = UN 𝑠 − U 𝑠
until δ < 𝜀(1 − 𝛾)/𝛾
return U

25

The Value Iteration Algorithm
function ValueIteration(𝕊, A, p, R, 𝛾, 𝜀)

N = size of 𝕊.
U′ =new array of doubles, of size N.
Initialize all values of U′ to 0.
repeat:

U = copy of array U′
δ = 0
for each state s in 𝕊:

UN 𝑠 = 𝑅 𝑠 + 𝛾 max
(∈U &

∑&W 𝑝 𝑠N 𝑠, 𝑎)U 𝑠′

if UN 𝑠 − U 𝑠 > δ then δ = UN 𝑠 − U 𝑠
until δ < 𝜀(1 − 𝛾)/𝛾
return U

It can be proven
that this algorithm
converges to the
correct solutions of
the Bellman
equations. Details
can be found in
Russell and
Norvig.

26

11/22/22

13

The Value Iteration Algorithm
function ValueIteration(𝕊, A, p, R, 𝛾, 𝜀)

N = size of 𝕊.
U′ =new array of doubles, of size N.
Initialize all values of U′ to 0.
repeat:

U = copy of array U′
δ = 0
for each state s in 𝕊:

UN 𝑠 = 𝑅 𝑠 + 𝛾 max
(∈U &

∑&W 𝑝 𝑠N 𝑠, 𝑎)U 𝑠′

if UN 𝑠 − U 𝑠 > δ then δ = UN 𝑠 − U 𝑠
until δ < 𝜀(1 − 𝛾)/𝛾
return U

The main operation is
in red.

Use the Bellman
equation to update
values 𝑈(𝑠) using the
previous estimates for
those values.

This is called a
Bellman update.

27

The Value Iteration Algorithm
function ValueIteration(𝕊, A, p, R, 𝛾, 𝜀)

N = size of 𝕊.
U′ =new array of doubles, of size N.
Initialize all values of U′ to 0.
repeat:

U = copy of array U′
δ = 0
for each state s in 𝕊:

UN 𝑠 = 𝑅 𝑠 + 𝛾 max
(∈U &

∑&W 𝑝 𝑠N 𝑠, 𝑎)U 𝑠′

if UN 𝑠 − U 𝑠 > δ then δ = UN 𝑠 − U 𝑠
until δ < 𝜀(1 − 𝛾)/𝛾
return U

So, the value iteration
algorithm is:

Initialize utilities of
states to zero values.

Repeatedly update
utilities of states using
Bellman updates, until
the estimated values
converge.

28

11/22/22

14

A Value Iteration Example

• Let's see how the value
iteration algorithm works
on our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a

non-terminal state.
• 𝛾 = 0.9

• We initialize all utility
values to 0.

+1

-1

START1

2

3

1 2 3 4

0 0 0 0

0 0 0

0 0 0 01

2

3

1 2 3 4
Utility Values

29

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

-0.04 -0.04 -0.04 +1

-0.04 -0.04 -1

-0.04 -0.04 -0.04 -0.041

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after one
round of updates:
• The current estimate for each

state 𝑠 is 𝑅(𝑠).

30

11/22/22

15

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

-0.08 -0.08 0.67 +1

-0.08 -0.08 -1

-0.08 -0.08 -0.08 -0.081

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after two
rounds of updates:
• Information about the +1

reward reached state (3,3).

31

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

-0.11 0.43 0.73 +1

-0.11 0.35 -1

-0.11 -0.11 -0.11 -0.111

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after three
rounds of updates:
• Information about the +1

reward reached more states.

32

11/22/22

16

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

0.25 0.57 0.78 +1

-0.14 0.43 -1

-0.14 -0.14 0.19 -0.141

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after four
rounds of updates:
• Information about the +1

reward reached more states.

33

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

0.38 0.62 0.79 +1

0.12 0.47 -1

-0.16 0.07 0.24 -0.011

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after five
rounds of updates:
• Information about the +1

reward reached more states.

34

11/22/22

17

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

0.45 0.64 0.79 +1

0.25 0.48 -1

0.04 0.15 0.30 0.051

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after six
rounds of updates:
• Information about the +1

reward has reached all states.

35

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

0.48 0.65 0.79 +1

0.33 0.48 -1

0.16 0.21 0.32 0.091

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after seven
rounds of updates:
• Values keep getting

updated.

36

11/22/22

18

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

0.50 0.65 0.80 +1

0.37 0.49 -1

0.23 0.23 0.34 0.111

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after eight
rounds of updates:
• Values continue changing.

37

A Value Iteration Example +1

-1

START1

2

3

1 2 3 4

0.51 0.65 0.80 +1

0.40 0.49 -1

0.30 0.25 0.34 0.131

2

3

1 2 3 4
Utility Values

• Let's see how the value
iteration algorithm works on
our example.

• Assume:
• 𝑅 𝑠 = −0.04 if 𝑠 is a non-

terminal state.
• 𝛾 = 0.9

• This is the result after 13
rounds of updates:
• Values don't change much

anymore after this round.

38

11/22/22

19

Computing the Optimal Policy

• The value iteration algorithm computes U 𝑠 for every state 𝑠.

• Once we have computed all values U 𝑠 , we can get the optimal policy 𝜋∗
using this equation:

• 𝜋∗ 𝑠 = argmax
(∈U(&)

∑&N 𝑝 𝑠N 𝑠, 𝑎)𝑈 𝑠N

• Thus, 𝜋∗ 𝑠 identifies the action that leads to the highest expected utility for
the next state, as measured over all possible outcomes of that action.

• This approach is called one-step look-ahead.

39

39

Approach 2: Policy Iteration
• There is a more efficient algorithm for computing optimal policies

• Remember that, if we know the utility of each state, we can compute the
optimal policy 𝜋∗ using:

𝜋∗ 𝑠 = argmax
(∈U(&)

%
&N

𝑝 𝑠N 𝑠, 𝑎)𝑈 𝑠N

• However, to get the right 𝜋∗ 𝑠 , we don't need to know the utilities very
accurately.

• We just need to know the utilities accurately enough so that, for each state 𝑠,
argmax chooses the right action.

40

40

11/22/22

20

Method 2: Policy Iteration

• Start with some initial policy p0 and alternate between the following
steps:
• Policy Evaluation: calculate the utility of every state under the assumption

that the given policy is fixed and unchanging.
• Policy Improvement: calculate a new policy pi+1 based on the updated utilities.

• Kind of like gradient descent in neural networks:
• Policy evaluation: Find ways in which the current policy is suboptimal
• Policy improvement: Fix those problems

• Unlike Value Iteration, this is guaranteed to converge in a finite
number of steps, as long as the state space and action set are both
finite.

41

The Policy Iteration Algorithm

• This alternative algorithm for computing optimal policies is called the
policy iteration algorithm.

• It is an iterative algorithm.

• Initialization:
• Initiate some policy 𝜋c with random choices for the best action at each state.

• Main loop:
• Policy evaluation: given the current policy 𝜋/, calculate utility values 𝑈"d(s),

corresponding to the utility of each state s if the agent follows policy 𝝅𝒊.
• Policy improvement: Given current utility values 𝑈"d(s), use one-step look-

ahead to compute new policy 𝜋/gh.

42

42

11/22/22

21

The Policy Evaluation Step
• Task: calculate utility values 𝑈"d(s), corresponding to the assumption that the

agent follows policy 𝝅𝒊.

• When the policy was not known, we used the Bellman equation:

U 𝑠 = 𝑅 𝑠 + 𝛾 max
(∈U(&)

%
&N

𝑝 𝑠N 𝑠, 𝑎)𝑈 𝑠N

• Now that the policy 𝜋/ is specified, we can instead use a simplified version of the
Bellman equation:

𝑈"d 𝑠 = 𝑅 𝑠 + 𝛾%
&N

𝑝 𝑠N 𝑠, 𝜋/(𝑠))𝑈"d 𝑠N

• Key difference: now 𝜋/(𝑠) specifies the action for each state 𝑠, so we do not need
to look for the max over all possible actions.

43

43

The Policy Evaluation Step

• 𝑈"d 𝑠 = 𝑅 𝑠 + 𝛾 ∑&N 𝑝 𝑠N 𝑠, 𝜋/(𝑠))𝑈"d 𝑠N

• This is a linear equation.
• The original Bellman equation, taking the max out of all possible actions, is

not linear.

• If we have 𝑁 states, we get 𝑁 linear equations of this form, with 𝑁
unknowns.

• We can solve those 𝑁 linear equations in O 𝑁k time, using
standard linear algebra methods.

44

44

11/22/22

22

The Policy Evaluation Step
• For large state spaces, O 𝑁k is prohibitive.

• Alternative: do some rounds of iterations.

• Obviously, doing 𝐾 iterations does not guarantee that the utilities are computed
correctly.

• Parameter 𝐾 allows us to trade speed for accuracy. Larger values lead to slower
runtimes and higher accuracy.

45

function PolicyEvaluation(𝕊, p, R, 𝛾, 𝜋/, 𝐾, U)
Uc = copy of U
for 𝒌 = 𝟏 to 𝑲:

for each state s in 𝕊:
𝑈p 𝑠 = 𝑅 𝑠 + 𝛾 ∑&N 𝑝 𝑠N 𝑠, 𝜋/(𝑠))𝑈pqh 𝑠N

return 𝑈p

45

The Policy Evaluation Step
• For large state spaces, O 𝑁k is prohibitive.

• Alternative: do some rounds of iterations.

• The PolicyEvaluation function takes as argument a current estimate U.

46

function PolicyEvaluation(𝕊, p, R, 𝛾, 𝜋/, 𝐾, U)
Uc = copy of U
for 𝒌 = 𝟏 to 𝑲:

for each state s in 𝕊:
𝑈p 𝑠 = 𝑅 𝑠 + 𝛾 ∑&N 𝑝 𝑠N 𝑠, 𝜋/(𝑠))𝑈pqh 𝑠N

return 𝑈p

46

11/22/22

23

Policy Iteration

• Pick a policy π at random

• Repeat:
• Compute the utility of each state for π

Ut+1(i) ßR(i) + SkP(k | π(i).i) Ut(k)

• Compute the policy π’ given these utilities

π’ (i) = arg maxa SkP(k | a.i) U(k)
• If π’ = π then return π

47

47

Policy Iteration: Convergence

• Convergence assured in a finite number of iterations
• Since finite number of policies and each step improves value, then must

converge to optimal

• Gives exact value of optimal policy

48

48

11/22/22

24

Policy Iteration Complexity

• Each iteration runs in polynomial time in the number of states and
actions

• There are at most |A|n policies and PI never repeats a policy
• So at most an exponential number of iterations

• Not a very good complexity bound

• Empirically O(n) iterations are required – often it seems like O(1)

• Recent polynomial bounds.

49

49

Value Iteration: Summary

• Value iteration:
• Initialize state values (expected utilities) randomly
• Repeatedly update state values using best action, according to current

approximation of state values

• Terminate when state values stabilize
• Resulting policy will be the best policy because it’s based on accurate state

value estimation

50

50

11/22/22

25

Policy Iteration: Summary

• Policy iteration:
• Initialize policy randomly
• Repeatedly update state values using best action, according to current

approximation of state values

• Then update policy based on new state values
• Terminate when policy stabilizes

• Resulting policy is the best policy, but state values may not be accurate
(may not have converged yet)

• Policy iteration is often faster (because we don’t have to get the state
values right)

51

51

Value Iteration vs. Policy Iteration

• Which is faster? VI or PI
• It depends on the problem

• VI takes more iterations than PI, but PI requires more time on each
iteration
• PI must perform policy evaluation on each iteration which involves solving a

linear system

• VI is easier to implement since it does not require the policy
evaluation step

• Both methods have a major weakness: They require us to know the
transition function exactly in advance!

52

11/22/22

26

Reinforcement Learning: Overview

• Machine Learning: A quick retrospective

• Reinforcement Learning

• Next time:
• The EM algorithm
• Monte Carlo and Temporal Difference

53

Review: What is ML?
• ML is a way to get a computer to do things without having to explicitly

describe what steps to take.

• By giving it examples (training data)

• Or by giving it feedback

• It can then look for patterns which explain or predict what happens.

• The learned system of beliefs is called a model.

54

54

11/22/22

27

Review: Architecture of an ML System
• Every machine learning system has four parts:

• A representation or model of what is being learned.
• An actor: Uses the representation and actually does something.

• A critic: Provides feedback.
• A learner: Modifies the representation / model, using the feedback.

55

55

Review: Representation

• A learning system must have a representation or model of what is
being learned.

• This is what changes based on experience.

• In a machine learning system this may be:
• A mathematical model or formula
• A set of rules

• A decision tree
• A policy
• Or some other form of information

57

57

11/22/22

28

Review: Formalizing Agents

• Given:
• A state space S
• A set of actions a1, …, ak including their results

• Reward value at the end of each trial (series of action) (may be positive or
negative)

• Output:
• A mapping from states to actions
• Which is a policy, π

58

58

Learning Without a Model

• We saw how to learn a value function and/or a policy from a transition model

• What if we don’t have a transition model?

• Idea #1: Build one
• Explore the environment for a long time
• Record all transitions
• Learn the transition model
• Apply value iteration/policy iteration
• Slow, requires a lot of exploration, no intermediate learning

• Idea #2: Learn a value function (or policy) directly from interactions with the
environment, while exploring

59

11/22/22

29

Reinforcement Learning

• We often have an agent which has a task to perform
• It takes some actions in the world
• At some later point, gets feedback on how well it did

• The agent performs the same task repeatedly

• This problem is called reinforcement learning:
• The agent gets positive reinforcement for tasks done well
• And gets negative reinforcement for tasks done poorly

• Must somehow figure out which actions to take next time

60

60

Reinforcement Learning (RL)

• RL algorithms attempt to find a policy
• Maximizing cumulative reward for the agent over the course of the problem

• Typically represented by a Markov Decision Process

• RL differs from supervised learning:
• Correct input/output pairs are never presented
• Sub-optimal actions never explicitly corrected

61

11/22/22

30

Typical Applications

• Robotics
• Helicopter control
• Robo-soccer

• Board games
• Checkers
• Backgammon
• Go/Atari

• Scheduling
• Dynamic channel allocation
• Inventory problems

62

62

Recap: Defining MDPs
• Markov decision processes:

• States S
• Start state s0

• Actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount g)

• MDP quantities so far:
• Policy = Choice of action for each state
• Utility (or return) = sum of discounted rewards

a
s

s, a

s,a,
s’ s

’

63

63

11/22/22

31

Animals Game

• Human: I’m thinking of an animal.
• Computer: Is it a bird?

• Human: No.
• Computer: Is it a frog?

• Human: No.
• Computer: What is it?

• Human: A mouse.
• Computer: Tell me a question that distinguishes a frog from a mouse.
• Human: Does it have fur?
• Computer: What is the answer for a frog?
• Human: No.

64

64

Animals Behind the Scene

65

Is it a bird?

Is it a penguin?

Yes

Does it have fur?

No

Is it a mouse? Is it a frog?

Yes No

After several rounds...

Computer: Is it a bird?
Human: No
Computer: Is it a frog?
Human: No
Computer: What is it?
Human: A mouse
Computer: Tell me a
question that distinguishes
a frog from a mouse.
Human: Does it have fur?
Computer: What is the
answer for a frog?
Human: no

65

11/22/22

32

Animals Guessing Game Architecture
• All of the parts of ML Architecture:

• The Representation is a sequence of questions and pairs of yes/no answers
(called a binary decision tree).

• The Actor “walks” the tree, interacting with a human; at each question it
chooses whether to follow the “yes” branch or the “no” branch.

• The Critic is the human player telling the game whether it has guessed
correctly.

• The Learner elicits new questions and adds questions, guesses and branches
to the tree.

66

66

Reinforcement Learning

• This is a simple form of Reinforcement Learning

• Feedback is at the end, on a series of actions.

• Very early concept in Artificial Intelligence!

• Arthur Samuels’ checker
program was a simple
reinforcement based learner,
initially developed in 1956.

• In 1962 it beat a human
checkers master.

www-03.ibm.com/ibm/history/ibm100/
us/en/icons/ibm700series/impacts/

67

11/22/22

33

Reinforcement Learning (cont.)
• Goal: agent acts in the world to maximize its rewards

• Agent has to figure out what it did that made it get that
reward/punishment
• This is known as the credit assignment problem

• RL can be used to train computers to do many tasks
• Backgammon and chess playing

• Job shop scheduling
• Controlling robot limbs

68

68

• Learning how to act to accomplish goals
• Given: Environment that contains rewards
• Learn: A policy for acting

• Important differences from classification
• You don’t get examples of correct answers
• You have to try things in order to learn

Procedural Learning

69

11/22/22

34

RL as Operant Conditioning

• RL shapes behavior using reinforcement
• Agent takes actions in an environment (in episodes)
• Those actions change the state and trigger rewards

• Through experience, an agent learns a policy for acting
• Given a state, choose an action
• Maximize cumulative reward during an episode

• Interesting things about this problem
• Requires solving credit assignment

• What action(s) are responsible for a reward?
• Requires both exploring and exploiting

• Do what looks best, or see if something else is really best?

70

• Search-based: evolution directly on a policy
• E.g. genetic algorithms

• Model-based: build a model of the environment
• Then you can use dynamic programming

• Memory-intensive learning method

• Model-free: learn a policy without any model
• Temporal difference methods (TD)
• Requires limited episodic memory (though more helps)

Types of Reinforcement Learning

71

11/22/22

35

Simple Example

• Learn to play checkers
• Two-person game
• 8x8 boards, 12 checkers/side

• relatively simple set of rules:
http://www.darkfish.com/chec
kers/rules.html

• Goal is to eliminate all your
opponent’s pieces

https://pixabay.com/en/checker-board-black-game-pattern-29911

72

Representing Checkers

• First we need to represent the game

• To completely describe one step in the game you need
• A representation of the game board.
• A representation of the current pieces

• A variable which indicates whose turn it is
• A variable which tells you which side is “black”

• There is no history needed

• A look at the current board setup gives you
a complete picture of the state of the game

73

which makes it
a ___ problem?

73

http://www.darkfish.com/checkers/rules.html

11/22/22

36

Representing Rules

• Second, we need to represent the rules

• Represented as a set of allowable moves given board state
• If a checker is at row x, column y, and row x+1 column y±1 is empty, it can

move there.
• If a checker is at (x,y), a checker of the opposite color is at (x+1, y+1), and

(x+2,y+2) is empty, the checker must move there, and remove the “jumped”
checker from play

• There are additional rules, but all can be expressed in terms of the
state of the board and the checkers

• Each rule includes the outcome of the relevant action in terms of the
state

74

74

What Do We Want to Learn?

• Given
• A description of some state of the game
• A list of the moves allowed by the rules

• What move should we make?

• Typically more than one move is possible
• Need strategies, heuristics, or hints about what move to make
• This is what we are learning

• We learn from whether the game was won or lost
• Information to learn from is sometimes called “training signal”

77

77

11/22/22

37

Simple Checkers Learning

• Can represent some heuristics in the same formalism as the board
and rules
• If there is a legal move that will create a king, take it.

• If checkers at (7,y) and (8,y-1) or (8,y+1) is free, move there.
• If there are two legal moves, choose the one that moves a checker farther

toward the top row

• If checker(x,y) and checker(p,q) can both move, and x>p, move
checker(x,y).

• But then each of these heuristics needs some kind of priority or weight.

78

78

Formalization for RL Agent

• Given:
• A state space S
• A set of actions a1, …, ak including their results

• A set of heuristics for resolving conflict among actions
• Reward value at the end of each trial (series of action) (may be positive or

negative)

• Output:
• A policy (a mapping from states to preferred actions)

79

79

11/22/22

38

Learning Agent

• The general algorithm for this learning agent is:
• Observe some state
• If it is a terminal state

• Stop
• If won, increase the weight on all heuristics used

• If lost, decrease the weight on all heuristics used
• Otherwise choose an action from those possible in that state, using heuristics

to select the preferred action

• Perform the action

80

80

Policy

• A complete mapping from states to actions
• There must be an action for each state
• There may be more than one action
• Not necessarily optimal

• The goal of a learning agent is to tune the policy so that the preferred
action is optimal, or at least good.
• Analogous to training a classifier

• Checkers
• Trained policy includes all legal actions, with weights
• “Preferred” actions are weighted up

81

81

11/22/22

39

Approaches

• Learn policy directly: Discover function mapping from states to actions
• Could be directly learned values

• Ex: Value of state which removes last opponent checker is +1.

• Or a heuristic function which has itself been trained

• Learn utility values for states (value function)
• Estimate the value for each state
• Checkers:

• How happy am I with this state that turns a piece into a king?

82

82

Value Function

• The agent knows what state it is in

• It has actions it can perform in each state

• Initially, don’t know the value of any of the states

• If the outcome of performing an action at a state is deterministic, then
the agent can update the utility value U() of states:
• U(oldstate) = reward + U(newstate)

• The agent learns the utility values of states as it works its way through
the state space

83

83

11/22/22

40

Learning States and Actions

• A typical approach is:

• At state S choose, some action A

• Taking us to new State S1
• If S1 has a positive value: increase value of A at S.
• If S1 has a negative value: decrease value of A at S.
• If S1 is new, initial value is unknown: value of A unchanged.

• One complete learning pass or trial eventually gets to a terminal,
deterministic state. (E.g., “win” or “lose”)

• Repeat until? Convergence? Some performance level?

84

ß How?

84

Selecting an Action

• Simply choose action with highest (current) expected utility?

• Problem: each action has two effects
• Yields a reward on current sequence
• Gives information for learning future sequences

• Trade-off: immediate good for long-term well-being
• Like trying a shortcut: might get lost, might find quicker path

• Exploration vs. exploitation

85

85

11/22/22

41

Exploration vs. Exploitation

• Problem with naïve reinforcement learning:
• What action to take?
• Best apparent action, based

on learning to date
• Greedy strategy
• Often prematurely converges to a suboptimal policy!

• Random (or unknown) action
• Will cover entire state space
• Very expensive and slow to learn!
• When to stop being random?

• Balance exploration (try random actions) with exploitation (use best
action so far)

} Exploitation

} Exploration

86

More on Exploration

• Agent may sometimes choose to explore suboptimal moves in hopes
of finding better outcomes
• Only by visiting all states frequently enough can we guarantee learning the

true values of all the states

• When the agent is learning, ideal would be to get accurate values
for all states
• Even though that may mean getting a negative outcome

• When agent is performing, ideal would be to get optimal outcome

• A learning agent should have an exploration policy

87

87

11/22/22

42

Exploration Policy

• Wacky approach (exploration): act randomly in hopes of eventually
exploring entire environment
• Choose any legal checkers move

• Greedy approach (exploitation): act to maximize utility using current
estimate
• Choose moves that have in the past led to wins

• Reasonable balance: act more wacky (exploratory) when agent has
little idea of environment; more greedy when the model is close to
correct
• Suppose you know no checkers strategy?
• What’s the best way to get better?

88

88

Example: N-Armed Bandits

• A row of slot machines

• Which to play and how often?

• State Space is a set of machines
• Each has cost, payout, and percentage values

• Action is pull a lever.

• Each action has a positive or negative result
• …which then adjusts the perceived utility of that action (pulling that lever)

89

¢25
$100
0.1%

¢95
$200
0.6%

$10
$900
10%

89

11/22/22

43

N-Armed Bandits Example

• Each action initialized to a standard payout

• Result is either some cash (a win) or none (a lose)

• Exploration: Try things until we have estimates for payouts

• Exploitation: When we have some idea of the value of each action,
choose the best.

• Clearly this is a heuristic.

• No proof we ever find the best lever to pull!
• The more exploration we can do the better our model
• But the higher the cost over multiple trials

90

After some # of successful trials, or
with some statistical confidence,
or when our value function isn’t
changing (much), or...

90

Mathematical Model - MDP

• Markov decision processes

• S - set of states

• A - set of actions

• 𝛿 - Transition probability

• R - Reward function

91

11/22/22

44

• Search-based: evolution directly on a policy
• E.g. genetic algorithms

• Model-based: build a model of the environment
• Then you can use dynamic programming

• Memory-intensive learning method

• Model-free: learn a policy without any model
• Temporal difference methods (TD)
• Requires limited episodic memory (though more helps)

Types of Reinforcement Learning

92

• Actor-critic learning
• The TD version of Policy Iteration

• Q-learning
• The TD version of Value Iteration

• This is the most widely used RL algorithm

Types of Model-Free RL

93

11/22/22

45

• Current state: s

• Current action: a

• Transition function: δ(s, a) = sʹ

• Reward function: r(s, a) Є R

• Policy π(s) = a

• Q(s, a) ≈ value of taking action a from state s

Q-Learning: Definitions
Markov property: this is
independent of previous
states given current state

In classification we’d
have examples (s,
π(s)) to learn from

94

The Q-function
• Q(s, a) estimates the discounted cumulative reward

• Starting in state s
• Taking action a
• Following the current policy thereafter

• Suppose we have the optimal Q-function
• What’s the optimal policy in state s?
• The action argmaxbQ(s, b)

• But we don’t have the optimal Q-function at first
• Let’s act as if we do
• And updates it after each step so it’s closer to optimal
• Eventually it will be optimal!

95

11/22/22

46

Q-Learning: Updates

• The basic update equation

• With a discount factor to give later rewards less impact

• With a learning rate for non-deterministic worlds

),'(max),(),(bsQasrasQ bg+¾¾¬

[] []),'(max),(),(1),(bsQasrasQasQ bgaa ++-¾¾¬

),'(max),(),(bsQasrasQ b+¾¾¬

96

Q-Learning: Update Example

1 2 3

4 5 6

7 8 9

1
0

1
1

=®),(11 asQ

97

11/22/22

47

Q-Learning: Update Example

1 2 3

4 5 6

7 8 9

1
0

1
1

g+=¯ 0),(9 asQ

98

Q-Learning: Update Example

1 2 3

4 5 6

7 8 9

1
0

1
1

2
8 0),(g+=®asQ

g

99

11/22/22

48

The Need for Exploration

1 2 3

4 5 6

7 8 9

1
0

1
1

g2g3g

4g

5g 6g

=¬),(maxarg 2 asQ
=®best

Explore!

100

RL Summary 1:

• Reinforcement learning systems
• Learn series of actions or decisions, rather than a single decision
• Based on feedback given at the end of the series

• A reinforcement learner has
• A goal
• Carries out trial-and-error search
• Finds the best paths toward that goal

101

101

11/22/22

49

Exploration/Exploitation

• Can’t always choose the action with highest Q-value
• The Q-function is initially unreliable
• Need to explore until it is optimal

• Most common method: ε-greedy
• Take a random action in a small fraction of steps (ε)
• Decay ε over time

• There is some work on optimizing exploration
• Kearns & Singh, ML 1998
• But people usually use this simple method

102

Q-Learning: Convergence

• Under certain conditions, Q-learning will converge to the correct
Q-function
• The environment model doesn’t change

• States and actions are finite
• Rewards are bounded

• Learning rate decays with visits to state-action pairs
• Exploration method would guarantee infinite visits to every state-action

pair over an infinite training period

103

11/22/22

50

Challenges in Reinforcement Learning

• Feature/reward design can be very involved
• Online learning (no time for tuning)
• Continuous features (handled by tiling)

• Delayed rewards (handled by shaping)

• Parameters can have large effects on learning speed

• Realistic environments can have partial observability

• Realistic environments can be non-stationary

• There may be multiple agents

104

RL Summary 2:

• A typical reinforcement learning system is an active agent, interacting
with its environment.

• It must balance:
• Exploration: trying different actions and sequences of actions to discover

which ones work best

• Exploitation (achievement): using sequences which have worked well so far

• Must learn successful sequences of actions in an uncertain
environment

105

105

11/22/22

51

RL Summary 3

• Very hot area of research at the moment

• There are many sophisticated RL algorithms
• Most notably: probabilistic approaches

• Applicable to game-playing, search, finance, robot control, driving,
scheduling, diagnosis, …

106

106

