11/22/22

Sequential Decision Making
Under Uncertainty

R.0.B-0.T. Comics

"HIS PATH-PLANNING MAY BE

SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Bookkeeping

HWS5 out tonight, due 12/3
Planning
Sequential decision making

* Reinforcement learning

Today
Finding policies

Reinforcement learning

Next class: (some) project work day

Bring computers

11/22/22

Review: The Big Idea

“Planning”: Find a sequence of steps to accomplish a goal.

* Given start state, transition model, goal functions...

This is a kind of sequential decision making.

Transitions are deterministic.

What if they are stochastic (probabilistic)?

One time in ten, you drop your sock instead of putting it on

Probabilistic Planning: Make a plan that accounts for probability by
carrying it through the plan.

Review: Transition Model

» A transition model is a specification of the outcome probabilities for
each action in each possible state.

* T(s,a,s’) denotes the probability of reaching state s’ if action a is done
on state s.

* Make Markov Assumption, i.e., the probability of reaching state s’
from s depends only on s and not on the history of earlier states.

11/22/22

Review: Policies

e In every state, we need to know what to do

— | — | -] 4]
21.1'1
14—4—4—
1 2 3 4

e The goal doesn’t change

e A policy (IT) is a complete mapping from

states to actions

e “If in [3,2], go up; if in [3,1], go left; if in..."

Review: Optimal Policy

* An Optimal policy is a policy that yields the highest expected utility.

* Optimal policy is denoted by *.

* Once am*iscomputed for a problem, then the agent, once identifying
the state (s) that it is in, consults *(s) for the next action to execute.

11/22/22

Review: Policies

* A policy t gives an action for each state,
mTS>A

* In deterministic single-agent search
problems, we wanted an optimal plan,
or sequence of actions, from start to a
goal

* For MDPs, we want an optimal policy
T*:S>A
An optimal policy maximizes expected utility
An explicit policy defines a reflex agent

Computing the optimal policy m*

« Additive utility

+ State utilities

* Action sequences

* The Bellman equation
* Value iteration

* Policy iteration

11/22/22

Additive Utility

« History H = (s,,s,,...,S,)

The utility of H is additive iff:
WU(SS,r-/8,) = RA0) + WU(Sy...,5,) = 2 Ri)

Reward
« The reward accumulates

as you step through

states.
9
Additive Utility
« History H = (s,,s,,...,S,)
The utility of H is additive iff:
W(S0,S1r-50) = RAO) + U(s,,...,5,) = 2 R(i)
« Robot navigation example:
° R(n)=+1 if S, = [4,3] —_ | — +1
© R =-1ifs, = [4,2] I. p
* R(i)=-1/25ifi=0, ..., n-1 1 - -
10

11/22/22

Defining the optimal policy

Given a policy , we can define the expected utility over all possible
state sequences produced by following that policy:

U™ (s,) = E P(sequence)U (sequence)

state sequences
starting from s

The optimal policy should maximize this utility

But how to define the utility of a state sequence?
* Sum of rewards of individual states

Problem: infinite state sequences

11

Utilities of state sequences

Normally, we would define the utility of a state sequence as the sum of the
rewards of the individual states

Problem: infinite state sequences

Solution: discount the individual state rewards by a factor y between 0 and 1:

U([S455,>S55.--1) = R(s,) + 7 R(s,)+ 7> R(s,) +...

:Zy’R(st)S R (0<y <)
t=0 1_7/

Sooner rewards “count” more than later rewards

Makes sure the total utility stays bounded

Helps algorithms converge

12

11/22/22

Sum of discounted rewards

» To define the utility of a state sequence, discount the individual state rewards
by a factor y between 0 and 1:

U([Sy,5,,8,5...]) = R(s,) +YR(s,) +7°R(s,) +...

1 - ~‘ - 2 B

Y Y

Worth Now Worth Next Step Worth In Two Steps

* When y =1 this is just additive utility

13
Utilities of states
* Expected utility obtained by policy & starting in state s:
U™(s) = z P(sequencels, a= n(s))U(sequence)
state sequences
starting froms
* The “true” utility of a state, denoted U(s), is the best possible
expected sum of discounted rewards
+ if the agent executes the best possible policy starting in state s
* Reminiscent of minimax values of states
14

11/22/22

Defining State Utility

Problem:

* When making a decision, we only know the reward so far, and the
possible actions

« We've defined utility retroactively (i.e., the utility of a history is known
once we finish it)

* What is the utility of a particular state in the middle of decision
making?

* Need to compute expected utility of possible future histories

17
Finding the utilities of states
Max node S * If state s’ has utility U(s’), then
T what is the expected utility of
- AN ‘\\ taking action a in state s?
Pl "¢ S
A
Chance S, a
node .- * How do we choose the optimal
,/ . ?
TP N action?
» ~aA
s, a) ’
A s
u(s’)
» What is the recursive expression for U(s) in terms of the
utilities of its successor states?
18

11/22/22

Finding the utilities of states

Max node S « If state s’ has utility U(s’), then
S o what is the expected utility of
- NSl taking action a in state s?
-, \ NS
-7 4 SA
7\g ZP(S'| s,a)U(s")
Chance S, d >
node /” * How do we choose the optimal
RS . action?
7 P(s S
Vg ~A
s, a) d <

u(s’)
* What is the recursive expression for U(s) in terms of the
utilities of its successor states?

19

Finding the utilities of states

Max node S + |If state s’ has utility U(s’), then
S what is the expected utility of
- AN PO taking action a in state s?
” \ ~
-7 4 SA
A’ ZP(S'| s,a)U(s")
Chance S, d s’
node .- * How do we choose the optimal

’/P(s’ | ~. action?
e N * _ (] '
K s, a) A 7w (s)= argmaxZP(s | s,a)U(s")

A S acA(s) s'

u(s’)
» What is the recursive expression for U(s) in terms of the
utilities of its successor states?

20

11/22/22

Finding the utilities of states

Max node S « If state s’ has utility U(s’), then
S o what is the expected utility of
- NSl taking action a in state s?
-, \ NS
-7 4 SA
7\g ZP(S'| s,a)U(s")
Chance S, a 5
node /” * How do we choose the optimal
A ~. action?
PGS | ™ . | , ,
» s, a) RN 7 (s)= argmaXZP(S | s,a)U(s")
A acA(s) s'

u(s’)
* What is the recursive expression for U(s) in terms of the
utilities of its successor states?

U(s)=R(s)+ymax, ZP(S'| s,a)U(s")

21

The Bellman equation

* Recursive relationship between the utilities of successive states:

U(s) = R(s)+ y max ;P(s'| s,a)U(s")

S Receive reward R(s)

4 AN

As

End up here with P(s’ | s, a)
Get utility U(s’)

(discounted by y)

22

10

11/22/22

The Bellman equation

» Recursive relationship between the utilities of successive states:

U(s)=R(s)+y max ;P(S'| s,a)U(s")

* For N states, we get N equations in N unknowns
* Solving them solves the MDP

e The “max” means that there is no closed-form solution. Need to use an
iterative solution method, which might not converge to the globally optimum
solution.

* Two solution methods: value iteration and policy iteration

23
Method 1: Value iteration
« Start out with iterationi = 0, every U; (s) = 0
* lterate until convergence
« During the it iteration, update the utility of each state according to this rule:
U,..(s) < R(s)+ymax ¥ P(s'| s,a)U,(s")
acA(s) X
* So we’re looking at utility of each state based on its successors
* In the limit of infinitely many iterations, guaranteed to find the correct
utility values.
* Error decreases exponentially, so in practice, don’t need infinite iterations
24

11

11/22/22

The Value Iteration Algorithm

function Valuelteration(S, A, p,R, y, €)
N = size of S.

U’ =new array of doubles, of size N.
Initialize all values of U’ to 0.

repeat:
U = copy of array U’
6=0

for each state s in S:

U'[s]=R(s)+y max {Z [p(s | s,a)U[s]}
if [U'[s] — []I>8then6—IU[] Uls]|
until 6 <e(1—yp)/y
return U
25
The Value Iteration Algorithm
function Valuelteration(S, A, p,R, y, €)
N = size of S. It can be proven
U’ =new array of doubles, of size N. that this a|gorithm
Initialize all values of U’ to 0. converges to the
t: .
repf}a: copy of array U’ correct solutions of
§=0 the Bellman
for each state s in S: equations. Details
li|[u][_] R(S)[J]rly rza); {28 [p(ls[‘JI[s]a)U[]]I} can be found in
[> othen o =
until 6 < e(1—y)/y Russ_ell and
return U NONIg.
26

12

11/22/22

The Value Iteration Algorithm

function Valuelteration(S, A, p,R, y, €)
N = size of S.

U’ =new array of doubles, of size N.
Initialize all values of U’ to 0.

repeat:
U = copy of array U’
6=0

for each state s in S:
U'[s]=R(s)+y max{z [p(sls a)Ul[s]}
if [U"[s] — []I>8then6—IU[] U[s]]|

until 6 <e(1—yp)/y
return U

The main operation is
in red.

Use the Bellman
equation to update
values U(s) using the
previous estimates for
those values.

This is called a
Bellman update.

27

The Value Iteration Algorithm

function Valuelteration(S, A, p,R, y, €)
N = size of S.

U’ =new array of doubles, of size N.
Initialize all values of U’ to 0.

repeat:
U = copy of array U’
§=0

for each state s in S:
U'[s] =R(s) +¥ max{z [p(s | s,a)Ul[s]}

if [U"[s] — []I>8then8—|U[] Ulsll
until 6 < e(1—y)/y
return U

So, the value iteration
algorithm is:

Initialize utilities of
states to zero values.

Repeatedly update
utilities of states using
Bellman updates, until
the estimated values
converge.

28

11/22/22

AValue Iteration Example +1
. -1
» Let's see how the value |
iteration algorithm works 1| START
on our example. 1 2 3 4
* Assume:
+ R(s) = —0.04if s isa A I R B
non-terminal state. 2 I- 0 0
« ¥y=09 |
11 0 0 0 0
« We initialize all utility 1 > 3 4
values to O. Utility Values
29
AValue Iteration Example 3 +1
' 2 -1
* Let's see how the value :-
iteration algorithm works on 1| sTART
our example.
1 2 3 4
* Assume:
« R(s) = —0.04if s isanon-
terminal state. 3]-0.04 | -0.04 | -0.04 | +1
« y=09 ‘
» This is the result after one |
round of updates: 1| -0.04 | -0.04 | -0.04 | -0.04
* The current estimate for each
state s is R(s). 1 2 3 4
Utility Values

30

14

11/22/22

AValue Iteration Example

Let's see how the value
iteration algorithm works on
our example.

Assume:

« R(s) =—0.04if s isanon-
terminal state.

- =09
This is the result after two

rounds of updates:

* Information about the +1
reward reached state (3,3).

3 +1
1 | START

3| -0.08 | -0.08 | 0.67 +1

1| -0.08 | -0.08 | -0.08 | -0.08

1 2 3 4

Utility Values
31
AValue Iteration Example 3 +1
' 2 -1
« Let's see how the value :-
iteration algorithm works on 1|sTART
our example.
1 2 3 4
* Assume:
+ R(s) = —0.04if s isanon-
terminal state. 3|-0.11 | 0.43 | 0.73 | +1
« y=09 ‘
« This is the result after three ‘
rounds of updates: 1]-0.11 | -0.11 | -0.11 | -0.11
* Information about the +1 1 2 3 4
reward reached more states. Utility Values
32

15

11/22/22

AValue Iteration Example

« Let's see how the value
iteration algorithm works on
our example.

e Assume:

« R(s) =—0.04if s isanon-
terminal state.

- =09
« This is the result after four

rounds of updates:

* |nformation about the +1
reward reached more states.

+1

3] 0.25 | 0.57 | 0.78 +1

1] -0.14 | -0.14 | 0.19 | -0.14

1 2 3 4

Utility Values
33
AValue Iteration Example 3 +1
1 2 -1
« Let's see how the value :-
iteration algorithm works on 1|sTART
our example.
1 2 3 4
* Assume:
+ R(s) = —0.04if s isanon-
terminal state. 3| 0.38 0.79 +1
« y=09 ‘
2| 0.12 047 | -1
« This is the result after five ‘
rounds of updates: 1] -0.16 | 0.07 | 0.24 | -0.01
* Information about the +1
d hed tat 1 2 3 4
reward reached more states. Utility Values
34

16

11/22/22

AValue Iteration Example +1
+ Let's see how the value 1
iteration algorithm works on
our example.
1 2 3 4
+ Assume:
« R(s) =—0.04if s isanon-
terminal state. 3| 0.45 | 0.64 | 0.79 +1
« y=09 ‘
21 0.25 0.48 -1
« This is the result after six |
rounds of updates: 1| 0.04 | 0.15 | 0.30 | 0.05
* Information about the +1
dh hed all stat 1 2 3 4
rewar as reachea all states. Utlllty Values
35
AValue Iteration Example 3 +1
* Let's see how the value 2 :- .
iteration algorithm works on 1| sTART
our example.
1 2 3 4
* Assume:
« R(s) = —0.04if s isanon-
terminal state. 3 079 | +1
« y=09 ‘
.. 2 0.48 -1
* This is the result after seven |
rounds of updates: 11 0.16 | 0.21 | 0.32 | 0.09
" Valies ksepgoting N
Utility Values
36

17

11/22/22

AValue Iteration Example +1
+ Let's see how the value 1
iteration algorithm works on
our example.
1 2 3 4
* Assume:
« R(s) = —0.04if s isanon- X
terminal state. 3‘ 0.50 | 0.65 | 0.80 *
- vy=09 2| 0.37 049 | -1
 This is the result after eight 1 | 023 | 023 | 034 | 011
rounds of updates:
. Val tinue changi 1 2 3 4
alues continue changing. Utility Values
37
AValue Iteration Example 3 +1
* Let's see how the value 2 :- .
iteration algorithm works on 1| sTART
our example.
1 2 3 4
* Assume:
« R(s) = —0.04if s isanon-
terminal state. 3| 0.51 080 | +1
« y=09 ‘
o 2| 0.40 049 | -1
* Thisis the result after 13 |
rounds of updates: 1] 0.30 | 0.25 | 0.34 | 0.13
* Values don't change much
anymore after this round. 1 2 3 4
Utility Values
38

18

11/22/22

Computing the Optimal Policy

« The value iteration algorithm computes U(s) for every state s.

« Once we have computed all values U(s), we can get the optimal policy *
using this equation:

o w*(s) = argmax{D [p(s’| s,a)U(s")]}

acA(s)

« Thus, m*(s) identifies the action that leads to the highest expected utility for
the next state, as measured over all possible outcomes of that action.

* This approach is called one-step look-ahead.

39
Approach 2: Policy Iteration
* There is a more efficient algorithm for computing optimal policies
* Remember that, if we know the utility of each state, we can compute the
optimal policy " using:
m*(s) = argmaxiz [p(s'| s, a)U(s')]}
a€cA(s) =
+ However, to get the right 7*(s), we don't need to know the utilities very
accurately.
* We just need to know the utilities accurately enough so that, for each state s,
argmax chooses the right action.
40

19

11/22/22

Method 2: Policy Iteration

« Start with some initial policy my and alternate between the following
steps:

* Policy Evaluation: calculate the utility of every state under the assumption
that the given policy is fixed and unchanging.

* Policy Improvement: calculate a new policy m;,; based on the updated utilities.

* Kind of like gradient descent in neural networks:

* Policy evaluation: Find ways in which the current policy is suboptimal
* Policy improvement: Fix those problems

* Unlike Value lteration, this is guaranteed to converge in a finite

number of steps, as long as the state space and action set are both
finite.

41
The Policy Iteration Algorithm
» This alternative algorithm for computing optimal policies is called the
policy iteration algorithm.
* ltis an iterative algorithm.
* Initialization:
* Initiate some policy mg with random choices for the best action at each state.
* Main loop:
 Policy evaluation: given the current policy 7;, calculate utility values U™i(s),
corresponding to the utility of each state s if the agent follows policy ;.
+ Policy improvement: Given current utility values U™i(s), use one-step look-
ahead to compute new policy Tj41.
42

20

11/22/22

The Policy Evaluation Step

Task: calculate utility values U™i(s), corresponding to the assumption that the
agent follows policy m;.

When the policy was not known, we used the Bellman equation:

U(s) = R(s) + yargfgs() {z [p(s'| s, a)U(s’)]}

N

Now that the policy 7; is specified, we can instead use a simplified version of the
Bellman equation:

UTi(s) = R(s) + ¢ 2[p(s'| 5, mi(s)UT(s")]

Key difference: now m;(s) specifies the action for each state s, so we do not need
to look for the max over all possible actions.

43
The Policy Evaluation Step
« U™i(s) =R(s) +y Xalp(s'| s,m(s))U™i(s")]
* Thisis a linear equation.
e The original Bellman equation, taking the max out of all possible actions, is
not linear.
* If we have N states, we get N linear equations of this form, with N
unknowns.
« We can solve those N linear equations in O(N3) time, using
standard linear algebra methods.
44

21

11/22/22

The Policy Evaluation Step

« For large state spaces, O(N3) is prohibitive.

e Alternative: do some rounds of iterations.

function PolicyEvaluation(S, p,R, y,;, K, U)
U, = copy of U
fork =1to K:
for each state s in S:
Ur(s) = R(s) + v Xsilp(s'l s, m:(s))Uk-1(s")]
return Uy

* Obviously, doing K iterations does not guarantee that the utilities are computed
correctly.

+ Parameter K allows us to trade speed for accuracy. Larger values lead to slower
runtimes and higher accuracy.

45

The Policy Evaluation Step

« For large state spaces, O(N3) is prohibitive.

e Alternative: do some rounds of iterations.

function PolicyEvaluation(S,p,R, y,;, K, U)
U, = copy of U
for k =1to K:
for each state s in S:

Uk(s) = R(s) + v Xsilp(s'l s, mi(s))Uk-1(s")]
return Uy

» The PolicyEvaluation function takes as argument a current estimate U.

46

22

11/22/22

Policy Iteration

« Pick a policy m at random

* Repeat:
« Compute the utility of each state for it
Uesa(i) € RAD) + L AK | mi)) Ue(k)
« Compute the policy U given these utilities
' (i) = arg max, 2.2k | a.i) LU(k)

« |ft' =mthenreturnm

47
Policy Iteration: Convergence
* Convergence assured in a finite number of iterations
Since finite number of policies and each step improves value, then must
converge to optimal
* Gives exact value of optimal policy
48

23

11/22/22

Policy Iteration Complexity

* Each iteration runs in polynomial time in the number of states and
actions

* There are at most |A|n policies and Pl never repeats a policy

e So at most an exponential number of iterations

* Not a very good complexity bound

* Empirically O(n) iterations are required — often it seems like O(1)

* Recent polynomial bounds.

49

Value Iteration: Summary

* Value iteration:

Initialize state values (expected utilities) randomly

Repeatedly update state values using best action, according to current
approximation of state values

Terminate when state values stabilize

Resulting policy will be the best policy because it’s based on accurate state
value estimation

50

24

11/22/22

Policy Iteration: Summary

* Policy iteration:

Initialize policy randomly

Repeatedly update state values using best action, according to current
approximation of state values

Then update policy based on new state values
Terminate when policy stabilizes

Resulting policy is the best policy, but state values may not be accurate
(may not have converged yet)

Policy iteration is often faster (because we don’t have to get the state
values right)

51
Value Iteration vs. Policy Iteration
* Which is faster? VI or PI
* It depends on the problem
* VI takes more iterations than PI, but Pl requires more time on each
iteration
* Pl must perform policy evaluation on each iteration which involves solving a
linear system
* Vlis easier to implement since it does not require the policy
evaluation step
* Both methods have a major weakness: They require us to know the
transition function exactly in advance!
52

25

11/22/22

Reinforcement Learning: Overview

* Machine Learning: A quick retrospective
* Reinforcement Learning

e Nexttime:

The EM algorithm
Monte Carlo and Temporal Difference

53
Review: What is ML?
 MLis a way to get a computer to do things without having to explicitly
describe what steps to take.
» By giving it examples (training data)
e Or by giving it feedback
* It can then look for patterns which explain or predict what happens.
* The learned system of beliefs is called a model.
54

26

11/22/22

Review: Architecture of an ML System

* Every machine learning system has four parts:

A representation or model of what is being learned.

An actor: Uses the representation and actually does something.

A critic: Provides feedback.

A learner: Modifies the representation / model, using the feedback.

55

Review: Representation

* Alearning system must have a representation or model of what is
being learned.

* This is what changes based on experience.

* In a machine learning system this may be:

A mathematical model or formula
A set of rules

A decision tree

A policy

Or some other form of information

57

27

11/22/22

Review: Formalizing Agents

* Given:
* Astate space S
* Aset of actions as, ..., akincluding their results
* Reward value at the end of each trial (series of action) (may be positive or
negative)
e Output:
* A mapping from states to actions
* Which is a policy, it

58
Learning Without a Model
« We saw how to learn a value function and/or a policy from a transition model
* What if we don’t have a transition model?
* Idea #1: Build one
* Explore the environment for a long time
* Record all transitions
* Learn the transition model
« Apply value iteration/policy iteration
* Slow, requires a lot of exploration, no intermediate learning
* ldea #2: Learn a value function (or policy) directly from interactions with the
environment, while exploring
59

28

11/22/22

Reinforcement Learning

* We often have an agent which has a task to perform
* It takes some actions in the world
* At some later point, gets feedback on how well it did

e The agent performs the same task repeatedly

* This problem is called reinforcement learning:
* The agent gets positive reinforcement for tasks done well
* And gets negative reinforcement for tasks done poorly

* Must somehow figure out which actions to take next time

60
Reinforcement Learning (RL)
* RLalgorithms attempt to find a policy
* Maximizing cumulative reward for the agent over the course of the problem
* Typically represented by a Markov Decision Process
» RL differs from supervised learning:
« Correct input/output pairs are never presented
* Sub-optimal actions never explicitly corrected
61

29

11/22/22

Typical Applications

* Robotics
* Helicopter control
* Robo-soccer

* Board games
* Checkers

* Backgammon
e Go/Atari

* Scheduling

* Dynamic channel allocation
* Inventory problems

62
Recap: Defining MDPs
* Markov decision processes:
e States S
» Startstate sg
 Actions A
e Transitions P(s’|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount y)
« MDP quantities so far:
* Policy = Choice of action for each state
e Utility (or return) = sum of discounted rewards
63

30

11/22/22

Animals Game

* Human: I’'m thinking of an animal.

Computer: Isit a bird?
e Human: No.
 Computer:Isit a frog?
e Human: No.
* Computer: What is it?

¢ Human: A mouse.

* Computer: Tell me a question that distinguishes a frog from a mouse.

* Human: Does it have fur?

e Computer: What is the answer for a frog?

¢ Human: No.

64

Animals Behind the Scene

Computer: Is it a bird?
Human: No

Computer: Is it a frog?
Human: No

Computer: What is it?
Human: A mouse
Computer: Tell me a
question that distinguishes
a frog from a mouse.
Human: Does it have fur?
Computer: What is the
answer for a frog?
Human: no

Is it a bird?
Yes, \No

Is it a penguin? Does it have fur?

g Yes %

Is it a mouse?

After several rounds...

Is it a frog?

65

31

11/22/22

Animals Guessing Game Architecture

* All of the parts of ML Architecture:

The Representation is a sequence of questions and pairs of yes/no answers
(called a binary decision tree).

The Actor “walks” the tree, interacting with a human; at each question it
chooses whether to follow the “yes” branch or the “no” branch.

The Critic is the human player telling the game whether it has guessed
correctly.

The Learner elicits new questions and adds questions, guesses and branches
to the tree.

66
Reinforcement Learning
* This is a simple form of Reinforcement Learning
* Feedback is at the end, on a series of actions.
* \Very early concept in Artificial Intelligence!
* Arthur Samuels’ checker
program was a simple
reinforcement based learner,
initially developed in 1956.
* In 1962 it beat a human
checkers master.
67

32

11/22/22

Reinforcement Learning (cont.)

* Goal: agent acts in the world to maximize its rewards

* Agent has to figure out what it did that made it get that
reward/punishment

* This is known as the credit assignment problem

* RL can be used to train computers to do many tasks
* Backgammon and chess playing
* Job shop scheduling

e Controlling robot limbs

68
Procedural Learning
* Learning how to act to accomplish goals
* Given: Environment that contains rewards
* Learn: A policy for acting
* Important differences from classification
* You don’t get examples of correct answers
* You have to try things in order to learn
69

33

11/22/22

RL as Operant Conditioning

RL shapes behavior using reinforcement
* Agent takes actions in an environment (in episodes)
* Those actions change the state and trigger rewards

Through experience, an agent learns a policy for acting
e Given a state, choose an action
* Maximize cumulative reward during an episode

Interesting things about this problem
* Requires solving credit assignment
* What action(s) are responsible for a reward?
* Requires both exploring and exploiting
* Do what looks best, or see if something else is really best?

70
Types of Reinforcement Learning

Search-based: evolution directly on a policy

* E.g. genetic algorithms

Model-based: build a model of the environment

* Then you can use dynamic programming

* Memory-intensive learning method

Model-free: learn a policy without any model

* Temporal difference methods (TD)

* Requires limited episodic memory (though more helps)
71

34

11/22/22

Simple Example

* Learn to play checkers

Two-person game
8x8 boards, 12 checkers/side
relatively simple set of rules:

http://www.darkfish.com/chec
kers/rules.html

Goal is to eliminate all your
opponent’s pieces

72
Representing Checkers
* First we need to represent the game
* To completely describe one step in the game you need
* Arepresentation of the game board.
* Arepresentation of the current pieces
e Avariable which indicates whose turn it is
* Avariable which tells you which side is “black”
* There is no history needed
* Alook at the current board setup gives you [which makes it
a complete picture of the state of the game |2 __ problem?
73

35

http://www.darkfish.com/checkers/rules.html

11/22/22

Representing Rules

* Second, we need to represent the rules

* Represented as a set of allowable moves given board state

* If acheckeris at row x, columny, and row x+1 column yt1 is empty, it can
move there.
« Ifacheckeris at (x,y), a checker of the opposite color is at (x+1, y+1), and

(x+2,y+2) is empty, the checker must move there, and remove the “jumped”
checker from play

* There are additional rules, but all can be expressed in terms of the
state of the board and the checkers

 Each rule includes the outcome of the relevant action in terms of the
state

74
What Do We Want to Learn?
* Given
* A description of some state of the game
* Alist of the moves allowed by the rules
* What move should we make?
» Typically more than one move is possible
* Need strategies, heuristics, or hints about what move to make
* This is what we are learning
* We learn from whether the game was won or lost
* Information to learn from is sometimes called “training signal”
77

36

11/22/22

Simple Checkers Learning

* Canrepresent some heuristics in the same formalism as the board
and rules

If there is a legal move that will create a king, take it.
« If checkers at (7,y) and (8,y-1) or (8,y+1) is free, move there.

If there are two legal moves, choose the one that moves a checker farther
toward the top row

» If checker(x,y) and checker(p,q) can both move, and x>p, move
checker(x,y).

But then each of these heuristics needs some kind of priority or weight.

78
Formalization for RL Agent
* Given:
* Astate space S
* Asetof actions ay, ..., a including their results
* A set of heuristics for resolving conflict among actions
* Reward value at the end of each trial (series of action) (may be positive or
negative)
* QOutput:
* A policy (a mapping from states to preferred actions)
79

37

11/22/22

Learning Agent

* The general algorithm for this learning agent is:
>+ Observe some state
« Ifitis aterminal state
+ Stop —>=
* If won, increase the weight on all heuristics used
» If lost, decrease the weight on all heuristics used

* Otherwise choose an action from those possible in that state, using heuristics
to select the preferred action

e Perform the action
|

80

Policy

* A complete mapping from states to actions
* There must be an action for each state
* There may be more than one action
* Not necessarily optimal

* The goal of a learning agent is to tune the policy so that the preferred
action is optimal, or at least good.
* Analogous to training a classifier

* Checkers
* Trained policy includes all legal actions, with weights
» “Preferred” actions are weighted up

81

38

11/22/22

Approaches

* Learn policy directly: Discover function mapping from states to actions
* Could be directly learned values
» Ex: Value of state which removes last opponent checker is +1.

e Or a heuristic function which has itself been trained

* Learn utility values for states (value function)
» Estimate the value for each state
* Checkers:

* How happy am | with this state that turns a piece into a king?

82
Value Function
* The agent knows what state it is in
* It has actions it can perform in each state
* Initially, don’t know the value of any of the states
* If the outcome of performing an action at a state is deterministic, then
the agent can update the utility value U() of states:
* U(oldstate) = reward + U(newstate)
* The agent learns the utility values of states as it works its way through
the state space
83

39

11/22/22

Learning States and Actions

* A typical approach is:
- At state S choose, some action A

* Taking us to new State S,

* If S; has a positive value: increase value of A at S.
* If S; has a negative value: decrease value of A at S.
* If S;is new, initial value is unknown: value of A unchanged.

* One complete learning pass or trial eventually gets to a terminal,
deterministic state. (E.g., “win” or “lose”)

* Repeat until? Convergence? Some performance level?

84
Selecting an Action
* Simply choose action with highest (current) expected utility?
* Problem: each action has two effects
* Yields a reward on current sequence
* Gives information for learning future sequences
* Trade-off: immediate good for long-term well-being
» Like trying a shortcut: might get lost, might find quicker path
* Exploration vs. exploitation
85

40

11/22/22

Exploration vs. Exploitation

* Problem with naive reinforcement learning:
* What action to take?

e e 27} Exploitaion
* Greedy strategy
» Often prematurely converges to a suboptimal policy!
* Random (or unknown) action } Exploration
* Will cover entire state space
* Very expensive and slow to learn!

* When to stop being random?

« Balance exploration (try random actions) with exploitation (use best
action so far)

86
More on Exploration
* Agent may sometimes choose to explore suboptimal moves in hopes
of finding better outcomes
* Only by visiting all states frequently enough can we guarantee learning the
true values of all the states
 When the agent is learning, ideal would be to get accurate values
for all states
* Even though that may mean getting a negative outcome
* When agent is performing, ideal would be to get optimal outcome
* Alearning agent should have an exploration policy
87

41

Exploration Policy

* Wacky approach (exploration): act randomly in hopes of eventually
exploring entire environment

* Choose any legal checkers move

* Greedy approach (exploitation): act to maximize utility using current
estimate

* Choose moves that have in the past led to wins

* Reasonable balance: act more wacky (exploratory) when agent has
little idea of environment; more greedy when the model is close to
correct

* Suppose you know no checkers strategy?
* What’s the best way to get better?

88
Example: N-Armed Bandits
* Arow of slot machines — K
.
* Which to play and how often? = =
. : : ¢25 ¢95 $10
State Space is a set of machines $100 $200 $900
+ Each has cost, payout, and percentage values 0.1% 0.6% 10%
* Action is pull a lever.
* Each action has a positive or negative result
e ...which then adjusts the perceived utility of that action (pulling that lever)
89

11/22/22

42

11/22/22

N-Armed Bandits Example

* Each action initialized to a standard payout
* Result is either some cash (a win) or none (a lose)
* Exploration: Try things until we have estimates for payouts

* Exploitation: When we have some idea of the value of each action,

choose the best. After some # qf §uccessfu| trials, or
with some statistical confidence,
or when our value function isn’t

» Clearly this is a heuristic. changing (much), or...

* No proof we ever find the best lever to pull!

e The more exploration we can do the better our model
* But the higher the cost over multiple trials

90
Mathematical Model - MDP
* Markov decision processes
» S-set of states
 A-setof actions
* § - Transition probability
* R -Reward function
91

43

11/22/22

Types of Reinforcement Learning

« Search-based: evolution directly on a policy

+ E.g. genetic algorithms

* Model-based: build a model of the environment
e Then you can use dynamic programming

* Memory-intensive learning method

* Model-free: learn a policy without any model
e Temporal difference methods (TD)

e Requires limited episodic memory (though more helps)

92
Types of Model-Free RL
* Actor-critic learning
e The TD version of Policy Iteration
* Q-learning
* The TD version of Value Iteration
e Thisis the most widely used RL algorithm
93

44

11/22/22

Q-Learning: Definitions

Markov property: this is
independent of previous

Current state: s

« Current action: a states given current state

« Transition function: &(s, a) =s’

In classification we’d
have examples (s,

 Policy ni(s) = a n(s)) to learn from

* Reward function: r(s,a)eR

* Q(s, a) = value of taking action a from state s

The Q-function

* Q(s, a) estimates the discounted cumulative reward
e Startingin state s
* Taking action a
* Following the current policy thereafter

* Suppose we have the optimal Q-function
* What's the optimal policy in state s?
* The action argmax,Q(s, b)

* But we don’t have the optimal Q-function at first
e Let’sactasif we do

* And updates it after each step so it’s closer to optimal
* Eventually it will be optimal!

45

11/22/22

Q-Learning: Updates

« The basic update equation
0(s,a) «—r(s,a)+max, Q(s',D)

« With a discount factor to give later rewards less impact
O(s,a)«—r(s,a)+ ymax, O(s',b)

« With a learning rate for non-deterministic worlds

O(s,a)«—1—a]0(s,a) + a|r(s,a) + y max, O(s',b)]

96

Q-Learning: Update Example

O(s,a.,) = 8

97

46

11/22/22

Q-Learning: Update Example

2

Q(S‘)aai)zo'i'}/%

98

Q-Learning: Update Example

2

O(sy,a,) =0+

99

47

11/22/22

The Need for Exploration

argmax Q(s,,a) =<

best =—
100
RL Summary 1:
* Reinforcement learning systems
* Learn series of actions or decisions, rather than a single decision
* Based on feedback given at the end of the series
* Areinforcement learner has
* Agoal
* Carries out trial-and-error search
* Finds the best paths toward that goal
101

48

11/22/22

Exploration/Exploitation

* Can’t always choose the action with highest Q-value
* The Q-function is initially unreliable

* Need to explore until it is optimal

* Most common method: e-greedy
» Take a random action in a small fraction of steps (g)

* Decay € over time

* There is some work on optimizing exploration
* Kearns & Singh, ML 1998

* But people usually use this simple method

102
Q-Learning: Convergence
* Under certain conditions, Q-learning will converge to the correct
Q-function
e The environment model doesn’t change
« States and actions are finite
* Rewards are bounded
* Learning rate decays with visits to state-action pairs
* Exploration method would guarantee infinite visits to every state-action
pair over an infinite training period
103

49

11/22/22

Challenges in Reinforcement Learning

» Feature/reward design can be very involved
¢ Online learning (no time for tuning)
* Continuous features (handled by tiling)

* Delayed rewards (handled by shaping)
* Parameters can have large effects on learning speed

» Realistic environments can have partial observability

» Realistic environments can be non-stationary

* There may be multiple agents

104

RL Summary 2:

* A typical reinforcement learning system is an active agent, interacting
with its environment.

e |t must balance:

* Exploration: trying different actions and sequences of actions to discover
which ones work best

* Exploitation (achievement): using sequences which have worked well so far

* Must learn successful sequences of actions in an uncertain
environment

105

50

11/22/22

RL Summary 3

* \Very hot area of research at the moment

* There are many sophisticated RL algorithms
Most notably: probabilistic approaches

* Applicable to game-playing, search, finance, robot control, driving,
scheduling, diagnosis, ...

106

51

