
11/15/22

1

Sequential Decision Making
Under Uncertainty

material from Marie desJardin, Lise Getoor,
Jean-Claude Latombe, Daphne Koller, Stuart

Russell, Dawn Song, Mark Hasegawa-
Johnson, Svetlana Lazebnik, Pieter Abbeel,

Dan Klein

1

Bookkeeping

• Phase I (writeup and code) due tomorrow night

• HW5 under consideration; dates TBA (soon)
• If turned in it will be graded and taken into account

• No lecture Thursday!

• Today:
• “Planning” under uncertainty (sequential decision making)
• Some time to touch base on projects

• Next lecture: Reinforcement Learning (RL)

2

11/15/22

2

Assumption in the Planning We’ve Seen so Far

• What is it?
• NO UNCERTAINTY!
• Assumes the agent knows everything about the world and what can

happen in it.

• Sources of Uncertainty
• Agent may not know all states of the world.
• Agent may not know what state of the world it is in.
• Outcomes of actions may not be known

3

3

Decision Making Under Uncertainty

• Many environments have multiple possible outcomes

• Some of these outcomes may be good; others may be bad

• Some may be very likely; others unlikely

• What’s a poor agent to do??

4

4

11/15/22

3

Review: Expected Utility

• Random variable X with n values x1,…,xn and distribution (p1,…,pn)
• E.g.: X is the state reached after doing an action A under uncertainty

• Function U of X
• E.g., U is the utility of a state

• The expected utility of A is
EU[A] = Si=1,…,n p(xi|A)U(xi)

6

6

s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

U(A1, S0) = 100 x 0.2 + 50 x 0.7 + 70 x 0.1
= 20 + 35 + 7
= 62

One State/One Action Example

7

11/15/22

4

s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

A2

s4
0.2 0.8

80

• U (A1, S0) = 62
• U (A2, S0) = 74
• U (S0) = maxa{U(a,S0)}

= 74

One State/Two Actions Example

8

s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

A2

s4
0.2 0.8

80

• U (A1, S0) = 62 – 5 = 57
• U (A2, S0) = 74 – 25 = 49
• U (S0) = maxa{U(a, S0)}

= 57

-5 -25

Introducing Action Costs

9

11/15/22

5

Review: MEU Principle

• A rational agent should choose the action that maximizes agent’s
expected utility

• This is the basis of the field of decision theory

• The MEU principle provides a normative criterion for rational choice
of action

• So we know what to do when planning actions!

10

10

Not quite…
• Must have a complete model of:

• Actions
• Utilities
• States

• Even if you have a complete model, decision making is computationally intractable

• In fact, a truly rational agent takes into account the utility of reasoning as well
(bounded rationality)

• Nevertheless, great progress has been made in this area recently, and we are able
to solve much more complex decision-theoretic problems than ever before

11

11

11/15/22

6

Review: Value Function

• Provides a ranking of alternatives, but not a meaningful metric scale

• Also known as an “ordinal utility function”

• Sometimes, only relative judgments (value functions) are necessary

• At other times, absolute judgments (utility functions) are required

12

12

Decision Networks

• Extend BNs to handle actions and utilities

• Also called influence diagrams

• Use BN inference methods to solve

• Perform Value of Information calculations

13

13

11/15/22

7

Decision Networks

• A decision network represents information about
• The agent’s current state
• Its possible actions
• The state that will result from the agent’s action
• The utility of that state

Decision network = Bayes net + Actions + Utilities

• Action nodes (rectangles, cannot have parents,
will have value fixed by algorithm)

• Utility nodes (diamond, depends on action and
chance nodes)

14

Decision Networks cont.

• Chance nodes: random variables, as in
BNs

• Decision nodes: actions that a decision
maker can take

• Utility/value nodes: the utility of an
outcome state

15

15

11/15/22

8

Decision Networks

Weather

Forecast

Umbrella

U

16

U

Example: Take an umbrella?

Weather

Forecast
=bad

Umbrella

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W)

sun 0.7

W P(F=bad|W)

sun 0.17

rain 0.77

17

11/15/22

9

Decision Networks

Weather

Forecast

Umbrella

U

§ Decision network = Bayes net + Actions + Utilities

§ Action nodes (rectangles, cannot have parents, will have
value fixed by algorithm)

§ Utility nodes (diamond, depends on action and chance
nodes)

§ Decision algorithm:
§ Fix evidence e
§ For each possible action a

§ Fix action node to a
§ Compute posterior P(W|e,a) for parents W of U
§ Compute expected utility åw P(w|e,a) U(a,w)

§ Return action with highest expected utility

Bayes net
inference!

18

U

§ Decision algorithm:
§ Fix evidence e
§ For each possible action a

§ Fix action node to a
§ Compute posterior P(W|e,a) for parents W of U
§ Compute expected utility of action a: åw P(w|e,a) U(a,w)

§ Return action with highest expected utility

Example: Take an umbrella?

Weather

Forecast
=bad

Umbrella

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave

Umbrella = take

Optimal decision = take!

W P(W)

sun 0.7

W P(F=bad|W)

sun 0.17

rain 0.77

EU(leave|F=bad) = åw P(w|F=bad) U(leave,w)
= 0.34x100 + 0.66x0 = 34

EU(take|F=bad) = åw P(w|F=bad) U(take,w)
= 0.34x20 + 0.66x70 = 53

19

11/15/22

10

Value of Information

21

Value of information
• Suppose you haven’t yet seen the forecast

• EU(leave |) = 0.7x100 + 0.3x0 = 70
• EU(take |) = 0.7x20 + 0.3x70 = 35

• What if you look at the forecast?

• If Forecast=good
• EU(leave | F=good) = 0.89x100 + 0.11x0 = 89
• EU(take | F=good) = 0.89x20 + 0.11x70 = 25

• If Forecast=bad
• EU(leave | F=bad) = 0.34x100 + 0.66x0 = 34
• EU(take | F=bad) = 0.34x20 + 0.66x70 = 53

• P(Forecast) = <0.65,0.35>

• Expected utility given forecast
• = 0.65x89 + 0.35x53 = 76.4

• Value of information = 76.4-70 = 6.4

Weather

bad

Umbrella

U

Weather

good

Umbrella

U

Weather

Forecast

Umbrella

U

leave take
34 53

leave take

70 35

leave take
89 25

observe F

0.350.65

22

11/15/22

11

Value of information contd.

• General idea: value of information = expected improvement in
decision quality from observing value of a variable
• E.g., oil company deciding on seismic exploration and test drilling
• E.g., doctor deciding whether to order a blood test
• E.g., person deciding on whether to look before crossing the road

• Key point: decision network contains everything needed to compute
it!

• VPI(Ei | e) = [åei P(ei | e) maxa EU(a|ei,e)] - maxa EU(a|e)

23

Decisions with unknown preferences

• In reality the assumption that we can write down our exact
preferences for the machine to optimize is false

• A machine optimizing the wrong preferences causes problems

25

11/15/22

12

Sequential decisions under uncertainty

• So far, decision problem is one-shot—concerning only one
action

• Sequential decision problem: agent’s
utility depends on a sequence of actions

• This is where we get into planning

32

Decisions Under Uncertainty

• Some areas of AI (e.g., planning) focus on decision making in domains
where the environment is understood with certainty

• What if an agent has to make decisions in a domain that involves
uncertainty?

• An agent’s decision will depend on:
• what actions are available; they often don’t have deterministic outcome
• what beliefs the agent has over the world
• the agent’s goals and preferences

33

11/15/22

13

The Big Idea

• “Planning”: Find a sequence of steps to accomplish a goal.
• Given start state, transition model, goal functions…

• This is a kind of sequential decision making.
• Transitions are deterministic.

• What if they are stochastic (probabilistic)?
• One time in ten, you drop your sock instead of putting it on

• Probabilistic Planning: Make a plan that accounts for probability by
carrying it through the plan.

34

34

Decision Processes

• Often an agent needs to decide how to act in situations that involve
sequences of decisions
• The agent’s utility depends upon the final state reached, and the sequence of

actions taken to get there

• Would like to have an ongoing decision process. At any stage of the
process:
• The agent decides which action to perform
• The new state of the world depends probabilistically upon the previous state

as well as the action performed
• The agent receives rewards or punishments at various points in the process

• Aim: maximize the reward received

35

11/15/22

14

Sequential Decision Problem Example

• Beginning at the start state, choose an
action at each time step.

• Problem terminates when either goal
state is reached.

• Possible actions are Up, Down, Left, and
Right

• Assume that the environment is fully
observable, i.e., the agent always knows
where it is.

36

36

Sequential Decision Problem Example

• Deterministic Solution

• If the environment is deterministic and
the objective is get the maximum reward
à

• The solution is easy: (Up, Up, Right,
Right, Right)

37

11/15/22

15

Simple Robot Navigation Problem

• In each state, the possible actions are U, D, R, and L

38

Probabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
robot is already in the top row, then it does not move)

39

11/15/22

16

Probabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
robot is already in the top row, then it does not move)

• With probability 0.1, the robot moves right one square (if the
robot is already in the rightmost row, then it does not move)

40

Probabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
robot is already in the top row, then it does not move)

• With probability 0.1, the robot moves right one square (if the
robot is already in the rightmost row, then it does not move)

• With probability 0.1, the robot moves left one square (if the
robot is already in the leftmost row, then it does not move)

41

11/15/22

17

Probabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
robot is already in the top row, then it does not move)

• With probability 0.1, the robot moves right one square (if the
robot is already in the rightmost row, then it does not move)

• With probability 0.1, the robot moves left one square (if the
robot is already in the leftmost row, then it does not move)

• D, R, and L have similar probabilistic effects

42

Example: Grid World
• A maze-like problem

• The agent lives in a grid
• Walls block the agent’s path

• Noisy movement: actions do not always go as
planned
• 80% of the time, North takes the agent North

(if there is no wall there)
• 10% of the time, North à West; 10% East
• If there is a wall in the direction the agent would

have gone, the agent stays put

• The agent receives rewards each time step
• Small “living” reward r each step (can be negative)
• Big rewards come at the end (good or bad)

• Goal: maximize sum of rewards

43

11/15/22

18

Example

44

Example

• Can the sequence [Up, Up, Right, Right, Right]
take the agent to terminal state (4,3)?

• Can the sequence reach the goal in any other way?

45

11/15/22

19

Example

• Can the sequence [Up, Up, Right, Right, Right]
take the agent to terminal state (4,3)?
• Yes, with probability 0.85=0.3278

• Can the sequence reach the goal in any other way?

46

Example

• Can the sequence [Up, Up, Right, Right, Right]
take the agent to terminal state (4,3)?
• Yes, with probability 0.85=0.3278

• Can the sequence reach the goal in any other way?
• yes, going the other way around with probability 0.14x0.8 = 0.00008

47

11/15/22

20

Markov Decision Processes

• An MDP is defined by:
• A set of states s Î S
• A set of actions a Î A
• A transition function T(s,a,s’)

• Probability that a from s leads to s’
• i.e., P(s’ | s,a)
• Also called “the model”

• A reward function R(s, a, s’)
• Sometimes just R(s) or R(s’)

• A start state (or distribution)
• Maybe a terminal state

48

Transition Model

• A transition model is a specification of the outcome probabilities for
each action in each possible state.

• T(s,a,s’) denotes the probability of reaching state s’ if action a is done
on state s.

• Make Markov Assumption, i.e., the probability of reaching state s’
from s depends only on s and not on the history of earlier states.

49

49

11/15/22

21

Rewards and Utilities

• A utility function must be specified for the agent in order to determined the
value of an action.

• Because the problem is sequential, the utility function depends on a
sequence of states (environment history).

• Rewards are assigned to states, i.e., R(s) returns the reward of the state.

• For this example, assume the following:
• The reward for all states, except for the goal states, is -0.04.
• The utility function is the sum of all the states visited.

• E.g., if the agent reaches (4,3) in 10 steps, the total utility is 1 + (10 x -0.04) =
0.6.

• The negative reward is an incentive to stop interacting as quickly as possible.

50

50

Markov Property

• We will focus on decision processes that can be represented as
Markovian (as in Markov models)
• Actions have probabilistic outcomes that depend only on the current state
• Let st be the state at time t
• P(st+1|s0 , a0 ,... ,st , at) = P(st+1|st , at)

• The transition properties depend only on the current state, not on the
previous history (how that state was reached)

• Markov assumption generally: current state only ever depends on
previous state (or finite set of previous states).

51

51

11/15/22

22

What is Markov about MDPs?

• Andrey Markov (1856-1922)

• “Markov” generally means that
• conditioned on the present state,
• the future is independent of the past

§ For Markov decision processes,
“Markov” means:

52

Sequence of Actions

K

• Planned sequence of actions: (U, R)

J

2

3

1

4321

y

x

[3,2]

obstacle à

ß goal
ß start state

53

11/15/22

23

Sequence of Actions

• Planned sequence of actions: (U, R)
• U is executed

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

y

x

54

Histories

• Planned sequence of actions: (U, R)
• U has been executed
• R is executed

• 9 possible sequences of states – called histories
• 6 possible final states for the robot!

4321

2

3

1

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

y

x

55

11/15/22

24

Probability of Reaching the Goal

•P([4,3] | (U,R).[3,2]) =
P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])

+ P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

Note importance of Markov property
in this derivation

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

•P([4,3] | R.[3,3]) = 0.8
•P([4,3] | R.[4,2]) = 0.1

•P([4,3] | (U,R).[3,2]) = 0.65

56

Probability of Reaching the Goal

• Core idea: multiply backward probabilities of each step taken from end
state reached

• But we still need to consider different ways of reaching a state
• Going all the way around the obstacle would be “worse”

57

2

3

1

4321

57

11/15/22

25

Utility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape

-1

+1

2

3

1

4321

58

Utility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries

-1

+1

2

3

1

4321

59

11/15/22

26

Utility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states

-1

+1

2

3

1

4321

60

Utility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states
• Histories have utility!

-1

+1

2

3

1

4321

61

11/15/22

27

Utility of a History

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states
• Histories have utility!
• The utility of a history is defined by the utility of the last

state (+1 or –1) minus n/25, where n is the number of moves
• Many utility functions possible, for many kinds of problems.

-1

+1

2

3

1

4321

62

Utility of an Action Sequence

-1

+1

2

3

1

4321

• Consider the action sequence (U,R) from [3,2]

63

11/15/22

28

Utility of an Action Sequence

-1

+1

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability

64

Utility of an Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories:

U = ShUh P(h)

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

65

11/15/22

29

Optimal Action Sequence

-1

+1

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories:

U = ShUh P(h)
• The optimal sequence is the one with maximal utility

66

Optimal Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to

compute?

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

only if the sequence is executed blindly!

67

11/15/22

30

Accessible or
observable state

Reactive Agent Algorithm
68

Repeat:

• s ß sensed state

• If s is a terminal state then exit

• a ß choose action (given s)

• Perform a

68

Solution for an MDP

• Since outcomes of actions are not deterministic, a fixed set of
actions cannot be a solution.
• The solution to our planning problem is not U, U, R, R, R
• But what is it?

• A solution must specify what an a agent should do for any state
that the agent might reach.

• A policy, denoted by π, recommends an action for a given state, i.e.,
• π(s) is the action recommended by policy π for state s.

69

69

11/15/22

31

Policy (Reactive/Closed-Loop Strategy)

• In every state, we need to know what to do
• The goal doesn’t change
• A policy (P) is a complete mapping from

states to actions
• “If in [3,2], go up; if in [3,1], go left; if in…”

-1

+1

2

3

1

4321

70

Optimal Policy

• An Optimal policy is a policy that yields the highest expected utility.

• Optimal policy is denoted by π*.

• Once a π* is computed for a problem, then the agent, once identifying
the state (s) that it is in, consults π*(s) for the next action to execute.

71

71

11/15/22

32

Reactive Agent Algorithm

Repeat:

• s ß sensed state

• If s is terminal then exit

• a ß P(s)

• Perform a

72

72

Policies

• A policy p gives an action for each state,
p: S → A

• In deterministic single-agent search
problems, we wanted an optimal plan,
or sequence of actions, from start to a
goal

• For MDPs, we want an optimal policy
p*: S → A
• An optimal policy maximizes expected utility
• An explicit policy defines a reflex agent

73

11/15/22

33

Solving MDPs

• In search problems, aim is to find an optimal state sequence

• In MDPs, aim is to find an optimal policy π(s)
• A policy π(s) specifies what the agent should do in each state s
• Because the environment is stochastic, a policy can generate a set of

environment histories (sequences of states) with different probabilities

• Optimal policy maximizes the expected total reward, where the
expectation is taken over the set of possible state sequences
generated by the policy
• Each state sequence associated with that policy has a given amount of total

reward
• Total reward is a function of the rewards of its individual states (we’ll see how)

74

Optimal Policy in our Example

• Let’s suppose that, in our example, the total reward of an
environment history is simply the sum of the individual rewards
• For instance, with a penalty of -0.04 in not terminal states, reaching (3,4) in

10 steps gives a total reward of 0.6
• Penalty designed to make the agent go for shorter solution paths

75

11/15/22

34

Optimal Policy

-1

+1

• A policy p is a complete mapping from states to actions
• The optimal policy p* is the one that always yields a

history (sequence of steps ending at a terminal state)
with maximal expected utility

2

3

1

4321

Note that [3,2] is a “dangerous”
state that the optimal policy

tries to avoid

76

Rewards and Optimal Policy

• Optimal Policy when penalty in non-terminal
states is -0.04

• Note that here the cost of taking steps is small
compared to the cost of ending into (4,2)
• Thus, the optimal policy for state (3,1) is to take

the long way around the obstacle rather then
risking to fall into (4,2) by taking the shorter way
that passes next to it

• But the optimal policy may change if the reward
in the non-terminal states (let’s call it r) changes

77

11/15/22

35

Rewards and Optimal Policy

• Optimal Policy when r < -1.6284

• Why is the agent heading straight into
(4,2) from its surrounding states?

• The cost of taking a step is so high that
the agent heads straight into the
nearest terminal state, even if this is
(4,2) (reward -1)

3

2

1

1 2 3 4

78

Rewards and Optimal Policy

• Optimal Policy when
-0.427 < r < -0.085

• The cost of taking a step is high
enough to make the agent take the
shortcut to (4,3) from (3,1)

3

2

1

1 2 3 4

79

11/15/22

36

Rewards and Optimal Policy

• Optimal Policy when -0.0218 < r < 0

• Why is the agent heading straight into
the obstacle from (3,2)?

• Staying longer in the grid is not
penalized as much as before. The
agent is willing to take longer routes
to avoid (4,2)

• This is true even when it means
banging against the obstacle a few
times when moving from (3,2)

3

2

1

1 2 3 4

80

Rewards and Optimal Policy

• Optimal Policy when r > 0

• What happens when the agent is
rewarded for every step it takes?

• It is basically rewarded for sticking
around

• The only actions that matter are the
ones in states that are adjacent to the
terminal states: take the agent away
from them

state where every
action belongs to
an optimal policy

3

2

1

1 2 3 4

81

11/15/22

37

Optimal Policy

-1

+1

• A policy p is a complete mapping from states to actions
• The optimal policy p* is the one that always yields a

history with maximal expected utility

2

3

1

4321

82

Optimal Policy

-1

+1

• A policy p is a complete mapping from states to actions
• The optimal policy p* is the one that always yields a

history with maximal expected utility

2

3

1

4321

This problem is called a
Markov Decision Problem (MDP)

How to compute p*?

83

