## Sequential Decision Making Under Uncertainty

R.O.B.O.T. Comics
 SUB-OPTIMAL, BUT IT'S GOT FLAIR."

1

## Bookkeeping

- Phase I (writeup and code) due tomorrow night
- HW5 under consideration; dates TBA (soon)
- If turned in it will be graded and taken into account
- No lecture Thursday!
- Today:
- "Planning" under uncertainty (sequential decision making)
- Some time to touch base on projects
- Next lecture: Reinforcement Learning (RL)


## Assumption in the Planning We've Seen so Far

- What is it?
- NO UNCERTAINTY!
- Assumes the agent knows everything about the world and what can happen in it.
- Sources of Uncertainty
- Agent may not know all states of the world.
- Agent may not know what state of the world it is in.

Outcomes of actions may not be known

3

## Decision Making Under Uncertainty

- Many environments have multiple possible outcomes
- Some of these outcomes may be good; others may be bad
- Some may be very likely; others unlikely
- What's a poor agent to do??


## Review: Expected Utility

- Random variable $X$ with $n$ values $x_{1}, \ldots, x_{n}$ and distribution $\left(p_{1}, \ldots, p_{n}\right)$
- E.g.: X is the state reached after doing an action A under uncertainty
- Function $U$ of $X$
- E.g., U is the utility of a state
- The expected utility of $A$ is

$$
E \cup[A]=\sum_{i=1, \ldots, n} p\left(x_{i} \mid A\right) U\left(x_{i}\right)
$$

6

## One State/One Action Example



## One State/Two Actions Example



8

Introducing Action Costs


## Review: MEU Principle

- A rational agent should choose the action that maximizes agent's expected utility
- This is the basis of the field of decision theory
- The MEU principle provides a normative criterion for rational choice of action
- So we know what to do when planning actions!


## Not quite...

- Must have a complete model of:
- Actions
- Utilities
- States
- Even if you have a complete model, decision making is computationally intractable
- In fact, a truly rational agent takes into account the utility of reasoning as well (bounded rationality)
- Nevertheless, great progress has been made in this area recently, and we are able to solve much more complex decision-theoretic problems than ever before


## Review: Value Function

- Provides a ranking of alternatives, but not a meaningful metric scale
- Also known as an "ordinal utility function"
- Sometimes, only relative judgments (value functions) are necessary
- At other times, absolute judgments (utility functions) are required


## Decision Networks

- Extend BNs to handle actions and utilities
- Also called influence diagrams
- Use BN inference methods to solve
- Perform Value of Information calculations


## Decision Networks

- A decision network represents information about
- The agent's current state
- Its possible actions
- The state that will result from the agent's action
- The utility of that state

Decision network $=$ Bayes net + Actions + Utilities
$\square$ - Action nodes (rectangles, cannot have parents, will have value fixed by algorithm)
$<\begin{aligned} & \text { - Utility nodes (diamond, depends on action and } \\ & \text { chance nodes) }\end{aligned}$


14

## Decision Networks cont.

## - Chance nodes: random variables, as in BNs



- Decision nodes: actions that a decision maker can take
-Utility/value nodes: the utility of an outcome state


## Decision Networks



## Example: Take an umbrella?



## Decision Networks

- Decision network $=$ Bayes net + Actions + Utilities
$\square$ - Action nodes (rectangles, cannot have parents, will have value fixed by algorithm)
$<$ - Utility nodes (diamond, depends on action and chance nodes)
- Decision algorithm:
- Fix evidence $e$

Bayes net inference!

- For each possible action
- Fix action node to $a$
- Compute posterior $P(W \mid e, a)$ for parents $W$ of $U$
- Compute expected utility $\sum_{w} P(w \mid e, a) U(a, w)$

- Return action with highest expected utility


## Example: Take an umbrella?

- Decision algorithm:
- Fix evidence $e$
- For each possible action $a$
- Fix action node to $a$
- Compute posterior $P(\boldsymbol{W} \mid \boldsymbol{e}, a)$ for parents $W$ of $U$
- Compute expected utility of action $a: \sum_{w} P(w \mid e, a) U(a, w)$
- Return action with highest expected utility

Umbrella = leave
 EU $($ leave $\mid F=$ bad $)=\sum_{w} P(w \mid F=$ bad $) U($ leave,$w)$

$$
=0.34 \times 100+0.66 \times 0=34
$$

Umbrella = take

| $W$ | $P(W \mid F=b a d)$ |
| :---: | :---: |
| sun | 0.34 |
| rain | 0.66 |

$$
\begin{aligned}
& \mathrm{EU}(\text { take } \mid F=\text { bad })=\sum_{w} P(w \mid F=\text { bad }) \\
& \quad=0.34 \times 20+0.66 \times 70=53
\end{aligned}
$$

Optimal decision = take!


## Value of Information



21

## Value of information

- Suppose you haven't yet seen the forecast

| $-E U($ leave $\mid)=0.7 \times 100+0.3 \times 0=70$ |
| :--- | :--- |
| $-E U($ take $\mid)=0.7 \times 20+0.3 \times 70=35$ |

- What if you look at the forecast?
- If Forecast=good
- EU(leave $\mid \mathrm{F}=\mathrm{good})=0.89 \times 100+0.11 \times 0=89$
.EU(take $\mid F=g o o d)=0.89 \times 20+0.11 \times 70=25$
- If Forecast=bad
- EU(leave | F=bad) $=0.34 \times 100+0.66 \times 0=34$
$\cdot \quad$ EU(take $\mid \mathrm{F}=\mathrm{bad})=0.34 \times 20+0.66 \times 70=53$
- $P($ Forecast $)=<0.65,0.35>$
- Expected utility given forecast
- $\quad=0.65 \times 89+0.35 \times 53=76.4$
- Value of information $=76.4-70=6.4$



## Value of information contd.

- General idea: value of information = expected improvement in decision quality from observing value of a variable
- E.g., oil company deciding on seismic exploration and test drilling
- E.g., doctor deciding whether to order a blood test
- E.g., person deciding on whether to look before crossing the road
- Key point: decision network contains everything needed to compute it!
- $\operatorname{VPI}\left(E_{i} \mid \mathrm{e}\right)=\left[\sum_{e i} P\left(e_{i} \mid e\right) \max _{a} \operatorname{EU}\left(a \mid e_{i}, e\right)\right]-\max _{a} \mathrm{EU}(a \mid e)$


## Decisions with unknown preferences

- In reality the assumption that we can write down our exact preferences for the machine to optimize is false
- A machine optimizing the wrong preferences causes problems


## Sequential decisions under uncertainty

- So far, decision problem is one-shot-concerning only one action
- Sequential decision problem: agent's utility depends on a sequence of actions
- This is where we get into planning



## Decisions Under Uncertainty

- Some areas of Al (e.g., planning) focus on decision making in domains where the environment is understood with certainty
- What if an agent has to make decisions in a domain that involves uncertainty?
- An agent's decision will depend on:
- what actions are available; they often don't have deterministic outcome
- what beliefs the agent has over the world
- the agent's goals and preferences


## The Big Idea

- "Planning": Find a sequence of steps to accomplish a goal.
- Given start state, transition model, goal functions...
- This is a kind of sequential decision making.
- Transitions are deterministic.
- What if they are stochastic (probabilistic)?
- One time in ten, you drop your sock instead of putting it on
- Probabilistic Planning: Make a plan that accounts for probability by carrying it through the plan.


## Decision Processes

- Often an agent needs to decide how to act in situations that involve sequences of decisions
- The agent's utility depends upon the final state reached, and the sequence of actions taken to get there
- Would like to have an ongoing decision process. At any stage of the process:
- The agent decides which action to perform
- The new state of the world depends probabilistically upon the previous state as well as the action performed
- The agent receives rewards or punishments at various points in the process
- Aim: maximize the reward received


## Sequential Decision Problem Example

- Beginning at the start state, choose an action at each time step.
- Problem terminates when either goal state is reached.
- Possible actions are Up, Down, Left, and Right

- Assume that the environment is fully observable, i.e., the agent always knows where it is.


## Sequential Decision Problem Example

- Deterministic Solution
- If the environment is deterministic and the objective is get the maximum reward $\rightarrow$
- The solution is easy: (Up, Up, Right, Right, Right)



## Simple Robot Navigation Problem



- In each state, the possible actions are $U, D, R$, and $L$


## Probabilistic Transition Model



- In each state, the possible actions are $U, D, R$, and $L$
- The effect of $U$ is as follows (transition model):
- With probability 0.8 , the robot moves up one square (if the robot is already in the top row, then it does not move)


## Probabilistic Transition Model



- In each state, the possible actions are $U, D, R$, and $L$
- The effect of $U$ is as follows (transition model):
- With probability 0.8 , the robot moves up one square (if the robot is already in the top row, then it does not move)
- With probability 0.1 , the robot moves right one square (if the robot is already in the rightmost row, then it does not move)

40

## Probabilistic Transition Model



- In each state, the possible actions are U, D, R, and L
- The effect of $U$ is as follows (transition model):
- With probability 0.8 , the robot moves up one square (if the robot is already in the top row, then it does not move)
- With probability 0.1 , the robot moves right one square (if the robot is already in the rightmost row, then it does not move)
- With probability 0.1 , the robot moves left one square (if the robot is already in the leftmost row, then it does not move)


## Probabilistic Transition Model



- In each state, the possible actions are $U, D, R$, and $L$
- The effect of $U$ is as follows (transition model):
- With probability 0.8 , the robot moves up one square (if the robot is already in the top row, then it does not move)
- With probability 0.1 , the robot moves right one square (if the robot is already in the rightmost row, then it does not move)
- With probability 0.1, the robot moves left one square (if the robot is already in the leftmost row, then it does not move)
- $D, R$, and $L$ have similar probabilistic effects

42

## Example: Grid World

- A maze-like problem
- The agent lives in a grid
- Walls block the agent's path
- Noisy movement: actions do not always go as planned
- $80 \%$ of the time, North takes the agent North (if there is no wall there)
- $10 \%$ of the time, North $\rightarrow$ West; $10 \%$ East
- If there is a wall in the direction the agent would have gone, the agent stays put
- The agent receives rewards each time step
- Small "living" reward $r$ each step (can be negative)
- Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards



## Example



$$
R(s)= \begin{cases}-0.04 & \text { (small penalty) for nonterminal states } \\ \pm 1 & \text { for terminal states }\end{cases}
$$

Example


- Can the sequence [Up, Up, Right, Right, Right] take the agent to terminal state $(4,3)$ ?
- Can the sequence reach the goal in any other way?


## Example



- Can the sequence [Up, Up, Right, Right, Right] take the agent to terminal state $(4,3)$ ?
- Yes, with probability $0.8^{5}=0.3278$
- Can the sequence reach the goal in any other way?

Example


- Can the sequence [Up, Up, Right, Right, Right] take the agent to terminal state $(4,3)$ ?
- Yes, with probability $0.8^{5}=0.3278$
- Can the sequence reach the goal in any other way?
- yes, going the other way around with probability $0.1^{4} \times 0.8=0.00008$


## Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function $T\left(s, a, s^{\prime}\right)$
- Probability that a from s leads to s'
- i.e., P(s' | s,a)
- Also called "the model"
- A reward function $R\left(s, a, s^{\prime}\right)$
- Sometimes just $R(s)$ or $R\left(s^{\prime}\right)$

- A start state (or distribution)
- Maybe a terminal state



## Transition Model

- A transition model is a specification of the outcome probabilities for each action in each possible state.
- $T\left(s, a, s^{\prime}\right)$ denotes the probability of reaching state $s^{\prime}$ if action a is done on state s .
- Make Markov Assumption, i.e., the probability of reaching state s' from s depends only on $s$ and not on the history of earlier states.


## Rewards and Utilities

- A utility function must be specified for the agent in order to determined the value of an action.
- Because the problem is sequential, the utility function depends on a sequence of states (environment history).
- Rewards are assigned to states, i.e., R(s) returns the reward of the state.
- For this example, assume the following:
- The reward for all states, except for the goal states, is -0.04 .
- The utility function is the sum of all the states visited.
- E.g., if the agent reaches $(4,3)$ in 10 steps, the total utility is $1+(10 x-0.04)=$ 0.6.
- The negative reward is an incentive to stop interacting as quickly as possible.


## Markov Property

- We will focus on decision processes that can be represented as Markovian (as in Markov models)
- Actions have probabilistic outcomes that depend only on the current state
- Let $s_{t}$ be the state at time $t$
- $P\left(s_{t+1} / s_{0}, a_{0}, \ldots, s_{t}, a_{t}\right)=P\left(s_{t+1} / s_{t}, a_{t}\right)$
- The transition properties depend only on the current state, not on the previous history (how that state was reached)
- Markov assumption generally: current state only ever depends on previous state (or finite set of previous states).


## What is Markov about MDPs?

- Andrey Markov (1856-1922)
- "Markov" generally means that
- conditioned on the present state,
- the future is independent of the past
- For Markov decision processes, "Markov" means:


$$
\begin{aligned}
& P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}, S_{t-1}=s_{t-1}, A_{t-1}, \ldots S_{0}=s_{0}\right) \\
& \quad= \\
& P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}\right)
\end{aligned}
$$

## Sequence of Actions


$[3,2] \leftarrow$ start state

- Planned sequence of actions: ( $\mathrm{U}, \mathrm{R}$ )


## Sequence of Actions



## Histories



- Planned sequence of actions: (U, R)
- U has been executed
- $R$ is executed
- 9 possible sequences of states - called histories
- 6 possible final states for the robot!


## Probability of Reaching the Goal

$$
\begin{aligned}
& \text { Note importance of Markov property } \\
& \text { in this derivation } \\
& \text { •P([4,3] | (U,R).[3,2]) = } \\
& +\mathbf{P}([4,3] \mid \text { R. }[4,2]) \times \mathbf{P}([4,2] \mid \text { U.[3,2]) } \\
& \cdot \mathbf{P}([4,3] \mid R .[3,3])=0.8 \quad \bullet \mathbf{P}([3,3] \mid \mathrm{U} .[3,2])=0.8 \\
& \cdot \mathbf{P}([4,3] \mid R .[4,2])=0.1 \quad \bullet P([4,2] \mid U .[3,2])=0.1 \\
& \text { •P([4,3] | (U,R).[3,2]) }=0.65
\end{aligned}
$$

## Probability of Reaching the Goal



- Core idea: multiply backward probabilities of each step taken from end state reached
- But we still need to consider different ways of reaching a state
- Going all the way around the obstacle would be "worse"


## Utility Function



- $[4,3]$ provides power supply
- $[4,2]$ is a sand area from which the robot cannot escape


## Utility Function



- $[4,3]$ provides power supply
- $[4,2]$ is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries


## Utility Function



- $[4,3]$ provides power supply
- $[4,2]$ is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries
- $[4,3]$ and $[4,2]$ are terminal states


## Utility Function



- $[4,3]$ provides power supply
- $[4,2]$ is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries
- $[4,3]$ and $[4,2]$ are terminal states
- Histories have utility!


## Utility of a History



- $[4,3]$ provides power supply
- $[4,2]$ is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries
- $[4,3]$ or $[4,2]$ are terminal states
- Histories have utility!
- The utility of a history is defined by the utility of the last state ( +1 or -1 ) minus $n / 25$, where $n$ is the number of moves
- Many utility functions possible, for many kinds of problems.


## Utility of an Action Sequence



- Consider the action sequence ( $\mathrm{U}, \mathrm{R}$ ) from [3,2]


## Utility of an Action Sequence



- Consider the action sequence (U,R) from [3,2]
- A run produces one of 7 possible histories, each with some probability


## Utility of an Action Sequence



- Consider the action sequence ( $U, R$ ) from $[3,2]$
- A run produces one of 7 possible histories, each with some probability
- The utility of the sequence is the expected utility of the histories:

$$
u=\sum_{h} u_{h} \mathbf{P}(h)
$$

## Optimal Action Sequence



- Consider the action sequence (U,R) from [3,2]
- A run produces one of 7 possible histories, each with some probability
- The utility of the sequence is the expected utility of the histories:

$$
u=\sum_{h} u_{h} \mathbf{P}(h)
$$

- The optimal sequence is the one with maximal utility


## Optimal Action Sequence



- Consider the action sequence ( $\mathrm{U}, \mathrm{R}$ ) from [3,2]
- A run produ only if the sequence is executed blindly! ability
- The utility of wroynorn wirn
- The optimal sequence is the one with maximal utility
- But is the optimalaction sequence what we want to compute?


## Reactive Agent Algorithm



- If $s$ is a terminal state then exit
- $\mathrm{a} \leftarrow$ choose action (given s)
- Perform a


## Solution for an MDP

- Since outcomes of actions are not deterministic, a fixed set of actions cannot be a solution.
- The solution to our planning problem is not $U, U, R, R, R$
- But what is it?
- A solution must specify what an a agent should do for any state that the agent might reach.
- A policy, denoted by $\pi$, recommends an action for a given state, i.e., - $\pi(s)$ is the action recommended by policy $\pi$ for state $s$.


## Policy (Reactive/Closed-Loop Strategy)



- In every state, we need to know what to do
- The goal doesn't change
- A policy ( $\Pi$ ) is a complete mapping from states to actions
- "If in [3,2], go up; if in [3,1], go left; if in..."


## Optimal Policy

- An Optimal policy is a policy that yields the highest expected utility.
- Optimal policy is denoted by $\pi^{*}$.
- Once a $\pi^{*}$ is computed for a problem, then the agent, once identifying the state (s) that it is in, consults $\pi^{*}(s)$ for the next action to execute.


## Reactive Agent Algorithm

Repeat:

- $s \leftarrow$ sensed state
- If $s$ is terminal then exit
- $a \leftarrow \Pi(s)$
- Perform a


## Policies

- A policy $\pi$ gives an action for each state, $\pi: S \rightarrow A$
- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^{*}: S \rightarrow A$
- An optimal policy maximizes expected utility

- An explicit policy defines a reflex agent


## Solving MDPs

- In search problems, aim is to find an optimal state sequence
- In MDPs, aim is to find an optimal policy $\pi(s)$
- A policy $\pi(s)$ specifies what the agent should do in each state $s$
- Because the environment is stochastic, a policy can generate a set of environment histories (sequences of states) with different probabilities
- Optimal policy maximizes the expected total reward, where the expectation is taken over the set of possible state sequences generated by the policy
- Each state sequence associated with that policy has a given amount of total reward
- Total reward is a function of the rewards of its individual states (we'll see how)


## Optimal Policy in our Example

- Let's suppose that, in our example, the total reward of an environment history is simply the sum of the individual rewards
- For instance, with a penalty of -0.04 in not terminal states, reaching $(3,4)$ in 10 steps gives a total reward of 0.6
- Penalty designed to make the agent go for shorter solution paths


## Optimal Policy



- A policy $\pi$ is a complet Note that $[3,2]$ is a "dangerous"
- The optimal policy $\pi^{*}$ i state that the optimal policy history (sequence of $\mathrm{s} \quad$ tries to avoid with maximal expected utility


## Rewards and Optimal Policy

- Optimal Policy when penalty in non-terminal states is -0.04
- Note that here the cost of taking steps is small compared to the cost of ending into $(4,2)$
- Thus, the optimal policy for state $(3,1)$ is to take the long way around the obstacle rather then risking to fall into $(4,2)$ by taking the shorter way
 that passes next to it
- But the optimal policy may change if the reward in the non-terminal states (let's call it r) changes


## Rewards and Optimal Policy

- Optimal Policy when $r<-1.6284$
- Why is the agent heading straight into $(4,2)$ from its surrounding states?
- The cost of taking a step is so high that the agent heads straight into the nearest terminal state, even if this is
 $(4,2)$ (reward -1)


## Rewards and Optimal Policy

- Optimal Policy when
$-0.427<r<-0.085$
- The cost of taking a step is high enough to make the agent take the shortcut to $(4,3)$ from $(3,1)$



## Rewards and Optimal Policy

- Optimal Policy when $-0.0218<r<0$
- Why is the agent heading straight into the obstacle from $(3,2)$ ?
- Staying longer in the grid is not penalized as much as before. The agent is willing to take longer routes to avoid (4,2)

- This is true even when it means banging against the obstacle a few times when moving from (3,2)


## Rewards and Optimal Policy

- Optimal Policy when $r>0$
- What happens when the agent is rewarded for every step it takes?
- It is basically rewarded for sticking around

state where every action belongs to an optimal policy


## Optimal Policy



- A policy $\pi$ is a complete mapping from states to actions
- The optimal policy $\pi^{*}$ is the one that always yields a history with maximal expected utility


## Optimal Policy



- A policy $\pi$ is a comp

This problem is called a is

- The optimal policy

Markov Decision Problem (MDP)
history with maximal expected utility
How to compute $\pi^{*}$ ?

