First-Order Logic \& Higher-Order Logic, Knowledge-Based Agents

1

Bookkeeping

- HW4 out
- Designs will be graded this week - read the comments!
- Today's class:
- Review/finalize propositional logic
- Converting to CNF
- First-order logic
- Knowledge-based agents

First-Order Logic

Chapter 8

3

Review

- Definitions:
- Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives, Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology), etc.
- Syntactic Transformations:
- E.g., $(A \Rightarrow B) \Leftrightarrow(\neg A \vee B)$
- Truth Tables
- Negation, Conjunction, Disjunction, Implication, Equivalence (Biconditional)
- Inference by Model Enumeration

Review: Schematic perspective

If $K B$ is true in the real world,
then any sentence α entailed by $K B$
is also true in the real world.
For example: If I tell you (1) Sue is Mary's sister, and (2) Sue is Amy's mother, then it necessarily follows in the world that Mary is Amy's aunt, even though I told you nothing at all about aunts. This sort of reasoning pattern is what we hope to capture.

5

Review: Logic

- If a problem domain can be represented formally, then a decision maker can use logical reasoning to make rational decisions
- Many types of logic
- Propositional Logic (Boolean logic)
- First-Order Logic (aka first-order predicate calculus)
- Non-Monotonic Logic
- Markov Logic
- A logic includes:
- syntax: what is a correctly-formed sentence?
- semantics: what is the meaning of a sentence?
- Inference procedure (reasoning, entailment): what sentence logically follows given knowledge?

Review: Propositional Logic

- A symbol in Propositional Logic (PL) is a symbolic variable whose value must be either True or False, and which stands for a natural language statement that could be either true or false
- $\mathrm{A}=$ "Smith has chest pain"
- $B=$ "Smith is depressed"
- $\mathrm{C}=$ "It is raining"

7

Review: Semantics

- An interpretation is a complete True / False assignment to all propositional symbols
- Example symbols: P means "It is hot", Q means "It is humid", R means "It is raining"
- There are 8 interpretations (TTT, ..., FFF)
- The semantics (meaning) of a sentence is the set of interpretations in which the sentence evaluates to True
- Example: the semantics of the sentence $\mathrm{P} \vee \mathrm{Q}$ is the set of 6 interpretations:
- $P=$ True, $Q=$ True, $R=$ True or False
- $P=$ True, $Q=$ False, $R=$ True or False
- $P=$ False, $Q=$ True, $R=$ True or False
- A model of a set of sentences is an interpretation in which all the sentences are true

Review: Knowledge Base (KB)

- A knowledge base, $K B$, is a set of sentences
- Example KB:
- HaveLecture \Leftrightarrow (TodaylsTuesday V TodaylsThursday)
- ᄀHaveLecture
- It is equivalent to a single long sentence: the conjunction of all sentences
- (HaveLecture \Leftrightarrow (TodaylsTuesday \vee TodaylsThursday)) $\wedge \neg$ HaveLecture
- A model of a KB is an interpretation in which all sentences in KB are true

Review: Entailment

- Entailment is the relation of a sentence β logically following from other sentences α (e.g., KB): $\boldsymbol{\alpha} \vDash \boldsymbol{\beta}$
- $\alpha \vDash \beta$ if and only if, in every interpretation in which α is true, β is also true; i.e., whenever α is true, so is β
- Deduction theorem: $\alpha \vDash \beta$ if and only if $\alpha \Rightarrow \beta$ is valid (always true)
- Proof by contradiction (refutation, reductio ad absurdum): $\boldsymbol{\alpha} \vDash \boldsymbol{\beta}$ if and only if $\alpha \boldsymbol{\wedge} \neg \boldsymbol{\beta}$ is unsatisfiable
- There are 2^{n} interpretations to check, if $K B$ has n symbols

So - how do we keep it from "Just making things up" ?

Is this inference correct?

How do you know?
How can you tell?

How can we make correct inferences?
How can we avoid incorrect inferences?

"Einstein Simplified: Cartoons on Science" by Sydney Harris, 1992, Rutgers University Press

So - how do we keep it from "Just making things up" ?

- All men are people;
- Half of all people are women;
- Therefore, half of all men are women. Is this inference correct?

How do you know?
How can you tell?

- Penguins are black and white;
- Some old TV shows are black and white;
- Therefore, some penguins are old TV shows.

Schematic perspective

If $K B$ is true in the real world,
then any sentence $\boldsymbol{\alpha}$ derived from $K B$ by a sound inference procedure is also true in the real world.

Conjunctive Normal Form (CNF)

- Any KB can be converted into CNF.

Review: Equivalence \& Implication

- Equivalence is a conjoined double implication
- $(X \Leftrightarrow Y)=[(X \Rightarrow Y) \wedge(Y \Rightarrow X)]$
- Implication is (NOT antecedent OR consequent)
- $\quad(X \Rightarrow Y)=(\neg X \vee Y)$
- How do we know this is true?
- We can always use a truth table:

Review: de Morgan's rules

- How to bring \neg inside parentheses
- (1) Negate everything inside the parentheses
- (2) Change operators to "the other operator"
- $\quad \neg(X \wedge Y \wedge \ldots \wedge Z)=(\neg X \vee \neg Y \vee \ldots \vee \neg Z)$
- $\neg(X \vee Y \vee \ldots \vee Z)=(\neg X \wedge \neg Y \wedge \ldots \wedge \neg Z)$

Review: Boolean Distributive Laws

- Both of these laws are valid:
- AND distributes over OR
- $X \wedge(Y \vee Z)=(X \wedge Y) \vee(X \wedge Z)$
- $(W \vee X) \wedge(Y \vee Z)=(W \wedge Y) \vee(X \wedge Y) \vee(W \wedge Z) \vee(X \wedge Z)$
- OR distributes over AND
- $X \vee(Y \wedge Z)=(X \vee Y) \wedge(X \vee Z)$
- $(W \wedge X) \vee(Y \wedge Z)=(W \vee Y) \wedge(X \vee Y) \wedge(W \vee Z) \wedge(X \vee Z)$

Conjunctive Normal Form (CNF)

1. Replace all \Leftrightarrow using iff/biconditional elimination

- $\alpha \Leftrightarrow \beta \equiv(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$

2. Replace all \Rightarrow using implication elimination

- $\alpha \Rightarrow \beta \equiv \neg \alpha \vee \beta$

3. Move all negations inward using

- double-negation elimination
- $-(-\alpha) \equiv \alpha$
- de Morgan's rule
- $\neg(\alpha \vee \beta) \equiv \neg \alpha \wedge \neg \beta$
- $-(\alpha \wedge \beta) \equiv \neg \alpha \vee \neg \beta$

4. Apply distributivity of \vee over \wedge

- $\alpha \wedge(\beta \vee \gamma) \equiv(\alpha \wedge \beta) \vee(\alpha \wedge \gamma)+1$ more

Convert Sentence into CNF

- $A \Leftrightarrow(B \vee C)$
- $(A \Rightarrow(B \vee C)) \wedge((B \vee C) \Rightarrow A) \quad$ iff/biconditional elimination
- $(\neg A \vee B \vee C) \wedge(\neg(B \vee C) \vee A) \quad$ implication elimination
- $(\neg A \vee B \vee C) \wedge((\neg B \wedge \neg C) \vee A) \quad$ move negations inward
- $(\neg A \vee B \vee C) \wedge(\neg B \vee A) \wedge(\neg C \vee A)$ distribute \vee over \wedge
called a
"clause"

Example: Conversion to CNF

Example: $\mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)$

1. Eliminate \Leftrightarrow by replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$.

$$
=\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

2. Eliminate \Rightarrow by replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$ and simplify. $=\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)$
3. Move \neg inwards using de Morgan's rules and simplify.

$$
\begin{aligned}
& \neg(\alpha \vee \beta) \equiv(\neg \alpha \wedge \neg \beta), \neg(\alpha \wedge \beta) \equiv(\neg \alpha \vee \neg \beta) \\
& =\left(\neg B_{1,1} \vee \mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \wedge\left(\left(\neg \mathrm{P}_{1,2} \wedge \neg \mathrm{P}_{2,1}\right) \vee \mathrm{B}_{1,1}\right)
\end{aligned}
$$

4. Apply distributive law (\wedge over \vee) and simplify.
$=\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)$

Example: Conversion to CNF

- Example: $\mathrm{B} 1,1 \Leftrightarrow(\mathrm{P} 1,2 \vee \mathrm{P} 2,1)$
- From the previous slide we had:
- $=(\neg \mathrm{B} 1,1 \vee \mathrm{P} 1,2 \vee \mathrm{P} 2,1) \wedge(\neg \mathrm{P} 1,2 \vee \mathrm{~B} 1,1) \wedge(\neg \mathrm{P} 2,1 \vee \mathrm{~B} 1,1)$

5. KB is the conjunction of all of its sentences (all are true),

- so write each clause (disjunct) as a sentence in KB:
- $K B=$

$$
\begin{aligned}
& (\neg \mathrm{B} 1,1 \vee \mathrm{P} 1,2 \vee \mathrm{P} 2,1) \\
& (\neg \mathrm{P} 1,2 \vee \mathrm{~B} 1,1) \\
& (\neg \mathrm{P} 2,1 \vee \mathrm{~B} 1,1)
\end{aligned} \quad \frac{\text { Often, Won't Write " } \wedge \text { " }}{(\text { we know it is there })}
$$

- Can do this in Propositional Logic, but often we want to use First Order Logic

First-Order Logic

- First-order logic (FOL) models the world in terms of
- Objects, which are things with individual identities
- Properties of objects that distinguish them from other objects
- Relations that hold among sets of objects
- Functions, which are a subset of relations where there is only one "value" for any given "input"
- Examples:
- Objects: students, lectures, companies, cars ...
- Relations: brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
- Properties: blue, oval, even, large, ...
- Functions: father-of, best-friend, second-half, one-more-than ...

User Provides

- Constant symbols, which represent individuals in the world
- Mary
- 3
- Green
- Function symbols, which map individuals to individuals
- father-of(Mary) = John
- color-of(Sky) = Blue
- Predicate symbols, which map individuals to truth values
- greater $(5,3)$
- green(Grass)
- color(Grass, Green)

FOL Provides

- Variable symbols
- E.g., x, y, foo
- Connectives
- Same as in PL: not (\neg), and (\wedge), or (\vee), implies (\Rightarrow), if and only if (biconditional \leftrightarrow)
- Quantifiers
- Universal $\forall x$ or (Ax)
- Existential $\exists x$ or (Ex)

Sentences: Terms and Atoms

- A term (denoting a real-world individual) is:
- A constant symbol: John, or
- A variable symbol: x, or
- An n-place function of n terms
x and $f\left(x_{1}, \ldots, x_{n}\right)$ are terms, where each x_{i} is a term is-a(John, Professor)
- A term with no variables is a ground term.
- An atomic sentence is an n-place predicate of n terms
- Has a truth value (t or f)

First-Order Logic (FOL

- Propositional logic assumes the world contains facts.
- First-order logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, colors, baseball games, wars, ...
- Functions: father of, best friend, one more than, plus, ...
- Function arguments are objects; function returns an object
- Objects generally correspond to English NOUNS
- Predicates/Relations/Properties: red, round, prime, brother of, bigger than, part of, between...
- Predicate arguments are objects; predicate returns a truth value
- Predicates generally correspond to English VERBS
- First argument is generally the subject, the second the object
- Hit(Bill, Ball) usually means "Bill hit the ball."
- Likes(Bill, IceCream) usually means "Bill likes IceCream."
- Verb(Noun1, Noun2) usually means "Noun1 verb noun2."

Syntax of FOL: Atomic Sentences

- Atomic sentences in logic state facts that are true or false.
- Properties and m-ary relations do just that:
- LargerThan $(2,3)$ is false.
- BrotherOf(Mary, Jane) is false.
- Married(Father(Richard), Mother(John)) could be true or false.
- Note: Functions refer to objects, do not state facts, and form no sentence:
- Brother(Pete) refers to John (his brother) and is neither true nor false.
- $\operatorname{Plus}(2,3)$ refers to the number 5 and is neither true nor false.
- BrotherOf(Pete, Brother(Pete)) is True.

Binary relation
is a truth value.

Function refers to John, an object in the world, i.e., John is Pete's brother.

Syntax of FOL: Variables

- Variables range over objects in the world.
- A variable is like a term because it represents an object.
- A variable may be used wherever a term may be used.
- Variables may be arguments to functions and predicates.
- (A term with NO variables is called a ground term.)
- (A variable not bound by a quantifier is called free.

Syntax of FOL: Basic syntax elements are symbols

- Constant Symbols (correspond to English nouns)
- Stand for objects in the world. E.g., KingJohn, 2, France, ...
- Predicate Symbols (correspond to English verbs)
- Stand for relations (maps a tuple of objects to a truth-value)
- E.g., Brother(Richard, John), greater_than(3,2), ...
- Function Symbols (correspond to English nouns)
- Stand for functions (maps a tuple of objects to an object)
- E.g., Sqrt(3), LeftLegOf(John), ...
- Model (world) = set of domain objects, relations, functions
- Interpretation maps symbols onto the model (world)
- Very many interpretations are possible for each KB and world!
- Job of the KB is to rule out models inconsistent with our knowledge.

Syntax of FOL: Basic elements

- Constants KingJohn, 2, UMBC,...
- Predicates BrotherOf, $>, \ldots$ (return true or false)
- Functions Sqrt, LeftLegOf,... (return some object)
- Variables x, y, a, b, \ldots
- Quantifiers \forall, \exists
- Connectives $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$ (standard)
- Equality = (but causes difficulties....)

Sentences: Terms and Atoms

- A complex sentence is formed from atomic sentences connected by the same logical connectives as in propositional logic: $\neg P, P \vee Q, P \wedge Q, P \Rightarrow Q, P \leftrightarrow Q$ where P and Q are sentences
has-a(x, Bachelors) $\wedge i s-a(x$, human $)$
does NOT SAY everyone with a bachelors' is human
has-a(John, Bachelors) ^is-a(John, human)
has-a(Mary, Bachelors)

31

Quantifiers

- Universal quantification

- $\forall x P(x)$ means that P holds for all values of x in its domain
- States universal truths
- E.g.: $\forall x$ dolphin $(x) \Rightarrow$ mammal((x)

- Existential quantification

- $\exists x P(x)$ means that P holds for some value of x in the domain associated with that variable
- Makes a statement about some object without naming it
- E.g., ヨx mammal(x) ^lays-eggs(x)

Sentences: Quantification

- Quantified sentences adds quantifiers \forall and \exists
$\forall x$ has-a(x, Bachelors) \Rightarrow is- $a(x$, human $)$
$\exists x$ has-a(x, Bachelors)
$\forall x \exists y \operatorname{Loves}(x, y)$

Everyone who has a bachelors' is human.
There exists some who has a bachelors'.
Everybody loves somebody.

Sentences: Well-Formedness

- A well-formed formula (wff) is a sentence containing no "free" variables. That is, all variables are "bound" by universal or existential quantifiers.
- $(\forall x) \mathrm{P}(x, y)$ has x bound as a universally quantified variable, but y is free.

Quantifiers: Uses of \forall

- Universal quantifiers often used with "implies" to form "rules":
($\forall \mathrm{x})$ student $(\mathrm{x}) \Rightarrow \operatorname{smart}(\mathrm{x})$
"All students are smart"
- Universal quantification rarely* used to make blanket statements about every individual in the world:
($\forall \mathrm{x}$)student $(\mathrm{x}) \wedge$ smart (x)
"Everyone in the world is a student and is smart"
*Deliberately, anyway

Quantifiers: Uses of \exists

- Existential quantifiers are usually used with "and" to specify a list of properties about an individual:
- $(\exists x)$ student $(x) \wedge \operatorname{smart}(x)$
- "There is a student who is smart"
- A common mistake is to represent this English sentence as the FOL sentence:
- $(\exists x)$ student $(x) \Rightarrow \operatorname{smart}(x)$
- But what happens when there is a person who is not a student?

Translation with Quantifiers

- Universal statements typically use implications
- All $S(x)$ is $P(x)$:
- $\forall x(S(x) \Rightarrow P(x))$
- \quad No $S(x)$ is $P(x)$:
- $\forall x(S(x) \Rightarrow \neg P(x))$
- Existential statements typically use conjunctions
- Some $S(x)$ is $P(x)$:
- $\exists x(S(x) \wedge P(x))$
- \quad Some $S(x)$ is not $P(x)$:
- $\exists x(S(x) \wedge \neg P(x))$

Quantifier Scope

- Switching the order of universal quantifiers does not change the meaning:
- $(\forall x)(\forall y) P(x, y) \leftrightarrow(\forall y)(\forall x) P(x, y)$
- Similarly, you can switch the order of existential quantifiers:
- $(\exists x)(\exists y) P(x, y) \leftrightarrow(\exists y)(\exists x) P(x, y)$
- Switching the order of universals and existentials does change meaning:
- Everyone likes someone: $(\forall x)(\exists y)$ likes (x, y)
- Someone is liked by everyone: $(\exists y)(\forall x)$ likes (x, y)

Connections between All and Exists

- We can relate sentences involving \forall and \exists using De Morgan's laws:
- $(\forall x) \neg P(x) \leftrightarrow \neg(\exists x) P(x)$
- $\neg(\forall x) P \leftrightarrow(\exists x) \neg P(x)$
- $(\forall x) P(x) \leftrightarrow \neg(\exists x) \neg P(x)$
- $(\exists x) P(x) \leftrightarrow \neg(\forall x) \neg P(x)$

Quantified Inference Rules

- Universal instantiation
- $\forall \mathrm{xP}(\mathrm{x}) \therefore \mathrm{P}(\mathrm{A})$
- Universal generalization
- $P(A) \wedge P(B) \ldots \quad \therefore \quad \mathrm{P}(x)$
- Existential instantiation
- $\exists \mathrm{xP}(\mathrm{x}) \therefore \mathrm{P}(\mathrm{F}) \quad \leftarrow$ skolem constant F
- Existential generalization
- $P(A) \therefore \exists \mathrm{x}(\mathrm{x})$

Universal Instantiation (a.k.a. Universal Elimination)

- If $(\forall x) P(x)$ is true, then $P(C)$ is true, where C is any constant in the domain of x
- Example:
- $(\forall x)$ eats(Ziggy, $x) \Rightarrow$ eats(Ziggy, IceCream)
- The variable symbol can be replaced by any ground term, i.e., any constant symbol or function symbol applied to ground terms only

Existential Instantiation (a.k.a. Existential Elimination)

- Variable is replaced by a brand-new constant
- I.e., not occurring in the KB
- From ($\exists x) P(x)$ infer $P(c)$
- Example:
- ($\exists x$) eats(Ziggy, $x) \Rightarrow$ eats(Ziggy, Stuff)
- "Skolemization" - create a new term that instantiates existence
- Stuff is a skolem constant
- Easier than manipulating the existential quantifier

Existential Generalization (a.k.a. Existential Introduction)

- If $P(c)$ is true, then $(\exists x) P(x)$ is inferred.
- Example
- eats(Ziggy, IceCream) $\Rightarrow(\exists x)$ eats(Ziggy, $x)$
- All instances of the given constant symbol are replaced by the new variable symbol
- Note that the variable symbol cannot already exist anywhere in the expression

Translating English to FOL

- Every gardener likes the sun.
- $\quad \forall x$ gardener $(x) \Rightarrow$ likes(x,Sun)
- You can fool some of the people all of the time.
- $\exists \mathrm{x} \forall \mathrm{t}$ person $(\mathrm{x}) \wedge$ time $(\mathrm{t}) \Rightarrow$ can-fool (x, t)
- You can fool all of the people some of the time.
- $\forall x \exists t$ (person $(x) \Rightarrow$ time $(\mathrm{t}) \wedge$ can-fool $(\mathrm{x}, \mathrm{t}))$
- $\forall x($ person $(x) \Rightarrow \exists \mathrm{t}($ time $(\mathrm{t}) \wedge$ can-fool $(\mathrm{x}, \mathrm{t}))$
- All purple mushrooms are poisonous.
- $\forall x($ mushroom $(x) \wedge$ purple $(x)) \Rightarrow$ poisonous (x)

Translating English to FOL

- No purple mushroom is poisonous.
- $\quad \neg \exists x$ purple $(x) \wedge$ mushroom $(x) \wedge$ poisonous (x)
- $\forall x$ (mushroom $(x) \wedge$ purple $(x)) \Rightarrow \neg$ poisonous (x)
- There are exactly two purple mushrooms.
- $\exists x \exists y$ mushroom $(x) \wedge$ purple $(x) \wedge$ mushroom $(y) \wedge$ purple $(y) \wedge \neg(x=y) \wedge \forall z$ (mushroom $(z) \wedge$ purple $(z)) \Rightarrow((x=z) \vee(y=z))$
- Mary is not tall.
- \quad tall(Mary)
- X is above Y iff X is on directly on top of Y or there is a pile of one or more other objects directly on top of one another starting with X and ending with Y.
- $\forall x \forall y$ above $(x, y) \leftrightarrow(o n(x, y) \vee \exists z(o n(x, z) \wedge$ above $(z, y)))$

Semantics of FOL

- Domain M: the set of all objects in the world (of interest)
- Interpretation I: includes
- Assign each constant to an object in M
- Define each function of n arguments as a mapping $M^{n}=>M$
- Define each predicate of n arguments as a mapping $\mathrm{M}^{\mathrm{n}}=>\{T, F\}$
- Therefore, every ground predicate with any instantiation will have a truth value
- In general there is an infinite number of interpretations because $|\mathrm{M}|$ is infinite
- Define logical connectives: $\sim, \wedge, v,=>,<=>$ as in PL
- Define semantics of $(\forall x)$ and $(\exists x)$
- $(\forall x) P(x)$ is true iff $P(x)$ is true under all interpretations
- $(\exists x) P(x)$ is true iff $P(x)$ is true under some interpretation

Terminology

- Model: an interpretation of a set of sentences such that every sentence is True
- A sentence is
- Satisfiable if it is true under some interpretation
- Valid if it is true under all possible interpretations
- Inconsistent if there does not exist any interpretation under which the sentence is true
- Logical consequence: $S \vDash X$ if all models of S are also models of X

Axioms, Definitions and Theorems

- Axioms are facts and rules that attempt to capture all of the (important) facts and concepts about a domain; axioms can be used to prove theorems
- Mathematicians don't want any unnecessary (dependent) axioms -ones that can be derived from other axioms
- Dependent axioms can make reasoning faster, however
- Choosing a good set of axioms for a domain is a kind of design problem
- A definition of a predicate is of the form " $p(X) \leftrightarrow$..." and can be decomposed into two parts
- Necessary description: " $p(x) \Rightarrow$..."
- Sufficient description "... $\Rightarrow p(x)$ "
- Some concepts don't have complete definitions (e.g., person(x))

Necessary and Sufficient

- p is necessary for q
- $\neg p \Rightarrow \neg q \quad$ ("no p, no q !")
- p is sufficient for q
- $p \Rightarrow q \quad$ (" p is all we need to know!")
- Note that $\neg p \Rightarrow \neg q$ is equivalent to $q \Rightarrow p$
- So if p is necessary and sufficient for q, then p iff q.

More on Definitions

- Examples: define father(x, y) by parent(x, y) and male(x)
- parent(x, y) is a necessary (but not sufficient) description of father (x, y)
- father $(x, y) \Rightarrow \operatorname{parent}(x, y)$
- parent $(x, y)^{\wedge}$ male $(x)^{\wedge}$ age $(x, 35)$ is a sufficient (but not necessary) description of father(x, y):
- father $(x, y) \leftarrow \operatorname{parent}(x, y)^{\wedge}$ male($\left.x\right)^{\wedge}$ age $(x, 35)$
- parent $(x, y)^{\wedge}$ male (x) is a necessary and sufficient description of father (x, y)
- parent $(x, y)^{\wedge}$ male $(x) \leftrightarrow$ father (x, y)

Converting FOL to CNF

- Eliminate biconditionals and implications
- Move \rightarrow inwards
- Standardize variables apart by renaming them: each quantifier should use a different variable
- Skolemize: each existential variable is replaced by a Skolem constant or Skolem function of the enclosing universally quantified variables.
- For instance, $\exists x$ Rich(x) becomes Rich(G1) where G1 is a new Skolem constant
- "Everyone has a heart" $[\forall x$ Person $(x) \Rightarrow \exists y \operatorname{Heart}(y) \wedge \operatorname{Has}(x, y)]$ becomes $\forall x \operatorname{Person}(\mathrm{x}) \Rightarrow \operatorname{Heart}(\mathrm{H}(\mathrm{x})) \wedge \operatorname{Has}(\mathrm{x}, \mathrm{H}(\mathrm{x}))$, where H is a new symbol (Skolem function)
- Drop universal quantifiers
- For instance, $\forall x$ Person(x) becomes Person(x).
- Distribute \wedge over \vee

Summary: First Order Logic (FOL)

- Uses the same logical symbols as Propositional Logic (PL)
- Adds: variables, quantification, predicates and functions
- Names of terms: constants, variables, predicates, functions
- Existential and universal quantifiers can be used to create rules
- Need to be able to translate English to and from FOL
- Some extensions...

Higher-Order Logic

- FOL only allows to quantify over variables, and variables can only range over objects.
- HOL allows us to quantify over relations
- Example: (quantify over functions)
- "two functions are equal iff they produce the same value for all arguments"
- $\quad \forall \mathrm{f} \forall \mathrm{g}(\mathrm{f}=\mathrm{g}) \leftrightarrow(\forall \mathrm{xf}(\mathrm{x})=\mathrm{g}(\mathrm{x}))$
- Example: (quantify over predicates)
- $\quad \forall r$ transitive $(r) \Rightarrow(\forall x y z) r(x, y) \wedge r(y, z) \Rightarrow r(x, z))$
- More expressive, but undecidable.

Expressing Uniqueness

- Sometimes we want to say that there is a single, unique object that satisfies a certain condition
- "There exists a unique x such that $\operatorname{king}(x)$ is true"
- $\quad \exists x$ king $(x) \wedge \forall y(k i n g(y) \Rightarrow x=y)$
- $\quad \exists x \operatorname{king}(x) \wedge \neg \exists y(k i n g(y) \wedge x \neq y)$
- \exists ! x king (x)
- "Every country has exactly one ruler"
- $\quad \forall c$ country $(c) \Rightarrow \exists!r$ ruler (c, r)
- lota operator: " $\mathrm{x} P(\mathrm{x})$ " means "the unique x such that $\mathrm{p}(\mathrm{x})$ is true"
- "The unique ruler of Freedonia is dead"
- dead(x x ruler(freedonia, x))

Notational differences

- Different symbols for and, or, not, implies, ...
- $\forall \exists \Rightarrow \Leftrightarrow \wedge \vee \neg$ •
- $p \vee\left(q^{\wedge} r\right)$
- $p+\left(q^{*} r\right)$
- etc
- Prolog
- cat(X) :- furry(X), meows (X), has(X, claws)
- Lispy notations
(forall ?x (implies (and (furry ?x)
(meows ?x)
(has ?x claws))
(cat ? x$)$))

Exercise: FOL translation

1. Everything is bitter or sweet.
2. Either everything is bitter or everything is sweet.
3. There is somebody who is loved by everyone.
4. Nobody is loved by no one.
5. If someone is noisy, everybody is annoyed
6. Frogs are green.
7. Frogs are not green.
8. No frog is green.
9. Some frogs are not green.
10. A mechanic likes Bob.
11. A mechanic likes herself.
12. Every mechanic likes Bob.
13. Some mechanic likes every nurse.
14. There is a mechanic who is liked by every nurse.

Exercise: FOL translation

1. $\forall x(\operatorname{bitter}(x) \vee \operatorname{sweet}(x))$
2. $\neg \exists x(f r o g(x) \wedge \operatorname{green}(x))$
3. $\forall x(\operatorname{bitter}(x)) \vee \forall x(\operatorname{sweet}(x))$
4. $\exists x \forall y(\operatorname{loves}(y, x))$
5. $\neg \exists \mathrm{x} \neg \exists \mathrm{y}(\operatorname{loves}(\mathrm{y}, \mathrm{x}))$
6. $\exists x(\operatorname{noisy}(x)) \Rightarrow \forall y(\operatorname{annoyed}(y))$
7. $\forall x(f r o g(x) \Rightarrow \operatorname{green}(x))$
8. $\forall x(\operatorname{frog}(x) \Rightarrow \neg \operatorname{green}(x))$
9. $\exists x(f r o g(x) \wedge \neg \operatorname{green}(x))$
10. $\exists x$ (mech. $(x) \wedge$ likes $(x, B o b))$
11. $\exists x$ (mech. $(x) \wedge \operatorname{likes}(x, x))$
12. $\forall x$ (mech. $(x) \Rightarrow$ likes $(x, B o b))$
13. $\exists x \forall y(m e c h(x) \wedge$ nurse($y)$ \Rightarrow likes($x, y)$)
14. $\exists x(m e c h(x) \wedge \forall y(n u r s e(y)$
\Rightarrow likes (y, x))
