Machine Learning: Decision Trees and Information, Evaluating ML Models

(Ch. 18.1–18.3)

1

Bookkeeping

- Midterm
 - Rough curve: 60+ = A, 50+ = B, 40+ = C
 - We will go over some of the more complex questions today
 - I encourage you to go back to materials and seek answers
 - Reminder: 24 hours from exam return before we discuss grades
- HW3
 - Posted: Filtering example and spreadsheet with worked math
 - Posted: Detailed writeup on information gain
 - Nadja has office hours T and W afternoons
- Today: ML 2
 - Decision trees entropy, information gain
 - Measuring model quality how good is what we've learned?

Datum	Attributes								Outcome (Label)		
	altern- atives	bar	Friday	hungry	people	\$	rain	reser- vation	type	wait time	Wait?
X1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes
X ₂	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X ₃	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
X4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Yes
X ₅	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X ₆	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X ₇	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No
X ₈	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
Х ₉	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X ₁₀	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	0-30	No
X ₁₁	No	No	No	No	None	\$	No	No	Thai	0-10	No
X ₁₂	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

ID3/C4.5

- A greedy algorithm for decision tree construction
 - Ross Quinlan, 1987
- Construct decision tree top-down by recursively selecting the "best attribute" to use at current node
 - Select attribute for current node
 - Generate child nodes (one for each possible value of attribute)
 - Partition training data using attribute values
 - Assign subsets of examples to the appropriate child node
 - Repeat for each child node until all examples associated with a node are either all positive or all negative

Choosing the Best Attribute

- Key problem: what attribute to split on?
- Some possibilities are:
 - Random: Select any attribute at random
 - Least-Values: Choose attribute with smallest number of values
 - Most-Values: Choose attribute with largest number of values
 - Max-Gain: Choose attribute that has the largest expected information gain the attribute that will result in the smallest expected size of the subtrees rooted at its children
- ID3 uses Max-Gain to select the best attribute

Information Theory 102

- Information is (usually) measured in bits.
- Information in a message depends on its probability.
- Given n equally probable messages, what is probability p of each one?

1/n

Information conveyed by a message is defined as:

 $\log_2(n) = -\log_2(p)$

 Example: with 16 possible messages, log₂(16) = 4, and we need 4 bits to identify/send each message

Information Theory 103

 Entropy: average number of bits (per message) needed to represent a stream of messages

 $I(P) = -(p_1^* \log_2(p_1) + p_2^* \log_2(p_2) + ... + p_n^* \log_2(p_n)) = -\sum_i (p_i \log_2(p_i))$

- Examples (datasets resulting from flipping biased coins):
 - $P = (0.5, 0.5); I(P) = -(0.5 * \log_2(0.5) + (0.5 * \log_2(0.5)) = 1 \rightarrow entropy of a fair coin flip$
 - **P** = (0.67, 0.33); I(P) = $-(0.67 * \log_2(0.67) + (0.33 * \log_2(0.33)) = 0.92$
 - **P** = (0.99, 0.01); I(P) = $-(0.99 * \log_2(0.99) + (0.01 * \log_2(0.01)) = 0.08$
 - **P** = (1, 0); I(P) = -(1 * $\log_2(1) + (0 * \log_2(0)) = 0$
- As the distribution becomes more skewed, the amount of information needed to tell me what happened *decreases*. Why?
- Because I can just predict the most likely element, and usually be right

Information Theory 103b

- Entropy over a dataset
- Consider a dataset with 1 blue, 2 greens, and 3 reds: •••••

•
$$I(\bullet\bullet\bullet\bullet\bullet) = -\Sigma_i (p_i \log_2(p_i))$$

= $-(p_b \log_2(p_b) + (p_g \log_2(p_g)) + (p_r \log_2(p_r)))$
= $-(\frac{1}{6} \log_2(\frac{1}{6}) + (\frac{1}{3} \log_2(\frac{1}{3})) + (\frac{1}{2} \log_2(\frac{1}{2})))$
= 1.46

Information Gain

- Information gain: how much entropy decreases (homogeneity increases) when a dataset is split on an attribute.
 - High homogeneity \rightarrow high likelihood samples will have the same class
- This is what we want! A decision tree in which we efficiently split on attributes in order to reach sets of data with homogeneous decisions
 - That is, we compare the entropy of the dataset(s) before and after the split
- Constructing a decision tree is all about finding attribute that returns the highest information gain (i.e., the most homogeneous branches)

Information Gain, cont.

- Use to rank attributes and build decision tree!
- Choose nodes using attribute with greatest information gain
 - \rightarrow means least information remaining after split
 - I.e., subsets are all as skewed as possible
- Why?
 - Create small decision trees: predictions can be made with few attribute tests
 - Try to find a minimal process that still captures the data (Occam's Razor)

21

Information Gain: Using Information A chosen attribute A divides the training set S into subsets S₁, ..., S_v according to their values for A, where A has v distinct values. The information gain IG(S,A) (or just IG(S)) of an attribute A relative to a collection of examples S is defined as: If(S,A) = I(S) - \sum \frac{|S_v|}{|S|} \times I(S_v) This is the gain in information due to attribute A Expected reduction in entropy This represents the difference between I(S) - the entropy of the original collection S Remainder(A) - expected value of the entropy after S is partitioned using attribute A

How Well Does it Work? At least as accurate as human experts (sometimes) Diagnosing breast cancer: humans correct 65% of the time; decision tree classified 72% correct BP designed a decision tree for gas-oil separation for offshore oil platforms; replaced an earlier rule-based expert system Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example SKICAT (Sky Image Cataloging and Analysis Tool) used a DT to classify sky objects an order of magnitude fainter than was previously possible, with an accuracy of over 90%.

Extensions of the Decision Tree Learning Algorithm

- Using gain ratios
- Real-valued data
- Noisy data and overfitting
- Generation of rules
- Setting parameters
- Cross-validation for experimental validation of performance
- C4.5 is a (more applicable) extension of ID3 that accounts for real-world problems: unavailable values, continuous attributes, pruning decision trees, rule derivation, ...

Using Gain Ratios

- Information Gain can be biased towards attributes A with many values v
 - Tiny subsets tend to be pure not because they're good, just because they're small
 - Degenerate case: If attribute A has a distinct value for each record, then Info(A,S) is 0, so Gain(A,S) is maximal
 - This can give trees that generalize poorly
- To compensate for this Quinlan suggests using the following ratio instead:
 - GainRatio(A,S) = Gain(A,S) / SplitInfo(A,S)
 - SplitInfo: A number that's big when there are many small subsets
- SplitInfo(A,S) is the information due to the split of S on the basis of attribute A
 - SplitInfo(D,T) = I($|S_1|/|S|$, $|S_2|/|S|$, .., $|S_v|/|S|$) = $-\sum_{v \in values(A)} |S_v|/|S| \log_2 |S_v|/|S|$
 - where $\{S_1, S_2, .., S_v\}$ is the partition of S induced by value of A

I like this short video: www.youtube.com/watch?v=rb1jdBPKzDk

Real-Valued Data

- Select thresholds defining intervals so each becomes a discrete value of attribute
- Use heuristics, e.g. always divide into quartiles
- Use domain knowledge, e.g. divide age into infant (0-2), toddler (3-5), school-aged (5-8)
- Or treat this as another learning problem
 - Try different ways to discretize continuous variable; see which yield better results w.r.t. some metric
 - E.g., try midpoint between every pair of values

Summary: Decision Tree Learning

- (Still!) one of the most widely used learning methods in practice
- Can out-perform human experts in many problems
 - Strengths:
 - Fast
 - Simple to implement
 - Can convert to a set of easily interpretable rules
 - Empirically valid in many commercial products
 - Handles noisy data

- Weaknesses:
 - Univariate splits/Partitioning using only one attribute at a time (limits types of possible trees)
 - Large trees hard to understand
 - Requires fixed-length feature vectors
 - Non-incremental (i.e., batch method)

Measuring Model Quality

- How good is a model?
 - Predictive accuracy
 - False positives / false negatives for a given cutoff threshold
 - Loss function (accounts for cost of different types of errors)
 - Area under the curve
 - Minimizing loss can lead to problems with overfitting

Measuring Model Quality

- Training error
 - Train on all data; measure error on all data
 - Subject to overfitting (of course we'll make good predictions on the data on which we trained!)
- Regularization
 - Attempt to avoid overfitting
 - Explicitly minimize the complexity of the function while minimizing loss
 - Tradeoff is modeled with a regularization parameter

Cross-Validation

- Holdout cross-validation:
 - Divide data into training set and test set
 - Train on training set; measure error on test set
 - Better than training error, since we are measuring generalization to new data
 - To get a good estimate, we need a reasonably large test set
 - But this gives less data to train on, reducing our model quality!

42

Cross-Validation, cont.

- *k*-fold cross-validation:
 - Divide data into k folds
 - Train on *k*-1 folds, use the *k*th fold to measure error
 - Repeat *k* times; use average error to measure generalization accuracy
 - Statistically valid and gives good accuracy estimates
 - 5 and 10 are common values for k
- Leave-one-out cross-validation (LOOCV)
 - k-fold cross validation where k=N (test data = 1 instance!)
 - Quite accurate, but also quite expensive, since it requires building N models

On Sensitivity and Specificity

- Sensitivity (recall) measures avoidance of false negatives
- Specificity (precision) measures avoidance of false positives
- TSA security scenario:
 - Metal scanners set for low specificity (e.g., trigger on keys) to reduce risk of missing dangerous objects
 - Result is high sensitivity overall
- Cancer test scenario:
 - Screening exam given to lots of people: also high sensitivity (better to flag someone for followup testing incorrectly, than to miss someone)
 - Detail exam: need high specificity

F measure • The F1 measure combines both into a useful single metric $F1 = \frac{2 \times precision \times recall}{precision + recall}$ $= \frac{TP}{TP + 1/2 (FP + FN)}$ • Idea: both precision and recall need to be reasonably good • Heavily penalizes small precision or small recall

• Can be tuned with different values for F to prefer recall or precision

Confusion Matrix (2)								
For multi-way classifiers, a confusion matrix is even more useful								
 It lets you focus in on where the errors are 								
predicted								
		Cat	Dog	rabbit				
a	Cat	5	3	0				
actua	Dog	2	3	1				
	Rabbit	0	2	11				

Overfitting

- Sometimes, model fits training data well but doesn't do well on test data
- Can be it "overfit" to the training data
 - Model is too specific to training data
 - Doesn't generalize to new information well
- Learned model:
 (Y∧Y∧Y→B ∨ Y∧N∧N→M ∨ ...)

Examples				
(training data)	Bipedal	Flies	Feathers	Outcome
Sparrow	Y	Y	Y	В
Monkey	Y	Ν	N	М
Ostrich	Y	Ν	Y	В
Bat	Y	Y	N	М
Elephant	N	Ν	Ν	М

Overfitting 2

- Irrelevant attributes → overfitting
- If hypothesis space has many dimensions (many attributes), may find meaningless regularity
 - Ex: Name starts with [A-M] → Mammal
 - Problem is that we have a feature that doesn't really pertain to the classification problem

Examples				
(training data)	Bipedal	Flies	Feathers	Outcome
Sparrow	Y	Y	Y	В
Monkey	Y	Ν	Ν	М
Ostrich	Y	Ν	Y	В
Bat	Y	Y	N	М
Elephant	N	Ν	N	М

60

Sources of Overfitting

- Incomplete training data
 - Including small training data
- Bad training/test split
- Irrelevant attributes in feature set
- "Overtraining"
 - Sometimes it makes sense to stop before training has learned all it can
- Poor choice of model/ML algorithm

Overfitting

- Fix by...
 - Getting more training data (an ML panacea)
 - Removing irrelevant features (e.g., remove 'first letter' from bird/mammal feature vector)
 - In decision trees, pruning low nodes (e.g., if improvement from best attribute at a node is below a threshold, stop and make this node a leaf rather than generating child nodes)
- Regularization
- Lots of other choices...

66

Noisy Data

- Many kinds of "noise" can occur in the examples:
 - Two examples have same attribute/value pairs, but different classifications
 - Some values of attributes are incorrect
 - Errors in the data acquisition process, the preprocessing phase, ...
 - Classification is wrong (e.g., + instead of -) because of some error
 - Some attributes are irrelevant to the decision-making process, e.g., color of a die is irrelevant to its outcome
 - Some attributes are missing (are pangolins bipedal?)

Summary of Model Evaluation

- Data can be noisy, models can be wrong
- We can evaluate how good a model is with precision, recall, and F1
- We can visualize model results with confusion matrices
- Cross-validation lets us get more statistical power from our training data while still giving meaningful test results
- Overfitting remains a significant problem
- Questions before we do some midterm problems?

68

Some notes from the Fall 22 midterm

- Alpha-beta pruning
- Expectiminimax trees
- Constraint satisfaction
- Belief net calculations
- Admissible heuristics
- Iterative deepening
- Game theory

Expectiminimax trees

- Cards: 50% 2s, 25% 3s, 25% 4s
- High/Low
 - Wrong: -2
 - Tie: 0
 - Right: card value

Bayes Belief Net Edges indicate causal (or influential) Season S relationships Having a Runny Nose R С **Owning a Cat** Belief nets are directed **Pollen Levels High** Ρ Arrows in the graph, not lines **Having Allergies** А Indicate direction of influence • Need to explain what edges denote in your graph Idea of gated influence That is, cats don't cause runny noses except through allergies

Admissible heuristics • A heuristic in search, h(n), tells you how good a state is • A state is "good" if it is closer to achieving a goal Takes a state (like current location in map), returns a value Must be applicable to any state •) = 8 -that's bad h() = 5 -that's better h(| 8

Belief net calculations

•
$$P(S) = \Sigma_F \Sigma_H P(S \land F \land H)$$

 $= \Sigma_F \Sigma_H P(S \land H | F) * P(F)$
 $= \Sigma_F \Sigma_H P(S | F) * P(H | F) * P(F)$
 $= P(S|F) \times P(H|F) \times P(F) +$
 $P(S|F) \times P(\neg H|F) \times P(F) +$
 $P(S|\neg F) \times P(H|\neg F) \times P(\neg F) +$
 $P(S|\neg F) \times P(\neg H|\neg F) \times P(\neg F)$
 $= (.9 \times .99 \times .1) +$
 $(.001 \times .0001 \times .9) +$
 $(.001 \times .9999 \times .9)$
 $= 0.0909$

P(F|S) = P(F ∧ S) / P(S)
 = 0.1 ∧ 0.9 / 0.0909
 = 0.09 / 0.0909
 = 0.99

102

Reminders and Next Time

- Midterm
 - Rough curve: 60+ = A, 50+ = B, 40+ = C
 - Reminder: 24 hours from handout before we discuss grades
 - I encourage you to go back to materials and seek answers, before discussion
- HW3
 - Posted: Filtering example and spreadsheet with worked math
 - Posted: Detailed writeup on information gain
- Questions?