Machine Learning: Decision Trees and Information, Evaluating ML Models

(Ch. 18.1-18.3)

1

Bookkeeping

- Midterm
- Rough curve: $60+=\mathrm{A}, 50+=\mathrm{B}, 40+=\mathrm{C}$
- We will go over some of the more complex questions today
- I encourage you to go back to materials and seek answers
- Reminder: 24 hours from exam return before we discuss grades
- HW3
- Posted: Filtering example and spreadsheet with worked math
- Posted: Detailed writeup on information gain
- Nadja has office hours T and W afternoons
- Today: ML 2
- Decision trees - entropy, information gain
- Measuring model quality - how good is what we've learned?

Inductive Learning Pipeline

Training data, X				
Texture	Ears	Legs	Class	
Fuzzy	Round	4	+	
Slimy	Missing	4	-	(trained
Fuzzy	Pointy	4	-	model)
Fuzzy	Round	4	+	
Fuzzy	Pointy	4	+	
...				

3

Learning Decision Trees

- Each non-leaf node is an attribute (feature)
- Each arc is one value of the attribute at the node it comes from
- Each leaf node is a classification (+ or -)

5

ID3/C4.5

- A greedy algorithm for decision tree construction
- Ross Quinlan, 1987
- Construct decision tree top-down by recursively selecting the "best attribute" to use at current node
- Select attribute for current node
- Generate child nodes (one for each possible value of attribute)
- Partition training data using attribute values
- Assign subsets of examples to the appropriate child node
- Repeat for each child node until all examples associated with a node are either all positive or all negative

7

Bird or Not-Bird?

But... we should have split on feathers first

Examples (training data)	Attributes			Outcome
	Bipedal	Flies	Feathers	
Sparrow	Y	Y	Y	B
Monkey	Y	N	N	$\neg \mathrm{B}$
Ostrich	Y	N	Y	B
Pangolin	N	N	N	$\neg \mathrm{B}$
Bat	Y	Y	N	$\neg \mathrm{B}$
Elephant	N	N	N	$\neg \mathrm{B}$
Chickadee	N	Y	Y	B

Test
mouse: <B:N, FI:N, Fe:N>

Choosing the Best Attribute

- Key problem: what attribute to split on?
- Some possibilities are:
- Random: Select any attribute at random
- Least-Values: Choose attribute with smallest number of values
- Most-Values: Choose attribute with largest number of values
- Max-Gain: Choose attribute that has the largest expected information gainthe attribute that will result in the smallest expected size of the subtrees rooted at its children
- ID3 uses Max-Gain to select the best attribute

Choosing an Attribute

- Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative" - that is, we want pure groups

- Which is better: Patrons? or Type?
- Why?

ID3-induced Decision Tree

To build the best decision tree, we're going to have to talk about information.

No
Yes

11

Information Theory 101

- Information: the minimum number of bits needed to store or send some information
- Wikipedia: "The measure of data, known as information entropy, is usually expressed by the average number of bits needed for storage or communication"
- Intuition: minimize effort to communicate/store
- Common words (a, the, dog) are shorter than less common ones (parliamentarian, foreshadowing)
- In Morse code, common (probable) letters have shorter encodings

Surprisal - Information Theory 101b

- We consider events as something that does or does not happen. Each sending of a particular message is an event, E .
- The information content, or surprisal, of an event increases as the probability of an event decreases.
- If you have a coin that flips heads 99% of the time, the statement "it just flipped heads" is not very informative/not very surprising
- Define the information, or surprisal, of an event E as:
$\mathrm{I}(\mathrm{E})=\log _{2}(1 / p(\mathrm{E}))$
$\mathrm{I}(\mathrm{E})=-\log _{2}(p(\mathrm{E}))$
- Which means if the probability of an event is 1 , we have 0 information.
"A Mathematical Theory of Communication," Bell System Technical Journal, 1948, Claude E. Shannon, Bell Labs

Information Theory 102

- Information is (usually) measured in bits.
- Information in a message depends on its probability.
- Given n equally probable messages, what is probability p of each one?

$$
1 / n
$$

- Information conveyed by a message is defined as:

$$
\log _{2}(n)=-\log _{2}(p)
$$

- Example: with 16 possible messages, $\log _{2}(16)=4$, and we need 4 bits to identify/send each message

Entropy - Information Theory 102.b

- So, the information conveyed by a message is $\log _{2}(n)=-\log _{2}(p)$
- Given a probability distribution for n messages:

$$
\mathrm{P}=\left(\mathrm{p}_{1}, \mathrm{p}_{2} \ldots \mathrm{p}_{n}\right)
$$

- The information conveyed by that distribution is:

$$
\mathrm{I}(\mathrm{P})=-\left(\mathrm{p}_{1} * \log _{2}\left(\mathrm{p}_{1}\right)+\mathrm{p}_{2} * \log _{2}\left(\mathrm{p}_{2}\right)+. .+\mathrm{p}_{n} * \log _{2}\left(\mathrm{p}_{n}\right)\right)=-\Sigma_{i}\left(\mathrm{p}_{i} \log _{2}\left(\mathrm{p}_{i}\right)\right)
$$

- This is the entropy of P : the average number of bits (per message) needed to represent a stream of messages
- Note that we sometimes use S for entropy.

Information Theory 103

- Entropy: average number of bits (per message) needed to represent a stream of messages

$$
\mathrm{I}(\mathrm{P})=-\left(\mathrm{p}_{1}{ }^{*} \log _{2}\left(\mathrm{p}_{1}\right)+\mathrm{p}_{2}{ }^{*} \log _{2}\left(\mathrm{p}_{2}\right)+. .+\mathrm{p}_{\mathrm{n}}{ }^{*} \log _{2}\left(\mathrm{p}_{\mathrm{n}}\right)\right)=-\Sigma_{i}\left(\mathrm{p}_{i} \log _{2}\left(\mathrm{p}_{i}\right)\right)
$$

- Examples (datasets resulting from flipping biased coins):
- $\quad \mathbf{P}=(\mathbf{0 . 5}, \mathbf{0 . 5}) ; \mathrm{I}(\mathrm{P})=-\left(0.5 * \log _{2}(0.5)+\left(0.5 * \log _{2}(0.5)\right)=\mathbf{1} \rightarrow\right.$ entropy of a fair coin flip
- $\mathbf{P}=(\mathbf{0} . \mathbf{6 7}, \mathbf{0 . 3 3}) ; \mathrm{I}(\mathrm{P})=-\left(0.67 * \log _{2}(0.67)+\left(0.33 * \log _{2}(0.33)\right)=\mathbf{0 . 9 2}\right.$
- $\mathbf{P}=(\mathbf{0} .99, \mathbf{0 . 0 1}) ; \mathrm{I}(\mathrm{P})=-\left(0.99 * \log _{2}(0.99)+\left(0.01 * \log _{2}(0.01)\right)=\mathbf{0 . 0 8}\right.$
- $\mathbf{P}=(\mathbf{1}, \mathbf{0}) ; \mathrm{I}(\mathrm{P})=-\left(1 * \log _{2}(1)+\left(0 * \log _{2}(0)\right)=\mathbf{0}\right.$
- As the distribution becomes more skewed, the amount of information needed to tell me what happened decreases. Why?
- Because I can just predict the most likely element, and usually be right

Information Theory 103b

- Entropy over a dataset
- Consider a dataset with 1 blue, 2 greens, and 3 reds:
- $\mathrm{I}(\bullet \bullet \bullet \bullet \bullet)=-\sum_{\mathrm{i}}\left(\mathrm{p}_{\mathrm{i}} \log _{2}\left(\mathrm{p}_{\mathrm{i}}\right)\right)$

$$
\begin{aligned}
& =-\left(\mathrm{p}_{\mathrm{b}} \log _{2}\left(\mathrm{p}_{\mathrm{b}}\right)+\left(\mathrm{pg}_{\mathrm{g}} \log _{2}\left(\mathrm{p}_{\mathrm{g}}\right)\right)+\left(\mathrm{p}_{\mathrm{r}} \log _{2}\left(\mathrm{p}_{\mathrm{r}}\right)\right)\right. \\
& =-\left(1 / 6 \log _{2}(1 / 6)+\left(1 / 3 \log _{2}(1 / 3)\right)+\left(1 / 2 \log _{2}(1 / 2)\right)\right. \\
& =1.46
\end{aligned}
$$

Entropy Interlude

- Entropy (I): the homogeneity of a sample
- If everything is the same, $S=0$
- If differences are even $S=1$

- So a dataset consisting entirely of people who choose to wait for a table has entropy 0 , because it's very pure (homogeneous)
- A dataset of half-waiting, half-leaving has entropy of 1

Entropy as Measure of Homogeneity of Examples

- Entropy can be used to characterize the (im)purity of an arbitrary collection of examples
- Low entropy implies high homogeneity (purity)
- Given a collection S (like the table of 12 examples for the restaurant domain), containing positive and negative examples of some target concept, the entropy of S relative to its Boolean classification is:

$$
\mathrm{I}(S)=-\left(\mathrm{p}_{+} * \log _{2}\left(\mathrm{p}_{+}\right)+\mathrm{p}_{-} * \log _{2}\left(\mathrm{p}_{-}\right)\right)
$$

$$
\begin{aligned}
\text { Entropy }([7+, 7-]) & =-\left(0.5 * \log _{2}(0.5)+\left(0.5 * \log _{2}(0.5)\right)=1\right. \\
\text { Entropy }([9+, 5-]) & =-\left(9 / 14 * \log _{2}(9 / 14)+\left(5 / 14 * \log _{2}(5 / 14)\right)\right. \\
& =-\left(0.64 * \log _{2}(0.64)+\left(0.357 * \log _{2}(0.357)\right)=0.940\right.
\end{aligned}
$$

Information Gain

- Information gain: how much entropy decreases (homogeneity increases) when a dataset is split on an attribute.
- High homogeneity \rightarrow high likelihood samples will have the same class
- This is what we want! A decision tree in which we efficiently split on attributes in order to reach sets of data with homogeneous decisions - That is, we compare the entropy of the dataset(s) before and after the split
- Constructing a decision tree is all about finding attribute that returns the highest information gain (i.e., the most homogeneous branches)

Information Gain, cont.

- Use to rank attributes and build decision tree!
- Choose nodes using attribute with greatest information gain
- \rightarrow means least information remaining after split
- I.e., subsets are all as skewed as possible
- Why?
- Create small decision trees: predictions can be made with few attribute tests
- Try to find a minimal process that still captures the data (Occam's Razor)

Information Gain: Using Information

- A chosen attribute A divides the training set S into subsets S_{1}, \ldots, S_{v} according to their values for A, where A has v distinct values.
- The information gain $\operatorname{IG}(\mathrm{S}, \mathrm{A})$ (or just $\mathrm{IG}(\mathrm{S})$) of an attribute A relative to a collection of examples S is defined as:

$$
I G(S, A)=I(S)-\sum_{v e V \text { Iatues }(A)} \frac{\left|S_{v}\right|}{|S|} \times I\left(S_{v}\right)
$$

- This is the gain in information due to attribute A
- Expected reduction in entropy
- This represents the difference between
- I(S) - the entropy of the original collection S
- Remainder(A) - expected value of the entropy after S is partitioned using attribute A

Information Gain: Example

- First we calculate the entropy before the split, $I(S)$ - $\mathrm{I}(0 \times 0.0 .0 \bullet \bullet)=\mathbf{1}$ (perfectly balanced)
- Split, then calculate the entropy of each branch
- $\mathrm{I}_{\text {left }}(\cdots \cdots \circ)=\mathbf{0}$ (pure)
- $\mathrm{I}_{\text {right }}(\bullet \cdots \cdots \bullet)=-\left(1 / 6 \log _{2}(1 / 6)+5 / 6 \log _{2}(5 / 6)\right)=\mathbf{0 . 6 5}$

- Then we calculate the entropy of the split by weighting each branch's entropy by how many data points that branch covers
- Left has 4 data points: 4/10 of the data, 0.4 . Right has 0.6 of the data.
- $\mathrm{I}_{\text {split }}=(0.4 * 0)+(0.6 * 0.65)=\mathbf{0 . 3 9}$
- Information gain $=\mathbf{1 - 0 . 3 9}=\mathbf{0 . 6 1}$

$$
I G(S, A)=I(S)-\sum_{v \in \operatorname{Values}(A)} \frac{\left|S_{v}\right|}{|S|} \times I\left(S_{v}\right)
$$

How Well Does it Work?

- At least as accurate as human experts (sometimes)
- Diagnosing breast cancer: humans correct 65% of the time; decision tree classified 72\% correct
- BP designed a decision tree for gas-oil separation for offshore oil platforms; replaced an earlier rule-based expert system
- Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example
- SKICAT (Sky Image Cataloging and Analysis Tool) used a DT to classify sky objects an order of magnitude fainter than was previously possible, with an accuracy of over 90%.

Extensions of the Decision Tree Learning Algorithm

- Using gain ratios
- Real-valued data
- Noisy data and overfitting
- Generation of rules
- Setting parameters
- Cross-validation for experimental validation of performance
- C4.5 is a (more applicable) extension of ID3 that accounts for real-world problems: unavailable values, continuous attributes, pruning decision trees, rule derivation, ...

Using Gain Ratios

- Information Gain can be biased towards attributes A with many values v
- Tiny subsets tend to be pure - not because they're good, just because they're small
- Degenerate case: If attribute A has a distinct value for each record, then Info(A,S) is 0 , so Gain (A, S) is maximal
- This can give trees that generalize poorly
- To compensate for this Quinlan suggests using the following ratio instead:
- GainRatio(A,S) = Gain(A,S) / SplitInfo(A,S)
- SplitInfo: A number that's big when there are many small subsets
- SplitInfo (A, S) is the information due to the split of S on the basis of attribute A
- Splitinfo(D,T) $=I\left(\left|S_{1}\right| /|S|,\left|S_{2}\right| /|S|, . .,\left|S_{v}\right| /|S|\right)=-\Sigma_{\mathrm{vevalues}(A)}\left|S_{v}\right| /|S| \log _{2}\left|S_{\mathrm{v}}\right| /|S|$
- where $\left\{S_{1}, S_{2}, . . S_{v}\right\}$ is the partition of S induced by value of A

Computing Gain Ratio

- $\mathrm{I}(\mathrm{S})=1$
- $\mathrm{I}(\mathrm{Pat}, \mathrm{S})=.47$
- $\quad \mathrm{I}($ Type, S$)=1$

Gain (Pat, S) =. 53

Gain $($ Type, S) $=0$
SplitInfo $($ Pat, $S)=$?

SplitInfo (Type, S) = ?

GainRatio (Pat, S) = Gain (Pat, S) / SplitInfo(Pat, S) =.53/ \qquad $=$?
GainRatio (Type, S) = Gain (Type, S) / SplitInfo (Type, S) = $0 /$ \qquad $=$?

Computing Gain Ratio

- $\mathrm{I}(\mathrm{S})=1$
- $\quad \mathrm{I}(\mathrm{Pat}, \mathrm{S})=.47$
- $\quad \mathrm{I}($ Type, S$)=1$

Gain (Pat, S) $=.53$

Gain $($ Type, S) $=0$
SplitInfo (Pat, S) $\begin{aligned} & =-\left(\frac{1}{6} \log 1 / 6+1 / 3 \log 1 / 3+1 / 2 \log 1 / 2\right) \\ & =1 / 6 * 2.6+1 / 3 * 1.6+1 / 2 * 1 \\ & =\mathbf{1 . 4 7}\end{aligned}$
SplitInfo (Type, S) = ?

GainRatio (Pat, S) = Gain (Pat, S) / SplitInfo(Pat, S) =.53/ \qquad $=$?
GainRatio (Type, S) = Gain (Type, S) / SplitInfo (Type, S) =0/ \qquad $=$?

Computing Gain Ratio

- $\mathrm{I}(\mathrm{S})=1$
- $\mathrm{I}(\mathrm{Pat}, \mathrm{S})=.47$
- $\quad \mathrm{I}($ Type, S$)=1$

Gain (Pat, S) $=.53$
Gain (Type, S) $=0$

$$
\begin{aligned}
\text { SplitInfo (Pat, S) } & =-\left(\frac{1}{6} \log 1 / 6+1 / 3 \log 1 / 3+1 / 2 \log 1 / 2\right) \\
& =1 / 6 * 2.6+1 / 3 * 1.6+1 / 2 * 1 \\
& =\mathbf{1 . 4 7}
\end{aligned}
$$

SplitInfo (Type, $\begin{aligned}\text { S }) & =\frac{1 / 6 \log 1 / 6}{1 / 6 * 2.6+1 / 6 \log 1 / 6}+2.6+1 / 3 \log 1 / 3+1 / 3 \log 1 / 3 \\ & 1.6+1 / 3 * \frac{1.6=1.93}{1.6}\end{aligned}$
GainRatio $($ Pat, S $)=$ Gain (Pat, S) $/ \operatorname{SplitInfo}(P a t, S)=.53 /$ \qquad $=$?
GainRatio (Type, S) = Gain (Type, S) / SplitInfo (Type, S) = $0 /$ \qquad $=$?

Computing Gain Ratio

- $I(S)=1$
- $\mathrm{I}(\mathrm{Pat}, \mathrm{S})=.47$
- $\quad \mathrm{I}($ Type, S$)=1$

Gain (Pat, S) $=.53$
Gain (Type, S) $=0$

SplitInfo (Pat, S) $=-(1 / 6 \log 1 / 6+1 / 3 \log 1 / 3+1 / 2 \log 1 / 2)$

$$
\begin{aligned}
& =1 / 6 * 2.6+1 / 3 * 1.6+1 / 2 * 1 \\
& =1.47
\end{aligned}
$$

SplitInfo (Type, S) $=1 / 6 \log 1 / 6+1 / 6 \log 1 / 6+1 / 3 \log 1 / 3+1 / 3 \log 1 / 3$

$$
=1 / 6 * 2.6+1 / 6 * 2.6+1 / 3 * 1.6+1 / 3 * 1.6=1.93
$$

GainRatio $($ Pat, S $)=$ Gain (Pat, S) $/$ SplitInfo(Pat, S) $=.53 / 1.47=.36$
GainRatio $($ Type, $S)=$ Gain $($ Type, $S) /$ SplitInfo $($ Type, $S)=0 / 1.93=0$

Real-Valued Data

- Select thresholds defining intervals so each becomes a discrete value of attribute
- Use heuristics, e.g. always divide into quartiles
- Use domain knowledge, e.g. divide age into infant (0-2), toddler (3-5), school-aged (5-8)
- Or treat this as another learning problem
- Try different ways to discretize continuous variable; see which yield better results w.r.t. some metric
- E.g., try midpoint between every pair of values

Converting Decision Trees to Rules

- 1 rule for each path in tree (from root to a leaf)
- Left-hand side: labels of nodes and arcs
- Right-hand side: classification

$$
\begin{aligned}
& \text { Patrons=None } \rightarrow \text { Don't wait } \\
& \text { Patrons=Some } \rightarrow \text { Wait } \\
& \text { Patrons=Full } \wedge \text { Hungry=No } \rightarrow \text { Don't wait }
\end{aligned}
$$

 etc...

- Resulting rules can be simplified and reasoned over

Summary: Decision Tree Learning

- (Still!) one of the most widely used learning methods in practice
- Can out-perform human experts in many problems
- Strengths:
- Fast
- Simple to implement
- Can convert to a set of easily interpretable rules
- Empirically valid in many commercial products
- Handles noisy data
- Weaknesses:
- Univariate splits/Partitioning using only one attribute at a time (limits types of possible trees)
- Large trees hard to understand
- Requires fixed-length feature vectors
- Non-incremental (i.e., batch method)

ML: Measuring Model Quality

- So we have training data, and we have learned a model
- A learned decision tree is one such model
- We have some set of test data we have held out
- How do we evaluate whether the model is good?
- How can this process fail?

Measuring Model Quality

- How good is a model?
- Predictive accuracy
- False positives / false negatives for a given cutoff threshold
- Loss function (accounts for cost of different types of errors)
- Area under the curve
- Minimizing loss can lead to problems with overfitting

One Possible Decision Tree

sample	attributes				
	R	G	B	Fuzzy?	Yellow?
X_{1}	205	200	40	Y	yes
X_{2}	90	250	90	N	no
X_{3}	220	10	22	N	no
X_{4}	205	210	10	N	yes

One Possible Decision Tree

- Predictions

40

Measuring Model Quality

- Training error
- Train on all data; measure error on all data
- Subject to overfitting (of course we'll make good predictions on the data on which we trained!)
- Regularization
- Attempt to avoid overfitting
- Explicitly minimize the complexity of the function while minimizing loss
- Tradeoff is modeled with a regularization parameter

Cross-Validation

- Holdout cross-validation:
- Divide data into training set and test set
- Train on training set; measure error on test set
- Better than training error, since we are measuring generalization to new data
- To get a good estimate, we need a reasonably large test set
- But this gives less data to train on, reducing our model quality!

42

Cross-Validation, cont.

- k-fold cross-validation:
- Divide data into k folds
- Train on k - 1 folds, use the $k^{\text {th }}$ fold to measure error
- Repeat k times; use average error to measure generalization accuracy
- Statistically valid and gives good accuracy estimates
- 5 and 10 are common values for k
- Leave-one-out cross-validation (LOOCV)
- $\quad k$-fold cross validation where $k=N$ (test data $=1$ instance!)
- Quite accurate, but also quite expensive, since it requires building N models

Correctness

- True positive
- I predict it's yellow, and it is yellow
- True negative
- I predict it's not yellow, and it's not
- False positive
- I predict it's yellow, but it's not
- False negative
- I predict it's not yellow, but it is

44

On Sensitivity and Specificity

- Sensitivity (recall) measures avoidance of false negatives
- Specificity (precision) measures avoidance of false positives
- TSA security scenario:
- Metal scanners set for low specificity (e.g., trigger on keys) to reduce risk of missing dangerous objects
- Result is high sensitivity overall
- Cancer test scenario:
- Screening exam given to lots of people: also high sensitivity (better to flag someone for followup testing incorrectly, than to miss someone)
- Detail exam: need high specificity

Precision/Recall

selected elements
selected elements

46

Precision, or Recall?

- Precision (specificity) and recall (sensitivity) are in tension
- In general, increasing one causes the other to decrease
- The more precise you are, the more things you will miss
- The more you guarantee you will catch everything, the more you will return some incorrect things (casting a wide net)
- So... which is better?
- Recall our cancer example
- Studying the precision/recall curve is informative

Precision and Recall

- If one system's curve is always above the other, it's better

F measure

- The F1 measure combines both into a useful single metric

$$
\begin{aligned}
\mathrm{F} 1 & =\frac{2 \times \text { precision } \times \text { recall }}{\text { precision }+ \text { recall }} \\
& =\frac{\mathrm{TP}}{\mathrm{TP}+1 / 2(\mathrm{FP}+\mathrm{FN})}
\end{aligned}
$$

- Idea: both precision and recall need to be reasonably good
- Heavily penalizes small precision or small recall
- Can be tuned with different values for F to prefer recall or precision

Confusion Matrix (1)

- A confusion matrix can be a better way to show results
- For binary classifiers it's simple and is related to type I and type II errors (i.e., false positives and false negatives)
- There may be different costs for each kind of error
- So we need to understand their frequencies

predicted			
a / c	C	${ }^{\sim} \mathrm{C}$	
$\overline{\widetilde{O}}$	C	True positive	False negative
$\sim \sim \mathrm{C}$	False positive	True negative	

Confusion Matrix (2)

- For multi-way classifiers, a confusion matrix is even more useful
- It lets you focus in on where the errors are
predicted

Confusion Matrix (2)

- For multi-way classifiers, a confusion matrix is even more useful
- It lets you focus in on where the errors are

58

Overfitting

- Sometimes, model fits training data well but doesn't do well on test data
- Can be it "overfit" to the training data
- Model is too specific to training data
- Doesn't generalize to new information well
- Learned model:
$(\mathrm{Y} \wedge \mathrm{Y} \wedge \mathrm{Y} \rightarrow \mathrm{B} \vee \mathrm{Y} \wedge N \wedge N \rightarrow M \vee \ldots)$

Examples (training data)	Attributes			Outcome
	Bipedal	Flies	Feathers	
Sparrow	Y	Y	Y	B
Monkey	Y	N	N	M
Ostrich	Y	N	Y	B
Bat	Y	Y	N	M
Elephant	N	N	N	M

Overfitting 2

- Irrelevant attributes \rightarrow overfitting
- If hypothesis space has many dimensions (many attributes), may find meaningless regularity
- Ex: Name starts with [A-M] \rightarrow Mammal
- Problem is that we have a feature that doesn't really pertain to the classification problem

Examples (training data)	Attributes			Outcome
	Bipedal	Flies	Feathers	
Sparrow	Y	Y	Y	B
Monkey	Y	N	N	M
Ostrich	Y	N	Y	B
Bat	Y	Y	N	M
Elephant	N	N	N	M

Sources of Overfitting

- Incomplete training data
- Including small training data
- Bad training/test split

- Irrelevant attributes in feature set
- "Overtraining"
- Sometimes it makes sense to stop before training has learned all it can
- Poor choice of model/ML algorithm

Overfitting and Underfitting

A Complex Model

A Much Simpler Model

Another example

- What you choose says a lot about what kind of learning you're doing; for example, the green line omits outliers, suggesting you suspect noisy data

Overfitting

- Fix by...
- Getting more training data (an ML panacea)
- Removing irrelevant features (e.g., remove 'first letter' from bird/mammal feature vector)
- In decision trees, pruning low nodes (e.g., if improvement from best attribute at a node is below a threshold, stop and make this node a leaf rather than generating child nodes)
- Regularization
- Lots of other choices...

Noisy Data

- Many kinds of "noise" can occur in the examples:
- Two examples have same attribute/value pairs, but different classifications
- Some values of attributes are incorrect
- Errors in the data acquisition process, the preprocessing phase, ...
- Classification is wrong (e.g., + instead of -) because of some error
- Some attributes are irrelevant to the decision-making process, e.g., color of a die is irrelevant to its outcome
- Some attributes are missing (are pangolins bipedal?)

Summary of Model Evaluation

- Data can be noisy, models can be wrong
- We can evaluate how good a model is with precision, recall, and F1
- We can visualize model results with confusion matrices
- Cross-validation lets us get more statistical power from our training data while still giving meaningful test results
- Overfitting remains a significant problem
- Questions before we do some midterm problems?

Some notes from the Fall 22 midterm

- Alpha-beta pruning
- Expectiminimax trees
- Constraint satisfaction
- Belief net calculations
- Admissible heuristics
- Iterative deepening
- Game theory

Alpha-beta pruning

Alpha-beta pruning

Alpha-beta pruning

72

Alpha-beta pruning

Alpha-beta pruning

74

Alpha-beta pruning

Alpha-beta pruning

Alpha-beta pruning

Alpha-beta pruning

Alpha-beta pruning

Alpha-beta pruning

80

Alpha-beta pruning

Alpha-beta pruning

Alpha-beta pruning

Alpha-beta pruning

Expectiminimax trees

- Cards: 50% 2s, $25 \% 3 s, 25 \% 4 s$
- High/Low
- Wrong: -2
- Tie: 0
- Right: card value

Expectiminimax trees

- Cards: 50% 2s, $25 \% 3 \mathrm{~s}, 25 \% 4 \mathrm{~s}$
- High/Low
- Wrong: -2
- Tie: 0
- Right: card value

Expectiminimax trees

- Cards: $50 \% 2 \mathrm{~s}, 25 \% 3 \mathrm{~s}, 25 \% 4 \mathrm{~s}$
- High/Low
- Wrong:-2
- Tie: 0
- Right: card value

Expectiminimax trees

- Cards: 50% 2s, $25 \% 3 \mathrm{~s}, 25 \% 4 \mathrm{~s}$
- High/Low
- Wrong: -2
- Tie: 0
- Right: card value

Expectiminimax trees

- Cards: $50 \% 2 \mathrm{~s}, 25 \% 3 \mathrm{~s}, 25 \% 4 \mathrm{~s}$
- High/Low
- Wrong: -2
- Tie: 0
- Right: card value

Expectiminimax trees

- Cards: 50% 2s, $25 \% 3 \mathrm{~s}, 25 \% 4 \mathrm{~s}$
- High/Low
- Wrong: -2
- Tie: 0
- Right: card value

90

Expectiminimax trees

- Cards: 50% 2s, $25 \% 3 s, 25 \% 4 s$
- High/Low
- Wrong: -2
- Tie: 0
- Right: card value

Expectiminimax trees

- Cards: 50% 2s, $25 \% 3 \mathrm{~s}, 25 \% 4 \mathrm{~s}$
- High/Low
- Wrong: -2
- Tie: 0
- Right: card value

Expectiminimax trees

- Cards: 50% 2s, $25 \% 3 s, 25 \% 4 s$
- High/Low
- Wrong: -2
- Tie: 0
- Right: card value

Constraint Satisfaction

- Variables: A, B, C, D, E, F (each person)
- Domain: 1-6 (seat occupied)
- Constraints:

$$
\begin{array}{ll}
\mathrm{E}=\mathrm{B} \pm 1 & \mathrm{~A} \neq \mathrm{B} \pm 1 \\
\mathrm{C}=\mathrm{B} \pm 1 & \mathrm{~A} \neq \mathrm{C} \pm 1 \\
\mathrm{~A}=\mathrm{D} \pm 1 & \mathrm{~F} \neq \mathrm{C} \pm 1 \\
\mathrm{~F} \neq \mathrm{C} \pm 2 &
\end{array}
$$

- (I only asked about pairs)

- Forward checking checks one step forward: from A to B, C, D
- Legal instantiation: an assignment of values to variables - CBEFDA

Bayes Belief Net

- Edges indicate causal (or influential) relationships
- Belief nets are directed
- Arrows in the graph, not lines
- Indicate direction of influence
- Need to explain what edges denote in your graph
- Idea of gated influence
- That is, cats don't cause runny noses

Season	S
Having a Runny Nose	R
Owning a Cat	C
Pollen Levels High	P
Having Allergies	A

Game theory

- Zero-sum game: a game with a fixed set of resources/shared outcomes - "If I win you lose"
- Pareto optimality: An outcome is Pareto optimal if there is no other outcome that all players would prefer
- A state from which it is impossible to [change] so as to make any one individual better off without making at least one individual worse off
- $s^{\prime}($ Exists.x Ux(s') $>\mathrm{Ux}(\mathrm{s}) \rightarrow$ Exists.y Uy(s') < Uy(s))
- Nash equilibrium: Each player's strategy is optimal, given strategies of the other players
- No player benefits by unilaterally changing strategy while others stay fixed

96

Search and iterative deepening

- Search always halts when a goal state is found
- Iterative deepening
- Depth-first search down to some depth d
- Key: redo work as dincreases

Depth	Current	Frontier
$D=1$	S	$\}$
$D=2$	S	$\{\mathrm{AB}\}$
	A	$\{\mathrm{B}\}$
	B	$\}$

Admissible heuristics

- A heuristic in search, $h(n)$, tells you how good a state is
- A state is "good" if it is closer to achieving a goal
- Takes a state (like current location in map), returns a value
- Must be applicable to any state
$\mathrm{h}\left(\begin{array}{|l|l|l|}\hline 2 & 8 & 1 \\ \hline & 4 & 3 \\ \hline 7 & 6 & 5 \\ \hline\end{array}\right)=8$ - that's bad
$\mathrm{h}\left(\begin{array}{|l|l|l|}\hline 1 & 2 & 3 \\ \hline 8 & & 4 \\ \hline 7 & 6 & 5 \\ \hline\end{array}\right)=5-$ that's better

Admissible heuristics

- A heuristic in search, $h(n)$, tells you how good a state is
- A state is "good" if it is closer to achieving a goal
- Takes a state (like current location in map), returns a value
- Must be applicable to any state

Admissible heuristics

- A heuristic in search, $h(n)$, tells you how good a state is
- A state is "good" if it is closer to achieving a goal
- Takes a state (like current location in map), returns a value
- Must be applicable to any state

$\mathrm{h}\left(\begin{array}{|l|l|l|}\hline 1 & 2 & 3 \\ \hline 8 & & 4 \\ \hline 7 & 6 & 5 \\ \hline\end{array}\right)=5-$ that's better

100

Belief net calculations

Fire	P(Smoke)
T	0.9
F	0.001

Fire	P(Heat)
T	0.99
F	0.0001

- $P(S)=\Sigma_{F} \Sigma_{H} P(S \wedge F \wedge H)$
- $P(F \mid S)=P(F \wedge S) / P(S)$

Belief net calculations

- $P(S)=\Sigma_{F} \Sigma_{H} P(S \wedge F \wedge H)$

$$
=\Sigma_{F} \Sigma_{H} P(S \wedge H \mid F) * P(F)
$$

$$
=\Sigma_{F} \Sigma_{H} P(S \mid F) * P(H \mid F) * P(F)
$$

$$
=P(S \mid F) \times P(H \mid F) \times P(F)+
$$

$$
P(S \mid F) \times P(\neg H \mid F) \times P(F)+
$$

$$
P(S \mid \neg F) \times P(H \mid \neg F) \times P(\neg F)+
$$

$$
P(S \mid \neg F) \times P(\neg H \mid \neg F) \times P(\neg F)
$$

$$
=(.9 \times .99 \times .1)+
$$

$$
(.9 \times .01 \times .1)+
$$

$$
(.001 \times .0001 \times .9)+
$$

$$
(.001 \times .9999 \times .9)
$$

$$
=0.0909
$$

102

Reminders and Next Time

- Midterm
- Rough curve: 60+ = A, 50+ = B, 40+ = C
- Reminder: 24 hours from handout before we discuss grades
- I encourage you to go back to materials and seek answers, before discussion
- HW3
- Posted: Filtering example and spreadsheet with worked math
- Posted: Detailed writeup on information gain
- Questions?

