## Today: Midterm Reviews, Team Formation

1

## Bookkeeping

- HW3 moved back: due 10/26 @ 11:59 PM
- Gives a full week to work on decision tree problems
- Today's class
- What's on the midterm?
- A quick review of topics covered
- An overview of the class project
- Team formation and project brainstorming


## What Will the Exam Be Like?

- Closed book
- Broadly:
- Turn a problem description into a solution
- Work through a problem to reach a solution
- Demonstrate a conceptual grasp of the material
- Be able to go from concepts to/from algorithms and implementations
- Basic idea: you need to understand the ideas behind the material we have covered, and be able to apply them to solving problems.
- Generally easier than the homeworks (but please don't get complacent)

4

## What Kind of Questions?

- T/F, multiple choice, fill in the blank
- Write definitions of terms $\leftarrow$ really!
- Work through an \{algorithm|solution type|problem\}
- Draw something - search trees, states, Bayes nets, paths through a map, ...
- Write a short answer to English questions
- E.g.: "What approach would you use to solve this problem?"
- E.g.: "We know these are independent. Why?"
- Write a medium length essay (half a page or less)
- Write a short Python function that performs a task


## What Do I Need To Do?

- Homeworks and lectures should be good practice
- Minor coding questions (not minor syntax mistakes, etc.)
- We're looking for "I understand this well enough to implement it," not "I know Python really well"
- Please don't study Python
- Look at homeworks, sample problems in lectures, and class exercises
- Look at lectures' "Why?" questions.

6

## Scoring

- Follow directions.
- Start with a perfect score, mark down for mistakes
- If I ask for 2 examples, and you give 3, one of which is wrong, it's $-1 / 2$
- Read carefully.
- You have time.
- "I didn't see the part that said..."
- Ask for clarification on, e.g., unfamiliar words


## Topics: AI

- What is intelligence?
- What is AI?
- What is it used for? Good for?
- Historical events and figures

8

## Topics: Agents

- Agents
- What kinds are there?
- What do they do?
- How do we characterize them (what traits do they have)?
- Autonomy, rationality, ..?
- How do they interact with an environment?
- Environments
- What's an environment?
- How is it characterized?


## Topics: Search

- What is it for?
- Elements of a search problem
- State spaces, actions, costs, ...
- How do state spaces pertain to search?
- To problem-solving?
- Exploring search space (selecting, expanding, generating, evaluating)
- Specific algorithms: How do they work? What are they good for? What are their weaknesses?


## Topics: Formalizing Search

- What are the elements of a search problem?
- "Express [X] as a search problem." What does that mean?
- States: every state a puzzle can be in
- Actions/Operations: how you get between states
- Solutions: you need a goal test (and sometimes a heuristic, or estimate of distance from goal)
- Sometimes we care about path (planning), sometimes just goal (identification). Can you say which, for a given problem?
- Costs: not all solutions or actions are equal


## Topics: Uninformed Search

- Why do uninformed search?
- Come up with some examples of uninformed search problems
- Important algorithms: BFS, DFS, iterative deepening, uniform cost
- A likely question: "What would be the best choice of search method for [problem], and why?"
- Characteristics of algorithms
- Completeness, optimality, time and space complexity, ...


## Topics: Informed Search

- Some external or pre-existing information says what part of state space is more likely to have a solution
- Heuristics encode this information: $h(n)$
- What does $h(n)=0$ mean?
- Admissibility \& Optimality

> | A heuristic applies to a |
| :--- |
| node/state, and can give |
| optimal solution with the |
| right algorithm |

- Some algorithms can be optimal when using an admissible heuristic
- Algorithms: best-first, greedy search, A*, IDA*, SMA*
- What's a good heuristic for a problem? Why?



## Topics: Local Search

- Idea: Keep a single "current" state, try to improve it
- Don't keep path to goal
- Don't keep entire search in memory
- Go to "successor states"
- Concepts: hill climbing, local maxima/minima, random restarts
- Important algorithms: hill climbing, local beam search, simulated annealing


## Topics: Search

- How many states are there?
- What operations fully encode this search problem?
- That is: how can you reach every state?
- Are there loops?
- How many states does pure DFS visit?
- If there are loops?
- What's a good algorithm? A bad one? (For a specific problem?)


## Topics: CSPs

- Constraint Satisfaction: subset of search problems

1. State is defined by random variables $X_{i}$
2. With values from a domain $D$
3. Knowledge about problem can be expressed as constraints on what values $X_{i}$ can take

- Special algorithms, esp. on constraint networks
- How would you express [something] as a CSP? As a search? How would you represent the constraints?
- E.g.: "Must be alphabetical"


## Topics: Constraint Networks

- Constraint propagation: constraints can be propagated through a constraint network
- Goal: maintain consistency (constraints aren't violated)
- Concepts: Variable ordering, value ordering, fail-first
- Important algorithms:

1. Backtracking: DFS, but at each point:

- Only consider a single variable
- Only allow legal assignments

2. Forward checking


## Topics: Games

- Why play games? What games, and how?
- Characteristics: zero-sum, deterministic, perfect information (or not)
- What's the search tree for a game? How big is it?
- How would you express game $[X]$ as a search? What are the states, actions, etc.? How would you solve it?
- Algorithms: (expecti)minimax, alpha-beta pruning
- Many examples on slides


## Topics: Basic Probability

- What is uncertainty?
- What are sources of uncertainty in a problem?
- Non-deterministic, partially observable, noisy observations, noisy reasoning, uncertain cause/effect world model, continuous problem spaces...
- World of all possible states: a complete assignment of values to random variables
- Joint probability, conditional probability


## Topics: Basic Probability

- Independence: $A$ and $B$ are independent
- $P(A) \Perp P(B)$ iff $P(A \wedge B)=P(A) P(B)$
- $A$ and $B$ do not affect each other's probability
- Conditional independence: $A$ and $B$ are independent given $C$
- $P(A \wedge B \mid C)=P(A \mid C) P(B \mid C)$
- $A$ and $B$ don't affect each other if $C$ is known


## Topics: Basic Probability

- $\mathrm{P}(a \mid b)=\frac{\mathrm{P}(a \wedge b)}{\mathrm{P}(b)} \quad$ - $\mathrm{P}(a \wedge b)=\mathrm{P}(a \mid b) \mathrm{P}(b)$

| $\begin{array}{r} P(\text { smart } \wedge \\ \text { study } \wedge \text { prep }) \end{array}$ | smart |  | $\neg$ smart |  |
| :---: | :---: | :---: | :---: | :---: |
|  | study | नstudy | study | नstudy |
| prepared | . 432 | . 16 | . 084 | . 008 |
| $\neg$ prepared | . 048 | . 16 | . 036 | . 072 |

- What is the prior probability of smart?
- What is the conditional probability of prepared, given study and smart?
- Is prepared independent of study?


## Topics: Probabilistic Reasoning

- Concepts:
- Posteriors and Priors; Bayesian Reasoning; Induction and Deduction; Probabilities of Events
- [In]dependence, conditionality, marginalization
- What is Bayes' Rule and what is it useful for?

$$
\begin{aligned}
& P\left(H_{i} \mid E_{j}\right)=\frac{P\left(E_{j} \mid H_{i}\right) P\left(H_{i}\right)}{P\left(E_{j}\right)} \\
& P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
\end{aligned}
$$

## Topics: Joint Probability

- What is the joint probability of $A$ and $B$ ?
- $\quad P(A, B)$
- The probability of any set of legal assignments.
- Booleans: expressed as a matrix/table

|  | alarm | $\neg$ alarm |
| ---: | :---: | :---: |
| burglary | 0.09 | 0.01 |
| ᄀ burglary | 0.1 | 0.8 |

三

| $\mathbf{A}$ | $\mathbf{B}$ |  |
| :---: | :---: | :--- |
| T | T | 0.09 |
| T | F | 0.1 |
| F | T | 0.01 |
| F | F | 0.8 |

- Continuous domains $\rightarrow$ probability functions


## Conditional Probability Tables

- For $X_{i}, \operatorname{CPD} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ quantifies effect of parents on $X_{i}$
- Parameters are probabilities in conditional probability tables (CPTs):



## Bates belief net Definition

- AKA Bayesian Network, Bayes Net, belief net
- A graphical model (as a DAG) of probabilistic relationships among a set of random variables
- Links represent direct influence of one variable on another


## Simple Bayesian Network



| Smoking $=$ | no | light | heavy |
| :--- | :--- | :--- | :--- |
| $P(C=$ none $)$ | 0.96 | 0.88 | 0.60 |
| $P(C=$ benign $)$ | 0.03 | 0.08 | 0.25 |
| $P(C=$ malig $)$ | 0.01 | 0.04 | 0.15 |

## More Complex Bayesian Network



## More Complex Bayesian Network

Nodes represent variables

- Does gender cause smoking?
- Influence might be a more appropriate term



## Independence

## Age and Gender are

 independent.$$
P(A, G)=P(G) * P(A)
$$

$$
P(A \mid G)=P(A)
$$

$$
P(G \mid A)=P(G)
$$

$$
\begin{aligned}
& P(A, G)=P(G \mid A) P(A)=P(G) P(A) \\
& P(A, G)=P(A / G) P(G)=P(A) P(G)
\end{aligned}
$$

## Review: Bayes' Nets

- $P(a, m, i, e, s)=P(a \mid m) * P(m \mid i, e) * P(i) * P(e) * P(s \mid i)$



## Exercise: Variable Elimination



Query: What is the probability that a student studied, given that they pass the exam?

## Topics: Reasoning Under Uncertainty

- How is the world represented over time?
- Concepts: timesteps, world, observations
- Transition model captures how the world changes
- Sensor model capture what we see, given some world
- Markov assumption (first-order) makes it all tractable
- What can we do with it?
- Concepts: Filtering, predicting, smoothing, explaining


## Topics: Reasoning Under Uncertainty

- How would you represent this problem as a network and set of conditional probability tables?
- The weather has a $30 \%$ chance of changing and a $70 \%$ chance of staying the same.
- If it's raining, the probability of seeing someone carrying an umbrella is $90 \%$; if it's not raining, it's 20\%.
- I saw umbrellas Monday and Tuesday, but not today. What is the most likely weather pattern for those days?


## Example



| $\mathrm{R}_{\mathrm{t}}$ | $\mathrm{P}\left(\mathrm{U}_{\mathrm{t}} \mid \mathrm{R}_{\mathrm{t}}\right)$ |
| :---: | :---: |
| $t$ | 0.9 |
| $f$ | 0.2 |

## Topics: Utility

- How should rational agents make decisions?
- Concepts: rationality, utility functions, value functions, expected value, satisficing, preferences
- Utility is a function of world states
- Must have some preferences that pertain to perceived needs or wants


## Topics: Decision Theory

- What is the expected utility of an action?
- Broadly: its probability times its value
- The sum of that for all possible outcomes
- Maximum Expected Utility principle



## Topics: Pareto Optimality

- An outcome is Pareto optimal if there is no other outcome that all players would prefer.
- $S$ is a Pareto-optimal solution iff
- $\forall s^{\prime}\left(\exists x \mathrm{Ux}\left(\mathrm{s}^{\prime}\right)>\mathrm{Ux}(\mathrm{s}) \rightarrow \exists \mathrm{y} \operatorname{Uy}\left(\mathrm{s}^{\prime}\right)<\mathrm{Uy}(\mathrm{s})\right)$
- I.e., if $X$ is better off in $s^{\prime}$, then some $Y$ must be worse off


Example questions:
Which solutions are Pareto-optimal?

Which solution(s)
maximize global utility
(social welfare)?

## Topics: Nash Equilibrium

- Occurs when each player's strategy is optimal, given strategies of the other players

- No player benefits by unilaterally changing strategy while others stay fixed
- Example questions:
- What strategy should you choose? Why?
- What strateg(ies) are in a Nash equilibrium?

| ${ }_{*-}{ }^{C}$ | Confesses | Denies |
| ---: | :---: | :---: |
| Confesses | $(3,3)$ | $(0,5)$ |
| Denies | $(5,0)$ | $(1,1)$ |

## Various Reminders

- Everything in the readings is fair game.
- Look at homeworks, sample problems in lectures.
- Look at lectures" "Why?" questions.
- Slides are a good source of conceptual understanding.
- Book goes into detail and explains more deeply.

41

## Class Project

## About the Project

- Choosing a project
- This will be up to you!
- We would love to discuss your project ideas with you
- Deliverables
- Project design
- Phase I: working code, updated design
- Phase II: final code
- Final writeup


## Project Ideas, Non-Exhaustively (1)

- Choose a game, and creating an agent to play that game using artificial intelligence, for example, chess, bridge, Minecraft
- Develop an agent designed to interact intelligently with people in some context, for example, a chatbot or virtual assistant
- Develop an agent that (hypothetically) interacts with some real-world phenomenon, for example, the stock market
- Develop a recommender system for some existing corpus, for example, to recommend Netflix suggestions


## Project Ideas, Non-Exhaustively (2)

- Apply machine learning techniques to some existing corpus to draw conclusions, for example, a plagiarism detector, a COVID-19 outbreak predictor
- Develop some toolkit for solving a standard type of Al problem, or extending such a toolkit with new capabilities (a software development project)
- Use NLP to analyze documents and draw intelligent conclusions, for example, a resume analyzer, a spoiler detector
- Formulate, implement, and compare a novel solution to an existing problem
- Formulate, acquire data for, and apply a sufficient baseline for a novel task


## Deliverables: Project Design

- A written document in AAAI conference format
- Author kit information available from the project description
- Author kit includes templates for Word and LaTeX
- ~2 pages
- Include:
- Idea: A description and motivation of the project
- A description of the Al technique(s) you are going to use
- A description of what you will implement in each phase
- How your implemented system draws on ideas from the Al literature
- Initial references
- Your evaluation strategy


## Deliverables: Phase I

- Updated version of project plan (~3-4 pages)
- Progress to date, evaluation of current functionality
- Code base
- A working, but incomplete, version of your final project
- Examples: it plays bridge, but chooses cards unintelligently; it reads in stock market data and proposes trades, but not well; it conducts a dialog with someone, but the utterances are gibberish
- What this means for your specific project can be discussed with us
- Must work on standard Linux systems
- Include everything necessary to run your project, including a README and a dataset if appropriate


## Deliverables: Phase II

- Final code base
- A complete system performing a task
- Must work on standard Linux systems
- Include everything necessary to run your project, including a README and a dataset if appropriate
- May include evaluation-specific data, e.g., a set of sample stock market interactions


## Deliverables: Final Writeup

- AAAI format conference paper
- 4-8 pages, not counting references
- Includes standard paper stuff like title and abstract
- Specific sections are recommended in the project description:
- Introduction - description and motivation for the project
- Related work - how your solution fits into the landscape
- Approach - the core description of the work you did
- Results - your evaluation strategy, description and analysis of results
- Conclusion - final discussion of the work, future/follow-up work


## Forming Groups

- 2-4 people
- Get together with your group and:
- Everyone trade names and email addresses
- One person email group member list to me \& TA today in class
- Pull up project description writeup
- Start talking about possible projects!

