Decision Making Under Uncertainty

AI Class 10 (Ch. 15.1-15.2.1, 16.1-16.3)

$X_{t}=$ unobserved $E_{t}=$ observed

1

Bookkeeping; reminders

- Only the professor can change grades
- The TA cannot, although they can help you understand your grade
- Grade change requests must be submitted:
- In writing
- To the professor, with the TA Cc'd
- With a clear justification for the request
- Everyone in this class is expected to behave professionally at all times
- Toward one another and toward the instructional staff
- Start homework well in advance
- Bring questions, extension requests, etc. with time to spare

Today's Class

- Making Decisions Under Uncertainty
- Tracking Uncertainty over Time
- Decision Making under Uncertainty
- Decision Theory
- Utility

Introduction

- The world is not a well-defined place.
- Sources of uncertainty
- Uncertain inputs: What's the temperature?
- Uncertain (imprecise) definitions: Is Trump a good president?
- Uncertain (unobserved) states: What's the top card?
- There is uncertainty in inferences
- If I have a blistery, itchy rash and was gardening all weekend I probably have poison ivy

Sources of Uncertainty

- Uncertain inputs
- Missing data
- Noisy data
- Uncertain knowledge
- >1 cause \rightarrow >1 effect
- Incomplete knowledge of causality
- Probabilistic effects
- Uncertain outputs
- All uncertain:
- Reasoning-by-default
- Abduction \& induction
- Incomplete deductive inference
- Result is derived correctly but wrong in real world

Probabilistic reasoning only gives probabilistic results (summarizes uncertainty from various sources)

5

Reasoning Under Uncertainty

- People constantly make decisions anyhow.
- Very successfully!
- How?
- More formally: how do we reason under uncertainty with inexact knowledge?
- Step one: understanding what we know

Part I: Modeling Uncertainty Over Time

7

States and Observations

- Agents don't have a continuous view of world
- People don't either!
- We see things as a series of snapshots:
- Observations, associated with time slices
- $t_{1}, t_{2}, t_{3}, \ldots$
- Each snapshot contains all variables, observed or not
- $\mathbf{X}_{\mathrm{t}}=$ (unobserved) state variables at time t ; observation at t is \mathbf{E}_{t}
- This is world state at time \mathbf{t}

Temporal Probabilistic Agent

9

Uncertainty and Time

- The world changes; we need to track and predict it
- Examples: diabetes management, traffic monitoring
- How does blood sugar change over time?
- Tasks: track changes; predict changes
- Basic idea:
- For each time step, copy state and evidence variables
- Model uncertainty in change over time (the Δ)
- Incorporate new observations as they arrive

Uncertainty and Time

- Basic idea:
- Copy state and evidence variables for each time step
- Model uncertainty in change over time
- Incorporate new observations as they arrive
- $\mathbf{X}_{\mathrm{t}}=$ unobserved/unobservable state variables at time t : BloodSugar ${ }_{t}$, StomachContents ${ }_{t}$
- $\mathbf{E}_{\mathrm{t}}=$ evidence variables at time t :

MeasuredBloodSugar $_{t}$, PulseRate ${ }_{t}$, FoodEaten $_{t}$

- Assuming discrete time steps

11

States (more formally)

- Change is viewed as series of snapshots
- Time slices/timesteps
- Each describing the state of the world at a particular time
- So we also refer to these as states
- Each time slice/timestep/state is represented as a set of random variables indexed by t :

1. the set of unobservable state variables \boldsymbol{X}_{t}
2. the set of observable evidence variables E_{t}

Observations (more formally)

- Time slice (a set of random variables indexed by t):

1. the set of unobservable state variables \mathbf{X}_{t}
2. the set of observable evidence variables E_{t}

- An observation is a set of observed variable instantiations at some timestep
- Observation at time t : $\mathrm{E}_{\mathrm{t}}=\mathrm{e}_{\mathrm{t}}$
- (for some values e_{t})
- $\mathbf{X}_{\mathrm{a}: \mathrm{b}}$ denotes the set of variables from \mathbf{X}_{a} to \mathbf{X}_{b}

Transition and Sensor Models

- So how do we model change over time?
- Transition model
- Models how the world changes over time
- Specifies a probability distribution...

> This can get exponentially large...

- Over state variables at time t
- Given values at previous times \square $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{0: t-1}\right)$
- Sensor model
- Models how evidence (sensor data) gets its values
- E.g.: BloodSugar $r_{t} \rightarrow$ MeasuredBloodSugar ${ }_{t}$

Markov Assumption(s)

- Markov Assumption:

- $\quad \mathbf{X}_{\mathrm{t}}$ depends on some finite (usually fixed) number of previous \mathbf{X}_{i} 's
- First-order Markov process: $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{0: \mathrm{t}-1}\right)=\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$

- $k^{\text {th }}$ order: depends on previous k time steps

- Sensor Markov assumption: $P\left(E_{t} \mid X_{0: t}, E_{0: t-1}\right)=P\left(E_{t} \mid X_{t}\right)$
- Agent's observations depend only on actual current state of the world

Stationary Process

- Infinitely many possible values of t
- Does each timestep need a distribution?
- That is, do we need a distribution of what the world looks like at t_{3}, given t_{2} AND a distribution for t_{16} given t_{15} AND ...
- Assume stationary process:
- Changes in the world state are governed by laws that do not themselves change over time
- Transition model $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$ and sensor model $\mathrm{P}\left(\mathrm{E}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}}\right)$ are time-invariant, i.e., they are the same for all t

Complete Joint Distribution

- Given:
- Transition model: $P\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$
- Sensor model: $\quad P\left(E_{t} \mid \mathbf{X}_{t}\right)$
- Prior probability: $P\left(X_{0}\right)$
- Then we can specify a complete joint distribution of a sequence of states:

$$
P\left(X_{0}, X_{1}, \ldots, X_{t}, E_{1}, \ldots, E_{t}\right)=P\left(X_{0}\right) \prod_{i=1}^{t} P\left(X_{i} \mid X_{i-1}\right) P\left(E_{i} \mid X_{i}\right)
$$

- What's the joint probability of specific instantiations?

Inference Tasks

- Filtering or monitoring: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{t}}\right)$:
- Compute the current belief state, given all evidence to date
- Prediction: $P\left(X_{t+k} \mid e_{1}, \ldots, e_{t}\right)$:
- Compute the probability of a future state
- Smoothing: $P\left(X_{k} \mid e_{1}, \ldots\right.$, et $)$:
- Compute the probability of a past state (hindsight)
- Most likely explanation: arg $\max _{x_{11}, . . x t} P\left(x_{1}, \ldots, x_{t} \mid e_{1}, \ldots, e_{t}\right)$
- Given a sequence of observations, find the sequence of states that is most likely to have generated those observations

Inference Tasks

- Filtering: What is the probability that it is raining today, given all of the umbrella observations up through today?
- Prediction: What is the probability that it will rain the day after tomorrow, given all of the umbrella observations up through today?
- Smoothing: What is the probability that it rained yesterday, given all of the umbrella observations through today?
- Most likely explanation: If the umbrella appeared the first three days but not on the fourth, what is the most likely weather sequence to produce these umbrella sightings?

Example: Is it raining, given umbrellas?

$\mathrm{R}_{\mathrm{t}-1}$	$\mathrm{P}_{(}\left(\mathrm{R}_{\mathrm{t}} \backslash \mathrm{R}_{\mathrm{t}-1}\right)$
t	0.7
f	0.3

Weather has a 30% chance of changing and a 70% chance of staying the same.

R_{t}	$\mathrm{P}\left(\mathrm{U}_{\mathrm{t}} \mid \mathrm{R}_{\mathrm{t}}\right)$
t	0.9
f	0.2

If it's raining, the probability of someone carrying an umbrella is .9; if it's raining, the probability of NOT carrying an umbrella is .2

Filtering

- For each day t, \mathbf{E}_{t} contains variable U_{t} (whether the umbrella appears) and \mathbf{X}_{t} contains state variable R_{t} (whether it's raining)
- Compute the current belief state, given all evidence to date
- Maintain a current state estimate and update it
- Instead of looking at all observed values in history
- Also called state estimation
- Given result of filtering up to time t, agent must compute result at $t+1$ from new evidence $\mathbf{e}_{\mathrm{t}+1}$:

$$
\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}+1}\right)=f\left(\mathbf{e}_{\mathrm{t}+1}, \mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)\right)
$$

.. for some function f.

Filtering

- A good algorithm for filtering will maintain a current state estimate and update it at each point.
- $\mathrm{P}\left(\mathrm{X}_{t+1} \mathrm{le}_{1: t+1}\right)=f\left(\mathrm{P}\left(\mathrm{X}_{t} \mathrm{l}_{1: t}\right), \mathrm{e}_{t+1}\right)$
- Where X is the random variable and e is evidence
- Saves recomputation.
- It turns out that this is easy enough to come up with.

Filtering

- We rearrange the formula for:
- $P\left(X_{t+1} \mid e_{1: t+1}\right)$
- First, we divide up the evidence:
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$
- Then we apply Bayes rule, remembering the use of the normalization factor α :
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right)$
- And after that we use the Markov assumption on the sensor model:
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)$
- The result of this assumption is to make that first term on the right hand side ignore all the evidence - the probability of the observation at $t+1$ only depends on the value of X_{t+1}.

Filtering

- Let's look at that expression some more:
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)$
- The first term on the right updates with the new evidence and the second term on the right is a one step prediction from the evidence up to t to the state at $t+1$.
- Next we condition on the current state $P(X)$:
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum x_{t} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right)$
- Finally, we apply the Markov assumption again:
- $P\left(X_{t+1} \mid \mathrm{e}_{1: t+1}\right)=\alpha P\left(\mathrm{e}_{t+1} \mid X_{t+1}\right) \sum x_{t} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid \mathrm{e}_{1: t}\right)$
- We'll call the bit on the right $\mathrm{f}_{1: t}$

Filtering

- $f_{1: t}$ gives us the required recursive update.
- The probability distribution over the state variables at $t+1$ is a function of the transition model, the sensor model, and what we know about the state at time t.
- Space and time constant, independent of t.
- This allows a limited agent to compute the current distribution for any length of sequence.

Recursive Estimation

- We use recursive estimation to compute $P\left(X_{t+1} \mid e_{1: t+1}\right)$ as a function of e_{t+1} and $P\left(X_{t} \mid e_{1: t}\right)$

1. Project current state forward ($\mathrm{t} \rightarrow \mathrm{t}+1$)
2. Update state using new evidence $\mathbf{e}_{\mathrm{t}+1}$
$\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}+1}\right)$ as function of $\mathbf{e}_{\mathrm{t}+1}$ and $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$:
$\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}+1}\right)=\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}}, \mathbf{e}_{\mathrm{t}+1}\right)$

Recursive Estimation

- $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}+1}\right)$ as a function of $\mathbf{e}_{\mathrm{t}+1}$ and $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$:

$$
\begin{array}{ll}
P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right) & \text { dividing up evidence } \\
=\alpha P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right) & \text { Bayes rule } \\
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) & \text { sensor Markov assumption }
\end{array}
$$

- $P\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{1: t+1}\right)$ updates with new evidence (from sensor)
- One-step prediction by conditioning on current state X:

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
$$

Recursive Estimation

- One-step prediction by conditioning on current state X :

$$
P\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} \underbrace{P\left(X_{t+1} \mid x_{t}\right)}_{\begin{array}{c}
\text { transition } \\
\text { model }
\end{array}} \underbrace{P\left(x_{t} \mid e_{1: t}\right)}_{\begin{array}{c}
\text { current } \\
\text { state }
\end{array}}
$$

- ...which is what we wanted!
- So, think of $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$ as a "message" $f_{1: \mathrm{t}+1}$
- Carried forward along the time steps
- Modified at every transition, updated at every new observation
- This leads to a recursive definition:

$$
f_{1: t+1}=\alpha \operatorname{FORWARD}\left(f_{1: t}, e_{t+1}\right)
$$

Filtering: Umbrellas example

- The prior is $\langle 0.5,0.5\rangle$. $(\mathrm{R}=t, \mathrm{R}=f)$
- We can first predict whether it will rain on day 1 given what we already know:
- $\mathbf{P}\left(\mathbf{R}_{1}\right)=\Sigma r_{0} \mathbf{P}\left(R_{1} \mid r_{0}\right) P\left(r_{0}\right)$

$$
\begin{aligned}
& =\langle 0.7,0.3\rangle \times 0.5+\langle 0.3,0.7\rangle \times 0.5 \\
& =\langle 0.35,0.15\rangle+\langle 0.15,0.35\rangle \\
& =\langle 0.5,0.5\rangle
\end{aligned}
$$

- As we should expect, this just gives us the prior - that is the probability of rain when we don't have any evidence.

Filtering: Umbrellas example

- However, we have observed the umbrella, so that $U_{1}=$ true, and we can update using the sensor model:
- $\mathbf{P}\left(\mathbf{R}_{1} \mid U_{1}\right)=\alpha \mathbf{P}\left(u_{1} \mid R_{1}\right) \mathbf{P}\left(R_{1}\right)$
$=\alpha\langle 0.9,0.2\rangle\langle 0.5,0.5\rangle$
$=\alpha\langle 0.45,0.1\rangle$
$\approx\langle 0.818,0.182\rangle$
- So, since umbrella is strong evidence for rain, the probability of rain is much higher once we take the observation into account.

Filtering: Umbrellas example

- We can then carry out the same computation for Day 2, first predicting whether it will rain on day 2 given what we already saw:
- $\mathbf{P}\left(\mathbf{R}_{2} \mid u_{1}\right)=\sum r_{1} \mathbf{P}\left(R_{2} \mid r_{1}\right) P\left(r_{1} \mid u_{1}\right)$
$=\langle 0.7,0.3\rangle \times 0.818+\langle 0.3,0.7\rangle \times 0.182$
$\approx\langle 0.627,0.373\rangle$
- So even without evidence of rain on the second day there is a higher probability of rain than the prior because rain tends to follow rain.
- (In this model rain tends to persist.)

Filtering: Umbrellas example

- Then we can repeat the evidence update, $u_{2}\left(U_{2}=t r u e\right)$, so:
- $\mathbf{P}\left(\mathbf{R}_{2} \mid u_{1}, u_{2}\right)=\alpha \mathbf{P}\left(u_{2} \mid R_{2}\right) \mathbf{P}\left(R_{2} \mid u_{1}\right)$
$=\alpha\langle 0.9,0.2\rangle\langle 0.627,0.373\rangle$
$=\alpha\langle 0.565,0.075\rangle$
$\approx\langle 0.883,0.117\rangle$
- So, the probability of rain increases again, and is higher than on day 1.

Filtering: Umbrellas example

- Put more succinctly:

- We can think of the calculation as messages passed along the chain

Umbrellas, summarized

- $P\left(\right.$ Rain $\left._{1}=t\right)$
$=\sum_{\text {Rain }_{0}} P\left(\right.$ Rain $_{1}=t \mid$ Rain $\left._{0}\right) P\left(\right.$ Rain $\left._{0}\right)$
$=0.70 * 0.50+0.30 * 0.50=\mathbf{0 . 5 0}$
- $P\left(\right.$ Rain $_{1}=t \mid$ Umbrella $\left._{1}=t\right)$
$=\alpha \mathrm{P}\left(\right.$ Umbrella $_{1}=\mathrm{t} \mid$ Rain $\left._{1}=\mathrm{t}\right) \mathrm{P}\left(\right.$ Rain $\left._{1}=\mathrm{t}\right)$
$=\alpha^{*} 0.90 * 0.50=\alpha * 0.45 \approx 0.818$
- $P\left(\right.$ Rain $_{2}=t \mid$ Umbrella $\left._{1}=t\right)$
$=\sum_{\text {Rain }_{1}} P\left(\right.$ Rain $_{2}=t \mid$ Rain $\left._{1}\right) P\left(\right.$ Rain $_{1} \mid$ Umbrella $\left._{1}=t\right)$
$=0.70 * 0.818+0.30 * 0.182 \approx 0.627$
- $P\left(\right.$ Rain $_{2}=t \mid$ Umbrella $_{1}=t$ Umbrella $\left.a_{2}=t\right)$
$=\alpha P\left(\right.$ Umbrella $_{2}=t \mid$ Rain $\left._{2}=t\right) P\left(\right.$ Rain $_{2}=t \mid$ Umbrella $\left._{1}=t\right)$
$=\alpha^{*} 0.90 * 0.627 \approx \alpha * 0.564 \approx 0.883$

Group Exercise: Filtering

What is the probability of rain on Day 2 , given a uniform prior of rain on Day $0, \mathrm{U}_{1}=$ true, and $\mathrm{U}_{2}=$ true?

If it's raining, the probability of someone carrying an umbrella is .9 ; if it's raining, the probability of NOT carrying an umbrella is 2

Part II: Decision Making Under Uncertainty

Decision Making Under Uncertainty

- Many environments have multiple possible outcomes
- Some outcomes may be good; others may be bad
- Some may be very likely; others unlikely
- What's a poor agent to do?

Reasoning Under Uncertainty

- How do we reason under uncertainty and with inexact knowledge?
- Heuristics
- Mimic heuristic knowledge processing methods used by experts
- Empirical associations
- Experiential reasoning based on limited observations
- Probabilities
- Objective (frequency counting)
- Subjective (human experience)

Decision-Making Tools

- Decision Theory
- Normative: how should agents make decisions?
- Descriptive: how do agents make decisions?
- Utility and utility functions
- Something's perceived ability to satisfy needs or wants
- A mathematical function that ranks alternatives by utility

41

What is Decision Theory?

- Mathematical study of strategies for optimal decision-making
- Options involve different risks
- Expectations of gain or loss
- The study of identifying:
- The values, uncertainties and other issues relevant to a decision
- The resulting optimal decision for a rational agent

Decision Theory

- Combines probability and utility \rightarrow Agent that makes rational decisions (takes rational actions)
- On average, lead to desired outcome
- First-pass simplifications:
- Want most desirable immediate outcome (episodic)
- Nondeterministic, partially observable world
- Definition of action:
- An action a in state s leads to outcome s', RESULT:
- RESULT(a) is a random variable; domain is possible outcomes
- $\left.\mathrm{P}\left(\operatorname{RESULT}(a)=s^{\prime} \mid a, e\right)\right)$

Expected Value

- Expected Value
- The predicted future value of a variable, calculated as:
- The sum of all possible values
- Each multiplied by the probability of its occurrence

A $\$ 1000$ bet for a 20% chance to win $\$ 10,000$?
$\mathrm{EV}=[20 \%(\$ 10,000)+80 \%(\$ 0)]=\$ 2000$

Satisficing

- Satisficing: achieving a goal sufficiently
- Achieving the goal "more" does not increase utility of resulting state
- Portmanteau of "satisfy" and "suffice"

Win a baseball game by I point now, or 2 points in another inning?
Full credit for a search is $<=3 \mathrm{~K}$ nodes visited. You're at 2 K . Spend an hour making it IK?
Do you stop the coin flipping game at I-0, or continue playing, hoping for 2-0? At the end of semester, you can stop with a B. Do you take the exam? You're thirsty. Water is good. Is more water better?

Value Function

- Provides a ranking of alternatives, but not a meaningful metric scale
- Also known as an "ordinal utility function"
- Sometimes, only relative judgments (value functions) are necessary
- At other times, absolute judgments (utility functions) are required

Rational Agents

- Rationality (an overloaded word).
- A rational agent...
- Behaves according to a ranking over possible outcomes
- Which is:
- Complete (covers all situations)
- Consistent
- Optimizes over strategies to best serve a desired interest
- Humans are none of these.

Preferences

- An agent chooses among:
- Prizes (A, B, etc.)
- Lotteries (situations with uncertain prizes and probabilities)

- Notation:
- $A>B \quad$ A preferred to B
- $A \sim B \quad$ Indifference between A and B
- $A>\sim B \quad B$ not preferred to A

Expected Utility

- Goal: find best of expected outcomes
- Random variable X with:
- n values x_{1}, \ldots, x_{n}
- Distribution $\left(p_{1}, \ldots, p_{n}\right)$
- X is the state reached after doing an action A under uncertainty
- \quad state $=$ some state of the world at some timestep
- Utility function $U(s)$ is the utility of a state, i.e., desirability

Expected Utility

- X is state reached after doing an action A under uncertainty
- $\mathrm{U}(\mathrm{s})$ is the utility of a state \leftarrow desirability
- $\mathrm{EU}(a \mid \mathrm{e})$: The expected utility of action A , given evidence, is the average utility of outcomes (states in S), weighted by probability an action occurs:

$$
\mathrm{EU}[\mathrm{~A}]=\mathrm{S}_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \mathrm{A}\right) \mathrm{U}\left(\mathrm{x}_{\mathrm{i}}\right)
$$

One State/One Action Example

One State/Two Actions Example

Introducing Action Costs

54

MEU Principle

- A rational agent should choose the action that maximizes agent's expected utility
- This is the basis of the field of decision theory
- The MEU principle provides a normative criterion for rational choice of action
- Decision-making is solved!
- Not quite...

Rational Preferences

- Preferences of a rational agent must obey constraints
- Transitivity $\quad(A>B) \wedge(B>C) \Rightarrow(A>C)$
- Monotonicity $\quad(A>B) \Rightarrow[p>q \Leftrightarrow[p, A ; 1-p, B]>[q, A ; 1-q, B])$
- Orderability $(A>B) \vee(B>A) \vee(A \sim B)$
- Substitutability $(A \sim B) \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C])$
- Continuity $\quad(A>B>C \Rightarrow \exists p[p, A ; 1-p, C] \sim B)$
- Rational preferences give behavior that maximizes expected utility
- Violating these constraints leads to irrationality
- For example: an agent with intransitive preferences can be induced to give away all its money.

Not Quite...

- Must have a complete model of:
- Actions
- Utilities
- States
- Even if you have a complete model, decision making is computationally intractable
- In fact, a truly rational agent takes into account the utility of reasoning as well (bounded rationality)
- Nevertheless, great progress has been made in this area
- We are able to solve much more complex decision-theoretic problems than ever before

Money

- Money does not behave as a utility function
- That is, people don't maximize expected value of dollars.
- People are risk-averse:
- Given a lottery L with expected monetary value EMV (L), usually $\mathrm{U}(\mathrm{L})<\mathrm{U}(\mathrm{EMV}(\mathrm{L}))$

$$
\begin{aligned}
& \text { Want to bet } \$ 1000 \text { for a } 20 \% \text { chance to win } \$ 10,000 ? \\
& {[20 \%(\$ 10,000)+80 \%(\$ 0)]=\$ 2000>[100 \%(\$ 1000)]}
\end{aligned}
$$

- Expected Utility Hypothesis
- rational behavior maximizes the expectation of some function u... which need not be monetary

Money Versus Utility

- Money Utility
- More money is better, but not always in a linear relationship to the amount of money
- Expected Monetary Value
- Risk-averse: $\mathrm{U}(\mathrm{L})<\mathrm{U}\left(\mathrm{S}_{\mathrm{EMV}(L)}\right)$
- Risk-seeking: $\mathrm{U}(\mathrm{L})>\mathrm{U}\left(\mathrm{S}_{\text {EMV(L) }}\right)$
- Risk-neutral: $\mathrm{U}(\mathrm{L})=\mathrm{U}\left(\mathrm{S}_{\mathrm{EMV}(\mathrm{L}}\right)$

Maximizing Expected Utility

- Utilities map states to real numbers.
- Which numbers?
- People are terrible at mapping their preferences
- Give each of these things a utility between 1 and 10:
- Winning the lottery
- Getting an A on an exam
- Failing a class (you won't though)
- Getting hit by a truck

61

Maximizing Expected Utility

- Standard approach to assessment of human utilities:
- Compare a state A to a standard lottery L_{p} that has
- "best possible prize" $u T$ with probability p
- "worst possible catastrophe" u^{\perp} with probability (1-p)
- adjust lottery probability p until $A \sim L_{p}$
pay $\$ 30$

On a Less Grim Note

- You are designing a cool new robot-themed attraction for Disneyworld!
- You could add a part that takes the project from $\$ 500 \mathrm{M}$ to $\$ 750 \mathrm{M}$
- What piece of information do you need to decide whether this is the best action to take?

