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Decision Making Under Uncertainty
Al Class 10 (Ch. 15.1-15.2.1, 16.1-16.3)

Sensors

X; = unobserved

N> E, = observed

actuators

Bookkeeping; reminders

* Only the professor can change grades

The TA cannot, although they can help you understand your grade
Grade change requests must be submitted:

* In writing

* To the professor, with the TA Cc’'d

* With a clear justification for the request

* Everyone in this class is expected to behave professionally at all times

Toward one another and toward the instructional staff

e Start homework well in advance

Bring questions, extension requests, etc. with time to spare
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Today's Class

* Making Decisions Under Uncertainty
* Tracking Uncertainty over Time
* Decision Making under Uncertainty
» Decision Theory
«  Utility

Introduction

* The world is not a well-defined place.

* Sources of uncertainty
e Uncertain inputs: What’s the temperature?
e Uncertain (imprecise) definitions: Is Trump a good president?

* Uncertain (unobserved) states: What’s the top card?

* There is uncertainty in inferences

* If I have a blistery, itchy rash and was gardening all weekend | probably have
poison ivy
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Sources of Uncertainty

« Uncertain inputs Uncertain outputs
+  Missing data « All uncertain:
* Noisy data * Reasoning-by-default

. » Abduction & induction
« Uncertain knowledge ,
Incomplete deductive

« >1cause 2> >1 effect inference

* Incomplete knowledge of

. Result is derived correctly
causality

« Probabilistic effects but wrong in real world

Probabilistic reasoning only gives probabilistic results
(summarizes uncertainty from various sources)

Reasoning Under Uncertainty

* People constantly make decisions anyhow.
Very successfully!
How?

* More formally: how do we reason under uncertainty with inexact knowledge?

» Step one: understanding what we know
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Part I: Modeling Uncertainty Over Time

States and Observations

* Agents don’t have a continuous view of world

People don’t either!
* We see things as a series of snapshots:

* Observations, associated with time slices

o b, b, L, ...

* Each snapshot contains all variables, observed or not

X, = (unobserved) state variables at time t; observation at t is E,

* This is world state at time t
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Temporal Probabilistic Agent

SENsors

N "

actuators
t, b s, ...
JA

9
Uncertainty and Time
* The world changes; we need to track and predict it
* Examples: diabetes management, traffic monitoring
*  How does blood sugar change over time?
» Tasks: track changes; predict changes
* Basicidea:
* For each time step, copy state and evidence variables
* Model uncertainty in change over time (the A)
* Incorporate new observations as they arrive
10
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Uncertainty and Time

« Basicidea:
* Copy state and evidence variables for each time step
* Model uncertainty in change over time

* Incorporate new observations as they arrive

« X, =unobserved/unobservable state variables at time t:
BloodSugar,, StomachContents,

« K, =evidence variables at time t:
MeasuredBloodSugar;, PulseRate;, FoodEaten;

» Assuming discrete time steps

11

States (more formally)

* Change is viewed as series of snapshots
« Time slices/timesteps
* Each describing the state of the world at a particular time

« So we also refer to these as states

« Each time slice/timestep/state is represented as a set of random
variables indexed by t:
1. the set of unobservable state variables X;

2. the set of observable evidence variables E;

12
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Observations (more formally)

Time slice (a set of random variables indexed by t):
1. the set of unobservable state variables X;

2. the set of observable evidence variables E;

 An observation is a set of observed variable instantiations at some
timestep

* Observation at time t: E; = e,

e (for some values e,)

* X,., denotes the set of variables from X, to X

13
Transition and Sensor Models
* So how do we model change over time?
* Transition model
) This can get
* Models how the world changes over time exponentially
+ Specifies a probability distribution... large...
* Over state variables at time t
| L PX, 1 Xo) &
« Given values at previous times
* Sensor model
* Models how evidence (sensor data) gets its values
e E.g.: BloodSugar, 2 MeasuredBloodSugar,
14
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Markov Assumption(s)

« Markov Assumption:

* X;depends on some finite (usually fixed) number of previous X;’s
« First-order Markov process: P(X;|Xo..1) = P(X;| X.1)
O—0—0

+ k™ order: depends on previous k time steps

o YU Y

« Sensor Markov assumption: P(E.|X;., Eo...1) = P(E| X,)

* Agent’s observations depend only on actual current state of the world

15
Stationary Process
* Infinitely many possible values of t
* Does each timestep need a distribution?
* Thatis, do we need a distribution of what the world looks like at t3, given
t; AND a distribution for t;5 given t;5 AND ...
« Assume stationary process:
e Changes in the world state are governed by laws that do not themselves
change over time
* Transition model P(X;|X:,) and sensor model P(E.|X;) are time-invariant,
i.e., they are the same for all t
16
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Complete Joint Distribution

* Given:
e Transition model: P(X:| X:.1)
+ Sensor model: P(E| X:)
*  Prior probability: P(Xo)

* Then we can specify a complete joint distribution
of a sequence of states:

13
P(Xy, X 000, X, Ey oot E) = P(X)] [P(X 1 X )P, 1X,)

i=1

*  What’s the joint probability of specific instantiations?

17
Inference Tasks
« Filtering or monitoring: P(X;| ey, ...,€):
Compute the current belief state, given all evidence to date
« Prediction: P(X..«|e1,...,€1):
Compute the probability of a future state
« Smoothing: P(X.|e,...,et):
¢ Compute the probability of a past state (hindsight)
« Most likely explanation: arg max,; _«:P(X1,....Xt|€1,...,€t)
Given a sequence of observations, find the sequence of states that is most likely to have
generated those observations
18
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Inference Tasks

* Filtering: What is the probability that it is raining today, given all of the
umbrella observations up through today?

* Prediction: What is the probability that it will rain the day after
tomorrow, given all of the umbrella observations up through today?

* Smoothing: What is the probability that it rained yesterday, given all of
the umbrella observations through today?

* Most likely explanation: If the umbrella appeared the first three days
but not on the fourth, what is the most likely weather sequence to
produce these umbrella sightings?

19
Example: Is it raining, given umbrellas?
R.; |PR,IR.)| Weather hasa30% chance
t 07 of changing and a 70%
f 03 chance of staying the same.
R, P(U,IRy) | Ifit's raining, the probability of
¢ 0.9 someone carrying an umbrella is .9; if
f 02 it's raining, the probability of NOT
carrying an umbrella is .2
20

10
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Filtering

* For each day t, E; contains variable U; (whether the umbrella appears) and X;
contains state variable R; (whether it’s raining)

* Compute the current belief state, given all evidence to date

* Maintain a current state estimate and update it
Instead of looking at all observed values in history
* Also called state estimation

* Given result of filtering up to time t, agent must compute result at t+1 from new
evidence ey1:

P(Xt+1 ’ 91:t+1) = f(et+1; P(Xt | el:t))

... for some function f.

21
Filtering
* A good algorithm for filtering will maintain a current state estimate and
update it at each point.
* P(Xuiley) =f (P(Xiler.,y), )
* Where X is the random variable and e is evidence
* Saves recomputation.
e It turns out that this is easy enough to come up with.
22
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Filtering

* We rearrange the formula for:
* P(Xuilerea)
» First, we divide up the evidence:
* P(Xpalere) = P(Xpal ey )
* Then we apply Bayes rule, remembering the use of the normalization factor a:
* P(Xuilers) = aP(ep1 | Xera, €1:0) P(Xpe1 | €1:¢)
* And after that we use the Markov assumption on the sensor model:
* P(Xp1lere) = aPesq | Xea)P(Xea | €1:0)

* The result of this assumption is to make that first term on the right hand side

ignore all the evidence — the probability of the observation at t + 1 only
depends on the value of X;y1.

23
Filtering
* Let’s look at that expression some more:
* P(Xp1lerea) = aP(ep | Xea)P(Xera | €1:0)
* The first term on the right updates with the new evidence and the second
term on the right is a one step prediction from the evidence up to t to the
stateat t + 1.
* Next we condition on the current state P(X):
* P(Xuilere) = aP(epa | Xera) 2Xe P(Xea1 [ Xe, €1:6)P(X¢] €1:¢)
* Finally, we apply the Markov assumption again:
* P(Xualere) = aP(ep | Xera) 2x¢ P(Xera [ Xe)P(X¢ | €1:0)
«  WEe’'ll call the bit on the right f;.;
24

12
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Filtering

+ f,.;gives us the required recursive update.

* The probability distribution over the state variables at t + 1 is a function of the
transition model, the sensor model, and what we know about the state at
time t.

* Space and time constant, independent of t.

* This allows a limited agent to compute the current distribution for any
length of sequence.

25
Recursive Estimation
« We use recursive estimation to compute P(X.1 | €1.t+1) as a function
of ei;and P(X; | e1.)
1. Project current state forward (t 2 t+1)
2. Update state using new evidence e,
P(Xii1 | e1.t41) as function of ;. and P(X; | ey.):
P(Xiy1 | eriy1) = P(Xip | eppeip)
26

13
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Recursive Estimation

« P(Xi1 | €1.441) as afunction of e, ,and P(X, | e14):

P(Xt+l l el:t+1) = P(X

1+l
= aP(eHl I)(Hl’el:t) P(X
=aP(e

le,,,e,,) dividing up evidence

.1 1€.,) Bayesrule

21 X.)P(X,, le.) sensor Markov assumption

« P(eq1 | Xi.441) updates with new evidence (from sensor)
* One-step prediction by conditioning on current state X:

= aP(eHl I)(z+1) EP(XHI lxz) P(xz Iel:t)

X

27
Recursive Estimation
* One-step prediction by conditioning on current state X:
P(Xi41 | eris1)=aPe,, 1X,,) E{’(Xm Ix,) P(x, le,,)
* transition current
model state
* ..which is what we wanted!
* So, think of P(X; | e1.) as a “message” fi.t41
* Carried forward along the time steps
* Modified at every transition, updated at every new observation
» This leads to a recursive definition:
fi:t41 = O FORWARD(f14, €441)
28

14
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Filtering: Umbrellas example

* The prioris (0.5, 0.5). (R=t, R=f)

* We can first predict whether it will rain on day 1 given what we
already know:

* P(Ry) =2r P(Ry|rq) P(ro)
=(0.7,0.3)x0.5 + (0.3,0.7)x0.5
=(0.35,0.15) + (0.15,0.35)
=(0.5,0.5)

* As we should expect, this just gives us the prior — that is the
probability of rain when we don’t have any evidence.

29
Filtering: Umbrellas example
* However, we have observed the umbrella, so that U, = true, and we
can update using the sensor model:
* P(Ry|U;) = aP(uy|R1)P(R,)
= a(0.9,0.2)(0.5,0.5)
= a(0.45,0.1)
=~ (0.818,0.182)
* So, since umbrella is strong evidence for rain, the probability of rain is
much higher once we take the observation into account.
30

15
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Filtering: Umbrellas example

whether it will rain on day 2 given what we already saw:

* P(Ry|uy) =Zn P(Ry|ry)P(r|uy)
=(0.7,0.3)x0.818 + (0.3,0.7)x0.182
= (0.627,0.373)

* So even without evidence of rain on the second day there is a higher
probability of rain than the prior because rain tends to follow rain.

* (In this model rain tends to persist.)

* We can then carry out the same computation for Day 2, first predicting

31
Filtering: Umbrellas example
* Then we can repeat the evidence update, u, (U, = true), so:
* P(Ry|uy,uy) = aP(uy|Ry)P(Ry | uy)
= (0.9,0.2)(0.627,0.373)
= a(0.565,0.075)
=~ (0.883,0.117)
* So, the probability of rain increases again, and is higher than on day 1.
32
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Filtering: Umbrellas example

e Put more succinctly:

0.500 0.627
0.500 0.373
True 0.500 0.8’1 8 0.383
False 0.500 0.182 0.117

* We can think of the calculation as messages passed along the chain

33

Umbrellas, summarized

« P(Rainy=t)
= Yrain, P(Rainy = t | Raing) P(Raing)
=0.70 * 0.50 + 0.30 * 0.50 = 0.50

* P(Rain; =t | Umbrella; = t)
= o P(Umbrella; =t | Rain; =t) P(Rainy = t)
=a *0.90 *0.50 = a *0.45 =~ 0.818

« P(Rain, =t | Umbrella; = t)
= Yrain, P(Rain, = t | Rainy) P(Rain,; | Umbrella; = t)
=0.70 *0.818 + 0.30 * 0.182 = 0.627

* P(Rainz =t | Umbrella; =t, Umbrellaz = t)
= o P(Umbrella, =t | Rain, =t) P(Rain, =t | Umbrella; = t)
=a*0.90 *0.627 = a * 0.564 =~ 0.883

34

17
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Group Exercise: Filtering

P(X,, le,,) =aPle,1X,,) > P(X, 1X)P(X,le,)
X

t

R., | PRIR. ;) | Weather hasa30%ch
P(R,IU,.Uj) = a P(UIR) Sy PRoIR)) PRIV 102" ofchanging anda 70%

chance of staying the same.

= 0.883 S
What is the probability of rain on R. | P(UIR) If it's raining, the probability
Dav 2 gi iform orior of rain t B of someone carrying an
ay <, givena uni P T 09 umbrella is .9; if it's raining,
on Day 0, U, = true, and U, = true? F 02 the probability of NOT
: carrying an umbrella is .2
35
PART Il: DECISION MAKING
UNDER UNCERTAINTY
I
38

18
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Decision Making Under Uncertainty

* Many environments have multiple possible outcomes
 Some outcomes may be good; others may be bad
* Some may be very likely; others unlikely

 What’s a poor agent to do?

39
Reasoning Under Uncertainty
* How do we reason under uncertainty and with inexact knowledge?
* Heuristics
Mimic heuristic knowledge processing methods used by experts
* Empirical associations
* Experiential reasoning based on limited observations
* Probabilities
Objective (frequency counting)
* Subjective (human experience)
40

19
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Decision-Making Tools

* Decision Theory
* Normative: how should agents make decisions?

* Descriptive: how do agents make decisions?

« Utility and utility functions
* Something’s perceived ability to satisfy needs or wants

* A mathematical function that ranks alternatives by utility

41
What is Decision Theory?
* Mathematical study of strategies for optimal decision-making
* Options involve different risks
* Expectations of gain or loss
* The study of identifying:
 The values, uncertainties and other issues relevant to a decision
* The resulting optimal decision for a rational agent
42

20
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Decision Theory

« Combines probability and utility > Agent that makes rational
decisions (takes rational actions)
* On average, lead to desired outcome

* First-pass simplifications:
* Want most desirable immediate outcome (episodic)
* Nondeterministic, partially observable world

* Definition of action:

* An action g in state s leads to outcome s’, RESULT:

RESULT(a) is a random variable; domain is possible outcomes
« P(RESULT(a) = s | a, €))

43
Expected Value
* Expected Value
* The predicted future value of a variable, calculated as:
e The sum of all possible values
* Each multiplied by the probability of its occurrence
A $1000 bet for a 20% chance to win $10,000?
EV = [20%($10,000) + 80%($0)] = $2000
44

21
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Satisficing

« Satisficing: achieving a goal sufficiently

* Achieving the goal “more” does not
increase utility of resulting state

e Portmanteau of “satisfy” and “suffice”

Win a baseball game by | point now, or 2 points in another inning?

Full credit for a search is <= 3K nodes visited. You’re at 2K. Spend an hour
making it 1K?

Do you stop the coin flipping game at |-0, or continue playing, hoping for 2-0?

At the end of semester, you can stop with a B. Do you take the exam?

You're thirsty. Water is good. Is more water better?

45
Value Function
* Provides a ranking of alternatives, but not a meaningful metric scale
* Also known as an “ordinal utility function”
* Sometimes, only relative judgments (value functions) are necessary
* At other times, absolute judgments (utility functions) are required
47

22
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Rational Agents

* Rationality (an overloaded word).

* Arational agent...
* Behaves according to a ranking over possible outcomes
*  Which is:
« Complete (covers all situations)
* Consistent

* Optimizes over strategies to best serve a desired interest

e Humans are none of these.

48
Preferences
* An agent chooses among:
e Prizes (A, B, etc.)
» Lotteries (situations with uncertain prizes and probabilities)
D A
L <
. p-1 =B
* Notation:
- A>B A preferred to B
- A~B Indifference between A and B
e A>~B B not preferred to A
49

23
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Expected Utility

* Goal: find best of expected outcomes

e Random variable X with:
n values xy,...,X,

Distribution (p1,...,Pn)

» Xis the state reached after doing an action A under uncertainty

state = some state of the world at some timestep

« Utility function U(s) is the utility of a state, i.e., desirability

50
Expected Utility
» Xis state reached after doing an action A under uncertainty
« U(s) is the utility of a state < desirability
* EU(a|e): The expected utility of action A, given evidence, is the average
utility of outcomes (states in S), weighted by probability an action
occurs:
EU[A] = Si:l,...,n P<X1‘A)U(Xi)
51

24
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One State/One Action Example

e We start out in S,
state 0. What’s the
utility of taking
action A1?

U(A1,So)=100 X 0.2 +50 X 0.7+70 X 0.1

=20+35+7
=62

52
One State/Two Actions Example
S, e U (A, So) = 62
U (Az, SO) =74
* U (So) = max,{U(a,So)}
=74
Sl SZ S3 S4
0.2 0.7 0.2 0.1 0.8
100 50 70 80
53

25
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Introducing Action Costs

S .U(A1,50)=62_5=57
0
e U (A, So) = 74— 25 =49
* U (Sp) = max,{U(a, So)}
=57

0.2 0.7 0.2 0.1 0.8
100 50 70 80

54
MEU Principle
* Arational agent should choose the action that maximizes agent’s
expected utility
* This is the basis of the field of decision theory
« The MEU principle provides a normative criterion for rational
choice of action
* Decision-making is solved!
* Not quite...
55
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Rational Preferences

* Preferences of a rational agent must obey constraints
« Transitivity (A>B)A (B>C)=>(A>C()
*  Monotonicity (A>B)=>[p>qg<[p,A;1-p,B]>[qg,A;1—q,B])
* Orderability (A>B)Vv(B>A)V(A~B)
e Substitutability (A~B) = [p,A; 1-p, C]~[p,B; 1—-p,C])
e Continuity (A>B>C=3p[pA; 1-p,C]~B)

* Rational preferences give behavior that maximizes expected utility

* Violating these constraints leads to irrationality

e For example: an agent with intransitive preferences can be induced to give
away all its money.

56
Not Quite...
* Must have a complete model of:
* Actions
»  Utilities
» States
* Even if you have a complete model, decision making is computationally
intractable
* Infact, a truly rational agent takes into account the utility of reasoning as well
(bounded rationality)
* Nevertheless, great progress has been made in this area
*  We are able to solve much more complex decision-theoretic problems than ever
before
57

27
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Money

Money does not behave as a utility function
e Thatis, people don’t maximize expected value of dollars.

People are risk-averse:
* Given a lottery L with expected monetary value
EMV(L), usually U(L) < U(EMV(L))

Want to bet $1000 for a 20% chance to win $10,000?
[20%($10,000)+80%($0)] = $2000 > [100%($1000)]

Expected Utility Hypothesis

* rational behavior maximizes the expectation of some function u... which
need not be monetary

59

Money Versus Utility

Money Utility

* More money is better, but not always in a linear relationship to the amount of
money

Expected Monetary Value
Risk-averse: U(L) < U(Sgmy(y)
Risk-seeking: U(L) > U(Semv(v)

Risk-neutral: U(L) = U(Sgwy()

60
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Maximizing Expected Utility

« Utilities map states to real numbers.

e Which numbers?

* People are terrible at mapping their preferences
* Give each of these things a utility between 1 and 10:
* Winning the lottery
* Getting an Aon an exam
+ Failing a class (you won’t though)

* Getting hit by a truck

61
Maximizing Expected Utility
» Standard approach to assessment of human utilities:
+ Compare a state A to a standard lottery L, that has
» “best possible prize” uT with probability p
« “worst possible catastrophe” ut with probability (1-p)
+ adjust lottery probability p until A ~ L,
Win nothing
pay $30 ~ .
p=0.000001 Instant death
62

29



10/20/22

On a Less Grim Note

* You are designing a cool new robot-themed attraction for Disneyworld!

* You could add a part that takes the project from S500M to S750M

* What piece of information do you need to decide whether this is the
best action to take?

63
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