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Decision Making Under Uncertainty
AI Class 10 (Ch. 15.1-15.2.1, 16.1-16.3)

Material from Marie desJardin, Lise Getoor, Jean-Claude 
Latombe, Daphne Koller, and Paula Matuszek

environment
agent

?

sensors

actuators

Xt = unobserved
Et = observed
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Bookkeeping; reminders

• Only the professor can change grades
• The TA cannot, although they can help you understand your grade
• Grade change requests must be submitted:

• In writing
• To the professor, with the TA Cc’d

• With a clear justification for the request

• Everyone in this class is expected to behave professionally at all times
• Toward one another and toward the instructional staff

• Start homework well in advance
• Bring questions, extension requests, etc. with time to spare

2
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Today’s Class

• Making Decisions Under Uncertainty
• Tracking Uncertainty over Time
• Decision Making under Uncertainty

• Decision Theory
• Utility

3

3

• The world is not a well-defined place.

• Sources of uncertainty
• Uncertain inputs: What’s the temperature? 
• Uncertain (imprecise) definitions: Is Trump a good president?

• Uncertain (unobserved) states: What’s the top card?

• There is uncertainty in inferences
• If I have a blistery, itchy rash and was gardening all weekend I probably have 

poison ivy

4

Introduction

4
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Sources of Uncertainty

Probabilistic reasoning only gives probabilistic results 
(summarizes uncertainty from various sources)

• Uncertain outputs
• All uncertain:

• Reasoning-by-default

• Abduction & induction
• Incomplete deductive 

inference 

• Result is derived correctly 
but wrong in real world

• Uncertain inputs
• Missing data

• Noisy data

• Uncertain knowledge
• >1 cause à >1 effect
• Incomplete knowledge of 

causality
• Probabilistic effects

5

Reasoning Under Uncertainty

• People constantly make decisions anyhow.
• Very successfully!
• How?

• More formally: how do we reason under uncertainty with inexact knowledge?

• Step one: understanding what we know

6
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Part I: Modeling Uncertainty Over Time

7

States and Observations

• Agents don’t have a continuous view of world
• People don’t either!

• We see things as a series of snapshots:

• Observations, associated with time slices
• t1, t2, t3, …

• Each snapshot contains all variables, observed or not
• Xt = (unobserved) state variables at time t; observation at t is Et

• This is world state at time t

8
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Temporal Probabilistic Agent

9

environment
agent

?

sensors

actuators

t1, t2, t3, …

9

Uncertainty and Time

• The world changes; we need to track and predict it
• Examples: diabetes management, traffic monitoring
• How does blood sugar change over time?

• Tasks: track changes; predict changes

• Basic idea: 
• For each time step, copy state and evidence variables

• Model uncertainty in change over time (the Δ)
• Incorporate new observations as they arrive

10

A vertical graphic would help

10
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Uncertainty and Time

• Basic idea: 
• Copy state and evidence variables for each time step

• Model uncertainty in change over time
• Incorporate new observations as they arrive

• Xt = unobserved/unobservable state variables at time t: 
BloodSugart , StomachContentst

• Et = evidence variables at time t: 
MeasuredBloodSugart , PulseRatet , FoodEatent

• Assuming discrete time steps

11

11

States (more formally)

• Change is viewed as series of snapshots
• Time slices/timesteps
• Each describing the state of the world at a particular time

• So we also refer to these as states

• Each time slice/timestep/state is represented as a set of random 
variables indexed by t:

1. the set of unobservable state variables Xt

2. the set of observable evidence variables Et

12

12
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Observations (more formally)

• Time slice (a set of random variables indexed by t):
1. the set of unobservable state variables Xt

2. the set of observable evidence variables Et

• An observation is a set of observed variable instantiations at some 
timestep

• Observation at time t: Et = et

• (for some values et)

• Xa:b denotes the set of variables from Xa to Xb

13

13

Transition and Sensor Models

• So how do we model change over time?

• Transition model
• Models how the world changes over time
• Specifies a probability distribution…

• Over state variables at time t
• Given values at previous times

• Sensor model
• Models how evidence (sensor data) gets its values
• E.g.: BloodSugart à MeasuredBloodSugart

14

P(Xt | X0:t-1) 

This can get 
exponentially 
large…

14
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Markov Assumption(s)

• Markov Assumption: 
• Xt depends on some finite (usually fixed) number of previous Xi’s

• First-order Markov process: P(Xt|X0:t-1) = P(Xt|Xt-1)

• kth order: depends on previous k time steps

• Sensor Markov assumption: P(Et|X0:t, E0:t-1) = P(Et|Xt)
• Agent’s observations depend only on actual current state of the world

15

15

Stationary Process

• Infinitely many possible values of t
• Does each timestep need a distribution?

• That is, do we need a distribution of what the world looks like at t3, given 
t2 AND a distribution for t16 given t15 AND …

• Assume stationary process:
• Changes in the world state are governed by laws that do not themselves 

change over time
• Transition model  P(Xt|Xt-1) and sensor model P(Et|Xt) are time-invariant, 

i.e., they are the same for all t

16
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Complete Joint Distribution

• Given:
• Transition model: P(Xt|Xt-1) what changes from previous timestep to now
• Sensor model: P(Et|Xt) what we see, given some world state
• Prior probability: P(X0) The (believed) initial state

• Then we can specify a complete joint distribution 
of a sequence of states:

• What’s the joint probability of specific instantiations?

17

P(X0,X1,...,Xt,E1,...,Et ) = P(X0 ) P(Xi | Xi−1)P(Ei | Xi )
i=1

t

∏

17

Inference Tasks

• Filtering or monitoring: P(Xt|e1,…,et):
• Compute the current belief state, given all evidence to date

• Prediction: P(Xt+k|e1,…,et):
• Compute the probability of a future state

• Smoothing: P(Xk|e1,…,et):
• Compute the probability of a past state (hindsight)

• Most likely explanation: arg maxx1,..xtP(x1,…,xt|e1,…,et)
• Given a sequence of observations, find the sequence of states that is most likely to have 

generated those observations

18
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Inference Tasks

• Filtering: What is the probability that it is raining today, given all of the 
umbrella observations up through today?

• Prediction: What is the probability that it will rain the day after 
tomorrow, given all of the umbrella observations up through today?

• Smoothing: What is the probability that it rained yesterday, given all of 
the umbrella observations through today?

• Most likely explanation: If the umbrella appeared the first three days 
but not on the fourth, what is the most likely weather sequence to 
produce these umbrella sightings?

19

19

Raint-1

Umbrellat-1

Raint

Umbrellat

Raint+1

Umbrellat+1

Rt-1 P(Rt | Rt-1)
t
f

0.7
0.3

Rt P(Ut | Rt)
t
f

0.9
0.2

Weather has a 30% chance 
of changing and a 70% 
chance of staying the same.

Example: Is it raining, given umbrellas?

Fully worked out HMM for rain: http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf

If it’s raining, the probability of 
someone carrying an umbrella is .9; if 
it’s raining, the probability of NOT 
carrying an umbrella is .2

20



10/20/22

11

Filtering
• For each day t, Et contains variable Ut (whether the umbrella appears) and Xt

contains state variable Rt (whether it’s raining)

• Compute the current belief state, given all evidence to date

• Maintain a current state estimate and update it
• Instead of looking at all observed values in history
• Also called state estimation

• Given result of filtering up to time t, agent must compute result at t+1 from new 
evidence et+1: 

P(Xt+1 | e1:t+1) = f(et+1 ,  P(Xt | e1:t))

… for some function f.

21

21

Filtering

• A good algorithm for filtering will maintain a current state estimate and 
update it at each point.

• P(Xt+1|e1:t+1) = f (P(Xt|e1:t), et+1) 

• Where X is the random variable and e is evidence

• Saves recomputation.

• It turns out that this is easy enough to come up with.

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf

22
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Filtering
• We rearrange the formula for: 

• P(Xt+1|e1:t+1) 

• First, we divide up the evidence:
• P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1) 

• Then we apply Bayes rule, remembering the use of the normalization factor α:
• P(Xt+1|e1:t+1) = αP(et+1|Xt+1, e1:t) P(Xt+1|e1:t)

• And after that we use the Markov assumption on the sensor model: 
• P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t) 

• The result of this assumption is to make that first term on the right hand side 
ignore all the evidence — the probability of the observation at t + 1 only 
depends on the value of Xt+1. 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf

23

Filtering
• Let’s look at that expression some more: 

• P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t) 

• The first term on the right updates with the new evidence and the second 
term on the right is a one step prediction from the evidence up to t to the 
state at t + 1. 

• Next we condition on the current state P(X):
• P(Xt+1|e1:t+1) = αP(et+1|Xt+1) Σxt P(Xt+1|xt, e1:t)P(xt|e1:t) 

• Finally, we apply the Markov assumption again: 
• P(Xt+1|e1:t+1) = αP(et+1|Xt+1) Σxt P(Xt+1|xt)P(xt|e1:t)

• We’ll call the bit on the right f1:t 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf

24
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Filtering

• f1:t gives us the required recursive update. 
• The probability distribution over the state variables at t + 1 is a function of the 

transition model, the sensor model, and what we know about the state at 
time t. 

• Space and time constant, independent of t.

• This allows a limited agent to compute the current distribution for any 
length of sequence. 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf

25

Recursive Estimation

• We use recursive estimation to compute P(Xt+1 | e1:t+1) as a function 
of et+1 and P(Xt | e1:t)

1. Project current state forward (t à t+1)

2. Update state using new evidence et+1

P(Xt+1 | e1:t+1) as function of et+1 and P(Xt | e1:t):

P(Xt+1 | e1:t+1) = P(Xt+1 | e1:t,et+1)

26
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Recursive Estimation

• P(Xt+1 | e1:t+1) as a function of et+1 and P(Xt | e1:t):

• P(et+1 | X1:t+1) updates with new evidence (from sensor)

• One-step prediction by conditioning on current state X:

27

P(Xt+1 | e1:t+1) = P(Xt+1 | e1:t,et+1)
=α P(et+1 | Xt+1,e1:t ) P(Xt+1 | e1:t )
=α P(et+1 | Xt+1) P(Xt+1 | e1:t )

dividing up evidence

Bayes rule

sensor Markov assumption

=α P(et+1 | Xt+1) P(Xt+1 | xt ) P(xt | e1:t )
xt

∑

27

Recursive Estimation

• One-step prediction by conditioning on current state X:

P(Xt+1 | e1:t+1)

• …which is what we wanted!

• So, think of P(Xt | e1:t) as a “message” f1:t+1

• Carried forward along the time steps
• Modified at every transition, updated at every new observation 

• This leads to a recursive definition:
f1:t+1 = a FORWARD(f1:t, et+1)

28

=α P(et+1 | Xt+1) P(Xt+1 | xt ) P(xt | e1:t )
xt

∑
transition 

model
current 
state

28
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Filtering: Umbrellas example

• The prior is ⟨0.5, 0.5⟩. (R=t, R=f)

• We can first predict whether it will rain on day 1 given what we 
already know: 

• P(R1) = Σr0 P(R1|r0) P(r0) 
= ⟨0.7,0.3⟩×0.5 + ⟨0.3,0.7⟩×0.5 
= ⟨0.35,0.15⟩ + ⟨0.15,0.35⟩
= ⟨0.5,0.5⟩

• As we should expect, this just gives us the prior — that is the 
probability of rain when we don’t have any evidence. 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf

29

Filtering: Umbrellas example

• However, we have observed the umbrella, so that U1 = true, and we 
can update using the sensor model: 

• P(R1|U1) = αP(u1|R1)P(R1)
= α⟨0.9,0.2⟩⟨0.5,0.5⟩
= α⟨0.45,0.1⟩
≈ ⟨0.818,0.182⟩

• So, since umbrella is strong evidence for rain, the probability of rain is 
much higher once we take the observation into account. 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf

30
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Filtering: Umbrellas example

• We can then carry out the same computation for Day 2, first predicting 
whether it will rain on day 2 given what we already saw: 

• P(R2|u1) = Σr1 P(R2|r1)P(r1|u1) 
= ⟨0.7,0.3⟩×0.818 + ⟨0.3,0.7⟩×0.182 
≈ ⟨0.627,0.373⟩

• So even without evidence of rain on the second day there is a higher 
probability of rain than the prior because rain tends to follow rain. 
• (In this model rain tends to persist.) 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf

31

Filtering: Umbrellas example

• Then we can repeat the evidence update, u2 (U2 = true), so: 

• P(R2|u1,u2) = αP(u2|R2)P(R2|u1)
= α⟨0.9,0.2⟩⟨0.627,0.373⟩
= α⟨0.565,0.075⟩
≈ ⟨0.883,0.117⟩

• So, the probability of rain increases again, and is higher than on day 1. 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf

32
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Filtering: Umbrellas example

• Put more succinctly:

• We can think of the calculation as messages passed along the chain 

http://www.sci.brooklyn.cuny.edu/~parsons/courses/740-fall-2011/notes/lect07.pdf

33

Umbrellas, summarized
• P(Rain1 = t)

= ΣRain0 P(Rain1 = t | Rain0) P(Rain0)
= 0.70 * 0.50 + 0.30 * 0.50 = 0.50 

• P(Rain1 = t | Umbrella1 = t)
= α P(Umbrella1 = t | Rain1 = t) P(Rain1 = t)
= α * 0.90 * 0.50 = α *0.45 ≈ 0.818 

• P(Rain2 = t | Umbrella1 = t)
= ΣRain1 P(Rain2 = t | Rain1) P(Rain1 | Umbrella1 = t) 
= 0.70 * 0.818 + 0.30 * 0.182 ≈ 0.627 

• P(Rain2 = t | Umbrella1 = t, Umbrella2 = t)
= α P(Umbrella2 = t | Rain2 = t) P(Rain2 = t | Umbrella1 = t) 
= α * 0.90 * 0.627 ≈ α * 0.564 ≈ 0.883

34
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Raint-1

Umbrellat-1

Raint

Umbrellat

Raint+1

P(R2|U1,U2) = α P(U2|R2) ΣR1 P(R2|R1) P(R1|U1)
= 0.883

Rt-1 P(Rt|Rt-1)
T
F

0.7
0.3

Rt P(Ut|Rt)
T
F

0.9
0.2

What is the  probability of rain on 
Day 2, given a uniform prior of rain 
on Day 0, U1 = true, and U2 = true?

€ 

P(Xt+1 | e1:t+1) = α P(et+1 | Xt+1) P(Xt+1 | Xt ) P(Xt | e1:t )
X t

∑

Group Exercise: Filtering

35

We got here, but I don’t know that 
they really understood it. Spent 
time on the class exercise and told 
them to do it outside. Definitely 
one for HW3/final exam

This was a terrible idea for HW3.

Didn’t even start decision making.

Weather has a 30% chance 
of changing and a 70% 
chance of staying the same.

If it’s raining, the probability 
of someone carrying an 
umbrella is .9; if it’s raining, 
the probability of NOT 
carrying an umbrella is .2

35

PART II: DECISION MAKING
UNDER UNCERTAINTY

38
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Decision Making Under Uncertainty

• Many environments have multiple possible outcomes

• Some outcomes may be good; others may be bad

• Some may be very likely; others unlikely

• What’s a poor agent to do?

39

Oates: maybe start with some 
real-world problem and kind of 

refer back to it while going 
through the boring definition 

39

Reasoning Under Uncertainty

40

• How do we reason under uncertainty and with inexact knowledge?

• Heuristics
• Mimic heuristic knowledge processing methods used by experts

• Empirical associations
• Experiential reasoning based on limited observations

• Probabilities
• Objective (frequency counting)

• Subjective (human experience)

40
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• Decision Theory
• Normative: how should agents make decisions?
• Descriptive: how do agents make decisions?

• Utility and utility functions
• Something’s perceived ability to satisfy needs or wants
• A mathematical function that ranks alternatives by utility

Decision-Making Tools

Thirsty!

≻

41

What is Decision Theory?

• Mathematical study of strategies for optimal decision-making
• Options involve different risks 
• Expectations of gain or loss

• The study of identifying:
• The values, uncertainties and other issues relevant to a decision
• The resulting optimal decision for a rational agent

42
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Decision Theory

• Combines probability and utility à Agent that makes rational
decisions (takes rational actions)
• On average, lead to desired outcome

• First-pass simplifications:
• Want most desirable immediate outcome (episodic)
• Nondeterministic, partially observable world

• Definition of action: 

• An action a in state s leads to outcome s’, RESULT:
• RESULT(a) is a random variable; domain is possible outcomes
• P(RESULT(a) = s’ | a, e))

43

43

Expected Value

• Expected Value
• The predicted future value of a variable, calculated as:
• The sum of all possible values

• Each multiplied by the probability of its occurrence

A $1000 bet for a 20% chance to win $10,000?
EV = [20%($10,000) + 80%($0)] = $2000

44
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Satisficing

• Satisficing: achieving a goal sufficiently
• Achieving the goal “more” does not 

increase utility of resulting state
• Portmanteau of “satisfy” and “suffice”

Win a baseball game by 1 point now, or 2 points in another inning?

Full credit for a search is <= 3K nodes visited.  You’re at 2K. Spend an hour 
making it 1K?

Do you stop the coin flipping game at 1-0, or continue playing, hoping for 2-0?

At the end of semester, you can stop with a B. Do you take the exam?

You’re thirsty.  Water is good. Is more water better?

45

Value Function

• Provides a ranking of alternatives, but not a meaningful metric scale

• Also known as an “ordinal utility function”

• Sometimes, only relative judgments (value functions) are necessary

• At other times, absolute judgments (utility functions) are required

47

47
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Rational Agents

• Rationality (an overloaded word).

• A rational agent…
• Behaves according to a ranking over possible outcomes 
• Which is:

• Complete (covers all situations)
• Consistent
• Optimizes over strategies to best serve a desired interest

• Humans are none of these.

48

• An agent chooses among:
• Prizes (A, B, etc.)
• Lotteries (situations with uncertain prizes and probabilities)

• Notation: 
• A ≻ B A preferred to B
• A ∼ B Indifference between A and B
• A ≻∼ B B not preferred to A 

Preferences

L
A

B

p

p-1

49
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Expected Utility

• Goal: find best of expected outcomes

• Random variable X with:
• n values x1,…,xn

• Distribution (p1,…,pn)

• X is the state reached after doing an action A under uncertainty
• state = some state of the world at some timestep 

• Utility function U(s) is the utility of a state, i.e., desirability

50

50

Expected Utility

• X is state reached after doing an action A under uncertainty

• U(s) is the utility of a state ß desirability

• EU(a|e): The expected utility of action A, given evidence, is the average 
utility of outcomes (states in S), weighted by probability an action 
occurs:

EU[A] = Si=1,…,n P(xi|A)U(xi)

51

What the fuck does this 
say? Put it in the notes 

this time

51
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s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

U(A1, S0) = 100 × 0.2 + 50 × 0.7 + 70 × 0.1
= 20 + 35 + 7
= 62

One State/One Action Example

• We start out in
state 0. What’s the 
utility of taking 
action A1?

52

s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

A2

s4
0.2 0.8

80

• U (A1, S0) = 62

One State/Two Actions Example

53

62

• U (A2, S0) = ?
• U (S0) = maxa{U(a,S0)} 

= 74

• U (A2, S0) = 74

53
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s0

s3s2s1

A1

0.2 0.7 0.1
100 50 70

A2

s4
0.2 0.8

80

• U (A1, S0) = 62 – 5 = 57
• U (A2, S0) = 74 – 25 = 49
• U (S0) = maxa{U(a, S0)} 

= 57

-5 -25

Introducing Action Costs

54

Costs of 
taking an 
action

54

MEU Principle

• A rational agent should choose the action that maximizes agent’s 
expected utility

• This is the basis of the field of decision theory

• The MEU principle provides a normative criterion for rational 
choice of action 

• Decision-making is solved!
• Not quite...

55
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• Preferences of a rational agent must obey constraints 
• Transitivity (A ≻ B) ∧ (B ≻ C) ⇒ (A ≻ C)
• Monotonicity     (A ≻ B) ⇒ [p > q ⇔ [p, A; 1 – p, B] ≻ [q, A; 1 – q, B])

• Orderability (A ≻ B) ∨ (B ≻ A) ∨ (A ∼ B)
• Substitutability   (A∼B) ⇒ [p,A; 1 – p, C]∼[p,B; 1 – p,C] )

• Continuity          (A ≻ B ≻ C ⇒ ∃p [p,A; 1−p,C]∼B )

• Rational preferences give behavior that maximizes expected utility

• Violating these constraints leads to irrationality 
• For example: an agent with intransitive preferences can be induced to give 

away all its money.

Rational Preferences

Leave these for the later 
slide and make sure you 

understand them

56

Not Quite…
• Must have a complete model of:

• Actions
• Utilities
• States

• Even if you have a complete model, decision making is computationally 
intractable

• In fact, a truly rational agent takes into account the utility of reasoning as well 
(bounded rationality)

• Nevertheless, great progress has been made in this area
• We are able to solve much more complex decision-theoretic problems than ever 

before

57
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Money

• Money does not behave as a utility function
• That is, people don’t maximize expected value of dollars.

• People are risk-averse:
• Given a lottery L with expected monetary value 

EMV(L), usually U(L) < U(EMV(L))

• Expected Utility Hypothesis
• rational behavior maximizes the expectation of some function u… which 

need not be monetary

Want to bet $10 for a 20% chance to win $100?
[20%($100)+80%($0)] = $20 > [100%($10)] 

Want to bet $1000 for a 20% chance to win $10,000?
[20%($10,000)+80%($0)] = $2000 > [100%($1000)] 

59

Money Versus Utility

• Money  Utility
• More money is better, but not always in a linear relationship to the amount of 

money

• Expected Monetary Value

• Risk-averse: U(L) < U(SEMV(L))

• Risk-seeking: U(L) > U(SEMV(L))

• Risk-neutral: U(L) = U(SEMV(L))

60

60
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Maximizing Expected Utility

• Utilities map states to real numbers. 
• Which numbers? 

• People are terrible at mapping their preferences
• Give each of these things a utility between 1 and 10:

• Winning the lottery
• Getting an A on an exam
• Failing a class (you won’t though)

• Getting hit by a truck

61

Maximizing Expected Utility

• Standard approach to assessment of human utilities:
• Compare a state A to a standard lottery Lp that has 

• “best possible prize” u⊤ with probability p 

• “worst possible catastrophe” u⊥ with probability (1−p) 
• adjust lottery probability p until A ∼ Lp

p=0.9999

p=0.0001
L

Win $10,000

Win nothing
pay $30 ≻

p=0.500     

p=0.500
L

Win $10,000

Win nothing
pay $30 ≻

p=0.0001

p=0.9999
L

Win $10,000

Win nothing
pay $30 ∼

p=0.9999999

p=0.000001

L
Win nothing

Instant death
pay $30 ∼
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On a Less Grim Note

• You are designing a cool new robot-themed attraction for Disneyworld!

• You could add a part that takes the project from $500M to $750M

• What piece of information do you need to decide whether this is the 
best action to take?
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