Neural Networks for Machine Learning
History and Concepts
Overview

• The neural network computing model has a long history
• Evolved over 75 years to solve its inherent problems, becoming the dominant model for machine learning in the 2010s
• Neural network models typically give better results than all earlier ML models
• But they are expensive to train and apply
• The field is still evolving rapidly
Deep Learning Timeline

1940 Dark Era Until 1940

1943 Neural Nets McCulloch & Pitt

1949 Computing Machinery and Intelligence Alan Turing

1950 ADALINE Widrow & Hoff

1958 Perceptron Rosenblatt

1960 XOR problem Minsky & Papert

1969 Backpropagation Werbos (and more)

1974 Neocogitron Fukushima

1980 Boltzmann Machine Hinton & Sejnowski

1985 Restricted Boltzmann Machine Smolensky

1986 LeNet Lecun

1986 Multilayer Perceptron Rumelhart, Hinton & Williams

1986 RNNs Jordan

1987 Bidirectional RNN Schuster & Paliwal

1997 Deep Belief Networks - pretraining Hinton

1997 LSTMs Hochreiter & Schmidhuber

2006 Dropout Hinton

2006 Deep Boltzmann Machines Salakhutdinov & Hinton

2009 Capsule Networks Sabour, Frosst, Hinton

Made by Favio Vázquez
How do animal brains work?

Neurons have body, axon and many dendrites
- In one of two states: firing and rest
- They fire if total incoming stimulus > threshold

Synapse: thin gap between axon of one neuron and dendrite of another
- Signal exchange
McCulloch & Pitts

- First mathematical model of biological neurons, **1943**
- All Boolean operations can be implemented by these neuron-like nodes
- Competitor to Von Neumann model for general purpose computing device
- Origin of automata theory
Artificial neural network

- Model still used today!
- Set of **nodes** with inputs and outputs
- Node performs computation via an **activation function**
- **Weighted connections** between nodes
- Connectivity gives network architecture
- NN computations depend on connections, weights, and activation function
Common **Activation Functions**

defines the output of that node given an input

Choice of activation function depends on problem and available computational power
Rosenblatt’s **perceptron** (1958-60)

- Single layer network of nodes
- Real valued weights +/-
- Supervised learning using a simple learning rule

Essentially a linear classifier

Widrow & Hoff (1960-62) added better learning rule using **gradient descent**

Mark 1 perceptron computer, Cornell Aeronautical Lab, 1960
Single Layer **Perceptron**

- Rosenblatt: it can **learn** to compute functions by learning weights on inputs from examples
Setback in mid 60s – late 70s

- **Perceptrons**, Minsky and Papert, 1969
- Described serious problems with perceptron model
 - Single-layer perceptrons cannot represent (learn) simple functions that are not linearly separable, such as XOR
 - Multi-layers of non-linear units may have greater power but there is no *learning rule* for such nets
 - Scaling problem: connection weights may grow infinitely
 - First two problems overcome by latter effort in 80s, but scaling problem persists

- Death of Rosenblatt (1964)
- AI focused on programming intelligent systems on traditional von Neumann computers
Not with a perceptron 😞

Consider Boolean operators (and, or, xor) with four possible inputs: 00 01 10 11

(a) x_1 and x_2

(b) x_1 or x_2

(c) x_1 xor x_2

Training examples are not linearly separable for one case: $\text{sum}=1$ iff x_1 xor x_2
Renewed enthusiasm 1980s

• Use multi-layer perceptron
• Backpropagation for multi-layer feed forward nets, with non-linear, differentiable node functions
• Other ideas:
 – Thermodynamic models (Hopfield net, Boltzmann machine ...)
 – Unsupervised learning
• Applications to character recognition, speech recognition, text-to-speech, etc.
MLP: Multilayer Perceptron

- ≥ 1 “hidden layers” between inputs & output
- Can compute **non-linear functions** (why?)
- Training: adjust weights slightly to reduce error between output \hat{y} and target value t; repeat
- Introduced in 1980s, still used today
Feed Forward Neural Network

Input Layer | Hidden Layer | Output Layer

X1 | N1 | o/p

X1 | N2

N3

Information flows in forward direction only
Neural Network – Backpropagation
Click on image (or here) for a simple interactive demo in your browser of how backpropagation updates weights in a neural network to reduce errors when processing training data.
But problems remained ...

• It’s often the case that solving a problem just reveals a new one that needs solving

• For a large MLPs, backpropagation takes forever to converge!

• Two issues:
 – Not enough compute power to train the model
 – Not enough labeled data to train the neural net

• SVMs dominate, since they converge to global optimum in $O(n^2)$
GPUs solve compute power problem

- **GPUs** (Graphical Processing Units) became popular in the 1990s to handle computing needed for better computer graphics
- GPUs are **SIMD** (single instruction, multiple data) processors
- Cheap, fast, and easy to program
- GPUs can do matrix multiplication very fast
Need lots of data!

- 2000s introduced big data
- Cheaper storage
- Parallel processing (e.g., MapReduce, Hadoop, Spark)
- Data sharing via the Web
 - Lots of images, many with captions
 - Lots of text, some with labels
- Crowdsourcing systems (e.g., Mechanical Turk) provided a way to get more labels
New problems are surfaced

• 2010s was a decade of domain applications
• These came with new problems, e.g.,
 – Images are too high dimensional!
 – Variable-length problems cause gradient problems
 – Training data is rarely labeled
 – Neural nets are uninterpretable
 – Training complex models required days or weeks
• This led to many new “deep learning” neural network models
Deep Learning

• Deep learning refers to models going beyond simple feed-forward multi-level perceptron
 – Though it was used in a ML context as early as 1986
• “deep” refers to the models having many layers (e.g., 10-20) that do different things

The **VGG16 CNN model** for image processing
Neural Network Architectures

Current focus on large networks with different “architectures” suited for different kinds of tasks

• Feedforward Neural Network
• CNN: Convolutional Neural Network
• RNN: Recurrent Neural Network
• LSTM: Long Short Term Memory
• GAN: Generative Adversarial Network
• Transformers: generating output sequence from input sequence
Feedforward Neural Network

• Connections allowed from a node in layer i only to nodes in layer $i+1$
 i.e., no cycles or loops
• Simple, widely used architecture, provides a good baseline

![Diagram of Feedforward Neural Network]

downstream nodes tend to successively abstract features from preceding layers
Tinker With a **Neural Network** Right Here in Your Browser.
Don't Worry, You Can't Break It. We Promise.
CNN: Convolutional Neural Network

- Good for 2D image processing: classification, object recognition, automobile lane tracking, etc.
- Successive convolution layers learn higher-level features
- Classic demo: learn to recognize hand-written digits from MNIST data with 70K examples
RNN: Recurrent Neural Networks

• Good for learning over sequences of data, e.g., a sentence of words
• LSTM (Long Short Term Memory) a popular architecture

Output so far: Machine

gif from Adam Geitgey
GAN: **Generative Adversarial Network**

• System of **two neural networks** competing against each other in a zero-sum game framework

• Provides a kind of **unsupervised learning** that improves the network

• Introduced by Ian Goodfellow et al. in 2014

• Can learn to draw samples from a model that is similar to data that we give them
Transformer

• Introduced in 2017
• Used primarily for natural language processing tasks
• NLP applications “transform” an input text into an output text
 – E.g., translation, text summarization, question answering
• Uses encoder-decoder architecture
• Popular pretrained models available, e.g. BERT and GPT
Deep Learning Frameworks (1)

- Popular open-source deep learning frameworks use Python at top-level; C++ in backend
 - TensorFlow (via Google)
 - PyTorch (via Facebook)
 - MxNet (Apache)
 - Caffe (Berkeley)

- TensorFlow and PyTorch now dominate; both make it easy to specify a complicated network
Deep Learning Frameworks (2)

See this article for a good comparison

PyTorch vs TensorFlow for Your Python Deep Learning Project
Deep Learning Frameworks (3)

• **Keras**: popular API works with TensorFlow 2.0, provides good support at architecture level
Keras

• “Deep learning for humans”
• A popular API works with TensorFlow 2.0, provides good support at architecture level
• Keras now (v2.4) only supports TensorFlow
• Supports CNNs and RNNs and common utility layers like dropout, batch normalization and pooling
• Coding neural networks used to be a LOT harder; Keras makes it easy and accessible!
• Documentation: https://keras.io/
Keras: API works with TensorFlow 2.0

```python
def build_model(input_shape, num_classes):
    model = keras.Sequential([
        keras.Input(shape=input_shape),
        layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Flatten(),
        layers.Dropout(0.5),
        layers.Dense(num_classes, activation="softmax"),
    ])
    return model
```
NNs Good at Transfer Learning

• Neural networks effective for transfer learning
 Using parts of a model trained on a task as an initial model to train on a different task

• Particularly effective for image recognition
Good at Transfer Learning

• For images, the initial stages of a model learn high-level visual features (lines, edges) from pixels
• Final stages predict task-specific labels

Fine Tuning a NN Model

• Special kind of transfer learning
 – Start with a pre-trained model
 – Replace last output layer with a new one
 – Fix all but last layer by marking as trainable:false

• Retraining on new task and data very fast
 – Only the weights for the last layer are adjusted

• Example
 – Start: NN to classify animal pix with 100s of categories
 – Finetune on new task to classify pix of 10 common pets
Conclusions

• Quick intro to neural networks & deep learning

• Learn more by
 – Take UMBC’s CMSC 478 machine learning class
 – Try scikit-learn’s neural network models
 – Explore Keras as: https://keras.io/
 – Explore Google’s Machine Learning Crash Course
 – Work through examples

• and then try your own project idea