Machine Learning: Decision Trees
Chapter 19.3

Some material adopted from notes by Chuck Dyer
Decision Trees (DTs)

- A *supervised* learning method used for *classification* and *regression*
- Given a set of training tuples, learn model to predict one value from the others
 - Learned value typically a class (e.g., goodRisk)
- Resulting model is simple to understand, interpret, visualize, and apply
Learning a Concept

The red groups are **negative** examples, blue **positive**

Attributes
- **Size**: large, small
- **Color**: red, green, blue
- **Shape**: square, circle

Task
Classify new object with a size, color & shape as positive or negative
Training data

<table>
<thead>
<tr>
<th>Size</th>
<th>Color</th>
<th>Shape</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>Green</td>
<td>Square</td>
<td>Negative</td>
</tr>
<tr>
<td>Large</td>
<td>Green</td>
<td>Circle</td>
<td>Negative</td>
</tr>
<tr>
<td>Small</td>
<td>Green</td>
<td>Square</td>
<td>Positive</td>
</tr>
<tr>
<td>Small</td>
<td>Green</td>
<td>Circle</td>
<td>positive</td>
</tr>
<tr>
<td>Large</td>
<td>Red</td>
<td>Square</td>
<td>Positive</td>
</tr>
<tr>
<td>Large</td>
<td>Red</td>
<td>Circle</td>
<td>Positive</td>
</tr>
<tr>
<td>Small</td>
<td>Red</td>
<td>Square</td>
<td>Positive</td>
</tr>
<tr>
<td>Small</td>
<td>Red</td>
<td>Circle</td>
<td>Positive</td>
</tr>
<tr>
<td>Large</td>
<td>Blue</td>
<td>Square</td>
<td>Negative</td>
</tr>
<tr>
<td>Small</td>
<td>Blue</td>
<td>Square</td>
<td>Positive</td>
</tr>
<tr>
<td>Large</td>
<td>Blue</td>
<td>Circle</td>
<td>Positive</td>
</tr>
<tr>
<td>Small</td>
<td>Blue</td>
<td>Circle</td>
<td>Positive</td>
</tr>
</tbody>
</table>
A decision tree-induced partition

The red groups are negative examples, blue positive

Negative things are big, green shapes and big, blue squares
Learning decision trees

• Goal: Build **decision tree** to classify examples as positive or negative instances of concept using supervised learning from training data

• A **decision tree** is a tree in which
 – **non-leaf nodes** have an attribute (feature)
 – **leaf nodes** have a classification (+ or -)
 – **arcs** have a possible value of its attribute

• Generalization: allow for >2 classes
 – e.g., classify stocks as {sell, hold, buy}
Expressiveness of Decision Trees

• Can express any function of input attributes, e.g., for Boolean functions, truth table row \(\rightarrow \) path to leaf:

\[
\begin{array}{ccc}
A & B & A \text{ xor } B \\
F & F & F \\
F & T & T \\
T & F & T \\
T & T & F \\
\end{array}
\]

There’s a consistent decision tree for any training set with one path to leaf for each example, but it probably won't generalize to new examples.

• Prefer more compact decision trees
Inductive learning and bias

• Suppose that we want to learn a function \(f(x) = y \) and we’re given sample \((x,y)\) pairs, as in figure (a)

• Can make several hypotheses about \(f \), e.g.: (b), (c) & (d)

• Preference reveals learning technique bias, e.g.:
 – prefer piece-wise functions (b)
 – prefer a smooth function (c)
 – prefer a simple function and treat outliers as noise (d)
Preference bias: **Occam’s Razor**

- William of Ockham (1285-1347)
 - *non sunt multiplicanda entia praeter necessitatem*
 - entities are not to be multiplied beyond necessity
- **Simplest** consistent explanation is the best
- **Smaller** decision trees correctly classifying training examples preferred over larger ones
- Finding **the** smallest decision tree is NP-hard, so we use algorithms that find reasonably small ones
R&N’s restaurant domain

• Develop decision tree that customers make when deciding whether to wait for a table or leave

• Two classes: wait, leave

• Set of 12 training examples

• ~7,000 possible cases (i.e., combinations of values)
Attribute-based representations

<table>
<thead>
<tr>
<th>Example</th>
<th>Alt</th>
<th>Bar</th>
<th>Fri</th>
<th>Hun</th>
<th>Pat</th>
<th>Price</th>
<th>Rain</th>
<th>Res</th>
<th>Type</th>
<th>Est</th>
<th>Target</th>
<th>Wait</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>0–10</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>X_2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>30–60</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>X_3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Some</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>X_4</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>10–30</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>X_5</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>Full</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>>60</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>X_6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$</td>
<td>T</td>
<td>T</td>
<td>Italian</td>
<td>0–10</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>X_7</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>X_8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$</td>
<td>T</td>
<td>T</td>
<td>Thai</td>
<td>0–10</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>X_9</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>Full</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>>60</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>X_{10}</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>Italian</td>
<td>10–30</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>X_{11}</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>0–10</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>X_{12}</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>30–60</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

- Examples described by **attribute values** (Boolean, discrete, continuous), e.g., situations where will/won't wait for a table
- **Classification** of examples is **positive** (T) or **negative** (F)
- Serves as a **training set**
A decision tree from introspection
Issues

• It’s like 20 questions

• We can generate many decision trees depending on what attributes we ask about and in what order

• How do we decide?

• What makes one decision tree better than another: number of nodes? number of leaves? maximum depth?
ID3 / C4.5 / J48 Algorithm

• Greedy algorithm for decision tree construction developed by Ross Quinlan circa 1987

• Top-down construction of tree by recursively selecting best attribute to use at current node
 – Once attribute selected for current node, generate child nodes, one for each possible attribute value
 – Partition examples using values of attribute, & assign these subsets of examples to the child nodes
 – Repeat for each child node until examples associated with a node are all positive or negative
Choosing best attribute

• Key problem: choose attribute to split given set of examples

• Possibilities for choosing attribute:
 – **Random**: Select one at random
 – **Least-values**: one with smallest # of possible values
 – **Most-values**: one with largest # of possible values
 – **Max-gain**: one with largest expected *information gain*
 – **Gini impurity**: one with smallest *gini impurity* value

• The last two measure the **homogeneity** of the target variable within the subsets

• The ID3 algorithm uses **max-gain**
A Simple Example

For this data, is it better to start the tree by asking about the restaurant **type** or its current **number of patrons**?
Choosing an attribute

Idea: good attribute splits examples into subsets that are (ideally) *all positive* or *all negative*

Which is better: *Patrons?* or *Type?*
Choosing an attribute

Idea: good attribute splits examples into subsets that are (ideally) *all positive* or *all negative*

- **Patrons**: for six examples we know the answer and for six we can predict with probability 0.67
- **Type**: our prediction is no better than chance (0.50)
Choosing Patrons yields more information

The ID3 algorithm used this to decide what attribute to ask about next when building a decision tree.
ID3-induced decision tree
Compare the two Decision Trees

- Intuitively, ID3 tree looks better: it’s shallower and has fewer nodes
- ID3 uses information theory to decide which question is best to ask next
Information theory 101

- Sprang fully formed from Claude Shannon’s seminal work: Mathematical Theory of Communication in 1948

- Intuitions
 - Common words (a, the, dog) shorter than less common ones (parlimentarian, foreshadowing)
 - Morse code: common letters have shorter encodings

- Information inherent in data/message (information entropy) measured in the number of bits needed to store/send using an optimal encoding
• **Information entropy** ... tells how much information there is in an event or message.
• More uncertain it is, more information it contains.
• Receiving a message is an event.
• How much information is in these messages:
 – The sun rose today!
 – It’s sunny today in Honolulu!
 – The coin toss is heads!
 – It’s sunny today in Seattle!
 – Life discovered on Mars!
Information theory 101

• For **n equally probable** possible messages or data values, each has probability $\frac{1}{n}$

• Def: Information of a message is $-\log_2(p) = \log_2(n)$
 - e.g., with 16 messages, then $\log(16) = 4$ and we need **4 bits** to identify/send each message

• What if the messages are not equally likely?

• For **probability distribution** $P(p_1,p_2...p_n)$ for n messages, its information (H or **information entropy**) is:

 $$I(P) = -(p_1 \cdot \log(p_1) + p_2 \cdot \log(p_2) + .. + p_n \cdot \log(p_n))$$
Information entropy of a distribution

\[I(P) = -(p_1 \log(p_1) + p_2 \log(p_2) + \ldots + p_n \log(p_n)) \]

• Examples:
 – If \(P \) is \((0.5, 0.5)\) then \(I(P) = 0.5 \times 1 + 0.5 \times 1 = 1 \)
 – If \(P \) is \((0.67, 0.33)\) then \(I(P) = -(2/3 \log(2/3) + 1/3 \log(1/3)) = 0.92 \)
 – If \(P \) is \((1, 0)\) then \(I(P) = 1 \times 1 + 0 \times \log(0) = 0 \)

• More uniform probability distribution, greater its information: more information is conveyed by a message telling you which event actually occurred

• Entropy is the average number of bits/message needed to represent a stream of messages
Example: Huffman code

• In 1952, MIT student David Huffman devised (for a homework assignment!) a coding scheme that’s optimal when all data probabilities are powers of 1/2

• A **Huffman code** can be built as followings:
 – Rank symbols in order of probability of occurrence
 – Successively combine 2 symbols of lowest probability to form new symbol; eventually we get binary tree where each node is probability of nodes below
 – Trace path to each leaf, noting direction at each node
Huffman code example

- Four possible messages (A, B, C, D) each with a probability of being sent
- We could encode them using 2 bits per message: A=00, B=01, C=10, D=11
- Sending 1,000 messages will require 2,000 bits
- We can do better with a Huffman code!
Huffman code example

Using this code for many messages (A,B,C or D), average bits/message should approach 1.75.

Sending 1000 messages will need ~1750 bits not 2000 bits.
Information gain

- $\text{Gain}(X,T) = \text{Info}(T) - \text{Info}(X,T)$ is difference of
 - info needed to identify element of T and
 - info needed to identify element of T after value of attribute X known
- This is gain in information due to attribute X
- Used to rank attributes and build DT where each node uses attribute with greatest gain of those not yet considered in path from root
- goal: create small DTs to minimize questions
\[I = 0.5 \log_2(0.5) + 0.5 \log_2(0.5) = 0.5 + 0.5 = 1 \]

\[I = 0; P = 1/6 \]
\[I = 0; P = 1/3 \]
\[I = (1/3 \log_2(1/3) + 2/3 \log_2(2/3); P = 1/2 = 0.46 \]
\[I = 1; P = 1/6 \]
\[I = 1; P = 1/6 \]
\[I = 1; P = 2/6 \]
\[I = 1; P = 2/6 \]
\[I = 6/6 \times 1 = 1 \]

Information gain = 1 - 0.46 = 0.54

Information gain = 1 - 1 = 0

- **Information gain** for asking **Patrons** = 0.56, for asking **Type** = 0
- Note: If only one of the N categories has any instances, the information entropy is always 0
How well does it work?

Case studies show that decision trees often at least as accurate as human experts

– Study for diagnosing breast cancer had humans correctly classifying examples 65% of the time; DT classified 72% correct

– British Petroleum designed DT for gas-oil separation for offshore oil platforms that replaced an earlier rule-based expert system

– Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example
Extensions of ID3

- Using other selection metric gain ratios, e.g., gini impurity metric
- Handle real-valued data
- Noisy data and overfitting
- Generation of rules
- Setting parameters
- Cross-validation for experimental validation of performance
- **C4.5**: extension of ID3 accounting for unavailable values, continuous attribute value ranges, pruning of decision trees, rule derivation, etc.
Real-valued data?

• Many ML systems work only on nominal data
• We often classify data into one of 4 basic types:
 – Nominal data is named, e.g., representing restaurant type as Thai, French, Italian, Burger
 – Ordinal data has a well-defined sequence: small, medium, large
 – Discrete data is easily represented by integers
 – Continuous data is captured by real numbers
• There are others, like intervals: age 0-3, 3-5, ...
• Handling some types may need new techniques
Techniques for real-valued data

For ML systems that expect nominal data:

• Select thresholds defining intervals so each becomes a discrete value of attribute

• Use heuristics: e.g., always divide into quartiles

• Use domain knowledge: e.g., divide age into infant (0-2), toddler (3-5), school-aged (5-8)

• Or treat this as another learning problem
 – Try different ways to discretize continuous variable; see which yield better results w.r.t. some metric
 – E.g., try midpoint between every pair of values
Noisy data 😞?

ML systems must deal with *noise* in training data

- Two examples have same attribute/value pairs, but different classifications
- Some attribute values wrong due to errors in the data acquisition or preprocessing phase
- Classification is wrong (e.g., + instead of -) because of some error
- Some attributes irrelevant to decision-making, e.g., color of a die is irrelevant to its outcome

Bias in the training data is a related problem
Bias: If it’s cloudy, it’s a tank

• You may hear about a ML system designed to classify images into those with & without tanks
 – It was trained on N images with tanks and M images with no tanks
 – But the positive examples were all taken on a cloudy day; the negative on a sunny one

• System worked well, but had learned to detect the weather 😞

• The story is too good to be true; see Neural Net Tank Urban Legend

• But avoiding bias when training an AI or ML system is a real problem!
Overfitting 😞

• **Overfitting** occurs when a statistical model describes random error or noise instead of underlying relationship

• If hypothesis space has many dimensions (many attributes) we may find **meaningless regularity** in data irrelevant to true distinguishing features
 Students with an *m* in first name, born in July, & whose SSN digits sum to a prime number get better grades in AI

• If we have **too little training data**, even a reasonable hypothesis space can overfit
Avoiding Overfitting

• Remove obviously irrelevant features
 – E.g., remove ‘year observed’, ‘month observed’, ‘day observed’, ‘observer name’ from the attributes used

• Get more training data

• Pruning lower nodes in a decision tree
 – E.g., if gain of best attribute at a node is below a threshold, stop and make this node a leaf rather than generating children nodes
Pruning decision trees

• Pruning a decision tree is done by replacing a whole subtree by a leaf node.

• Replacement takes place if the expected error rate in the subtree is greater than in the single leaf, e.g.,
 – Training: 1 training red success and 2 training blue failures
 – Test: 3 red failures and one blue success
 – Consider replacing this subtree by a single Failure node.

• After replacement, only 2 errors instead of 4
Converting decision trees to rules

• Easy to get rules from decision tree: write rule for each path from the root to leaf

• Rule’s left-hand side built from the label of the nodes & labels of arcs

• Resulting rules set can be simplified:
 – Let LHS be the rule’s left hand side (condition part)
 – LHS’ obtained from LHS by eliminating some conditions
 – Replace LHS by LHS' in this rule if the subsets of the training set satisfying LHS and LHS' are equal
 – A rule may be eliminated by using meta-conditions such as “if no other rule applies”
Summary: decision tree learning

• Widely used learning methods in practice for problems with relatively few features

• Strengths
 – Fast and easy to implement
 – Simple model: translate to a set of rules
 – Useful: empirically valid in many commercial products
 – Robust: handles noisy data
 – Explainable: easy for people to understand

• Weaknesses
 – Large decision trees may be hard to understand
 – Requires fixed-length feature vectors
 – Non.incremental, adding one new feature requires rebuilding entire tree