
Planning 1
Chapter 11.1-11.3

Some material adopted from notes by
Andreas Geyer-Schulz and Chuck Dyer

13.1

Planning is the art and
practice of thinking

before acting
— Patrik Haslum

http://users.cecs.anu.edu.au/~patrik/

Classic Planning
Find sequence of actions to reach a
goal in a discrete, deterministic, static,
fully-observable environment
• State space search and logical

reasoning could be used
• But classic planning developed custom

representations & algorithms to do it
more effectively

• The approach uses a knowledge base
and reasoning about the state
of the world and possible actions

• We’ll look first at doing this in the
simple blocks world

A BC

A
B
C

Goal State

Initial State

robot arm

Blocks world

The blocks world is a “micro-world” with
a table, a set of blocks, and a robot hand
Some constraints for a simple model:

– Only one block can be on another block
– Any number of blocks can be on the table
– The hand can only hold one block

https://en.wikipedia.org/wiki/Blocks_world

Blocks world

Typical representation uses a logic
notation to represent the state of the world:

ontable(a) ontable(c)
clear(a) clear(c)
handempty

And possible actions with their preconditions
and effects:
Pickup Putdown
Stack Unstack

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal state:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

Plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Logical assertions
describing initial &
final states

Sequence
of robot
actions

Planning problem
•Find sequence of actions to achieve goal state

when executed from initial state given
– set of possible primitive actions, including their

preconditions and effects
– initial state description
– goal state description

•Compute plan as a sequence of actions that,
when executed in initial state, achieves goal state

•States specified as a KB , i.e. conjunction of
conditions
– e.g., ontable(a) Ù on(b, a)

Planning vs. problem solving
• Problem solving methods solve similar problems
• Planning is more powerful and efficient because of

the representations and methods used
• States, goals, and actions are decomposed into sets

of sentences (usually in first-order logic)
• Search often proceeds through plan space rather

than state space (though there are also state-space
planners)

• Sub-goals can be planned independently, reducing
the complexity of the planning problem

Typical simplifying assumptions
• Atomic time: Each action is indivisible
• No concurrent actions: but actions need not be

ordered w.r.t. each other in the plan
• Deterministic actions: action results completely

determined — no uncertainty in their effects
• Agent is the sole cause of change in the world
• Agent is omniscient with complete knowledge of

the state of the world
• Closed world assumption: everything known to be

true included in state description; anything not
listed is false

Real AI planning systems can relax many of these

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

Simple approach:
• find a way to

achieve each
goal in order

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Simple approach:
• find a way to

achieve each
goal in order

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

Simple approach:
• find a way to

achieve each
goal in order

Note: Goals in a
different order!

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Note: Goals in a
different order!

Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A
B
C

A
B
C

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Note: not very
efficient!

Major approaches
•Planning as search
•GPS / STRIPS
•Situation calculus
•Partial order planning
•Hierarchical decomposition (HTN planning)
• Forward planning with heuristics
•Planning with constraints (SATplan, Graphplan)
•Reactive planning

History: Shakey the robot

First general-purpose mobile robot to be able
to reason about its own actions

Shakey: Experiments in Robot Planning
and Learning (1972, 24 min)

Shakey the Robot: 1st Robot
to Embody Artificial Intelli-
gence (2017, 6 min.)

https://youtu.be/7bsEN8mwUB8

Strips planning representation
• Classic approach first used in the STRIPS

(Stanford Research Institute Problem Solver) planner
• A State is a conjunction of ground literals

at(Home) Ù ¬have(Milk) Ù ¬have(bananas) ...
• Goals are conjunctions of literals, but may have

variables, assumed to be existentially quantified
at(?x) Ù have(Milk) Ù have(bananas) ...

• Need not fully specify state
– Non-specified conditions either don’t-care or assumed false
– Represent many cases in small storage
– May only represent changes in state rather than entire

situation
• Unlike theorem prover, not seeking whether goal is true, but is

there a sequence of actions to attain it

Shakey the robot

https://en.wikipedia.org/wiki/STRIPS
https://en.wikipedia.org/wiki/Shakey_the_robot

Blocks World Operators

•Classic basic operations for the Blocks World
– stack(X,Y): put block X on block Y
– unstack(X,Y): remove block X from block Y
– pickup(X): pickup block X
– putdown(X): put block X on the table

•Each represented by
– list of preconditions
– list of new facts to be added (add-effects)
– list of facts to be removed (delete-effects)
– optionally, set of (simple) variable constraints

Blocks World Stack Action

stack(X,Y):
• preconditions(stack(X,Y), [holding(X), clear(Y)])

• deletes(stack(X,Y), [holding(X), clear(Y)]).

• adds(stack(X,Y), [handempty, on(X,Y), clear(X)])

• constraints(stack(X,Y), [X¹Y, Y¹table, X¹table])

STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates
– Goal Stack - push down stack of goals to be solved, with

current goal on top

• If current goal not satisfied by present state, find
action that adds it and push action and its
preconditions (subgoals) on stack

• When a current goal is satisfied, POP from stack
• When an action is on top stack, record its

application on plan sequence and use its add and
delete lists to update current state

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

😃

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

😐

Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A
B
C

A
B
C

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
pickup(b)
stack(b,a)
unstack(b,a)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

😐

Yet Another BW planning problem

Initial state:
ontable(a)
ontable(b)
clear(a)
clear(b)
handempty

Goal:
on(a,b)
on(b,a)

A B

Plan:
??

😡

Goal interaction
• Simple planning algorithms assume independent sub-goals

– Solve each separately and concatenate the solutions
• Sussman Anomaly: an example of goal interaction problem:

– Solving on(A,B) first (via unstack(C,A),stack(A,B)) is undone
when solving 2nd goal on(B,C) (via unstack(A,B), stack(B,C))

– Solving on(B,C) first will be undone when solving on(A,B)
• Classic STRIPS couldn’t handle this, although minor

modifications can get it to do simple cases

A B
C

Initial state

A
B
C

Goal state

https://en.wikipedia.org/wiki/Sussman_Anomaly

Fin
29

