9.4.2

Logical **Inference 2 Rule-based reasoning**

Chapter 9

Some material adopted from notes by Andreas Geyer-Schulz,, Chuck Dyer, and Mary Getoor

Automated inference for FOL

- Automated inference for FOL is harder than PL
 - Variables can take on an infinite number of possible values from their domains
 - Hence there are potentially an infinite number of ways to apply the Universal Elimination rule
- Godel's Completeness Theorem says that FOL entailment is only semi-decidable
 - If a sentence is true given a set of axioms, there is a procedure that will determine this
 - If a sentence is false, there's no guarantee a procedure will ever discover this — it may never halt

Generalized Modus Ponens (GMP)

- Modus Ponens: **P**, **P=>Q |=Q**
- Generalized Modus Ponens extends this to rules in FOL
- Combines And-Introduction, Universal-Elimination, and Modus Ponens, e.g.
 - given P(c) , Q(c) , $\forall x \ P(x) \land Q(x) \rightarrow R(x)$
 - derive R(c)
- Must deal with
 - more than one condition on rule's left side
 variables

Often rules restricted to Horn clauses

• A <u>Horn clause</u> is a sentence of the form:

 $\mathsf{P}_1(\mathsf{x}) \land \mathsf{P}_2(\mathsf{x}) \land \ldots \land \mathsf{P}_n(\mathsf{x}) \to \mathsf{Q}(\mathsf{x})$

where

- $\ge 0 P_i s$ and 0 or 1 Q
- P_is and Q are positive (i.e., non-negated) literals
- Prolog and most rule-based systems are limited to Horn clauses
- Horn clauses are a subset of all FOL sentences

Horn clauses 2

Special cases

- –Typical rule: $P_1 \land P_2 \land ... P_n \rightarrow Q$
- Constraint: $P_1 \wedge P_2 \wedge ... P_n \rightarrow false$
- $-A \text{ fact: } \rightarrow Q$
- A goal: Q \rightarrow
- Examples
 - parent(P1,P2) \land parent(P2,P3) \rightarrow grandparent(P1,P3)
 - male(X) \land female(X) \rightarrow false
 - \rightarrow male(john)
 - female(mary) \rightarrow

Horn clauses 3

- These are not Horn clauses:
 - married(x, y) \rightarrow loves(x, y) \vee hates(x, y)
 - –likes(john, mary)
 - $\neg likes(x, y) \rightarrow hates(x, y)$
- Can't assert/conclude disjunctions (i.e., an "or")
- Can't have "true" negation
 - Though some systems, like Prolog, allow a negation operator that means "can't prove"
- No wonder Horn clause reasoning is easier

Horn clauses 3

- Where are the quantifiers?
- Variables in conclusion universally quantified
- Variables only appearing in premises existentially quantified
- Examples:
- parentOf(P,C) → childOf(C,P) $\forall P \forall C parentOf(P,C) \rightarrow childOf(C,P)$
- parentOf(P,X) \rightarrow isParent(P) $\forall P \exists X parent(P,X) \rightarrow isParent(P)$
- parent(P1, X) ∧ parent(X, P2) → grandParent(P1, P2)
 ∀P1,P2 ∃X parent(P1,X) ∧ parent(X, P2)
 → grandParent(P1, P2)

Definite Clauses

- A **definite clause** is a horn clause with a conclusion
- What's not allowed is a horn clause w/o a conclusion, e.g.
 - -male(x), female(x) \rightarrow

-i.e., male(x) \varphi female(x)

• Most rule-based reasoning systems, like Prolog, allow only definite clauses in the KB

Limitations

- Most rule-based reasoning systems use only definite horn clauses
 - Limited ability to reason about negation and disjunction
- Benefit is decidability and efficiency
- Some limitations can be overcome by
 - Adding procedural components
 - Augmenting with other reasoners

Forward & Backward Reasoning

- We often talk about two reasoning strategies:
 - Forward chaining and
 - Backward chaining
- Both are equally powerful, but optimized for different use cases
- You can also have a mixed strategy

Forward chaining

- Proofs start with given axioms/premises in KB, deriving new sentences using GMP until the goal/query sentence is derived
 - Process follows a chain of rules and facts going from the KB to the conclusion
- This defines a forward-chaining inference procedure because it moves "forward" from the KB to the goal [eventually]
- Inference using GMP is sound and complete for KBs containing only Horn clauses

Forward chaining example

- KB:
 - allergies(X) \rightarrow sneeze(X)
 - $\operatorname{cat}(Y) \land \operatorname{allergicToCats}(X) \rightarrow \operatorname{allergies}(X)$
 - cat(felix)
 - allergicToCats(mary)
- Goal:
 - sneeze(mary)

Backward chaining

- Backward-chaining deduction using GMP is also complete for KBs containing only Horn clauses
- Proofs start with the goal query, find rules with that conclusion, and then tries to prove each of the antecedents in the rule
- Keep going until you reach premises
- Avoid loops by checking if new subgoal is already on the goal stack
- Avoid repeated work: use a cache to check if new subgoal already proved true or failed

Backward chaining example

- KB:
 - allergies(X) \rightarrow sneeze(X)
 - $cat(Y) \land allergicToCats(X) \rightarrow allergies(X)$
 - cat(felix)
 - allergicToCats(mary)
- Goal:
 - sneeze(mary)

Forward vs. backward chaining

- Forward chaining is data-driven
 - Automatic, unconscious processing, e.g., object recognition, routine decisions
 - May do lots of work that is irrelevant to the goal
 Efficient when you want to compute all conclusions
- Backward chaining is goal-driven, better for problem-solving and query answering
 - -Where are my keys? How do I get to my next class?
 - -Complexity can be much less than linear wrt KB size
 - -Efficient when you want one or a few conclusions
 - -Good where the underlying facts are changing

Mixed strategy

- Many practical reasoning systems do both forward and backward chaining
- The way you encode a rule determines how it is used, as in

% this is a forward chaining rule

spouse(X,Y) => spouse(Y,X).

% this is a backward chaining rule

wife(X,Y) <= spouse(X,Y), female(X).</pre>

 Given a model of the rules you have and the kind of reason you need to do, it's possible to decide which to encode as FC and which as BC rules.

Completeness of GMP

- GMP (using forward or backward chaining) is complete for KBs that contain only Horn clauses
- not complete for simple KBs with non-Horn clauses
- What is entailed by the following sentences:
 - 1. $(\forall x) P(x) \rightarrow Q(x)$ 2. $(\forall x) \neg P(x) \rightarrow R(x)$ 3. $(\forall x) Q(x) \rightarrow S(x)$ 4. $(\forall x) R(x) \rightarrow S(x)$

Completeness of GMP

- The following entail that S(A) is true:
 - 1. $(\forall x) P(x) \rightarrow Q(x)$
 - 2. $(\forall x) \neg P(x) \rightarrow R(x)$
 - 3. $(\forall x) Q(x) \rightarrow S(x)$
 - 4. ($\forall x$) R(x) \rightarrow S(x)
- If we want to conclude S(A), with GMP we cannot, since the second one is not a Horn clause
- It is equivalent to $P(x) \vee R(x)$