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is the fact that each regression problem will be easier teesdiecause it involves only the
examples with nonzero weight—the examples whose kernedagp/the query point. When
kernel widths are small, this may be just a few points.

Most nonparametric models have the advantage that it isteakyleave-one-out cross-
validation without having to recompute everything. Witlk-aearest-neighbors model, for
instance, when given a test examiey) we retrieve the: nearest neighbors once, compute
the per-example losg(y, h(x)) from them, and record that as the leave-one-out result for
every example that is not one of the neighbors. Then we vettigek + 1 nearest neighbors
and record distinct results for leaving out each of theeighbors. WithN examples the
whole process i®)(k), notO(kN).

18.9 SUPPORTVECTORMACHINES

IAPORTVECTOR — The support vector machineor SVM framework is currently the most popular approach for
“off-the-shelf” supervised learning: if you don’t have aspecialized prior knowledge about
a domain, then the SVM is an excellent method to try first. €rame three properties that
make SVMs attractive:

1. SVMs construct amaximum margin separator—a decision boundary with the largest
possible distance to example points. This helps them girersell.

2. SVMs create a linear separating hyperplane, but they Havebility to embed the
data into a higher-dimensional space, using the so-ck#eakl trick . Often, data that
are not linearly separable in the original input space as#yeseparable in the higher-
dimensional space. The high-dimensional linear separstactually nonlinear in the
original space. This means the hypothesis space is gregibneed over methods that
use strictly linear representations.

3. SVMs are a honparametric method—they retain trainingrgtes and potentially need
to store them all. On the other hand, in practice they oftesh @m retaining only a
small fraction of the number of examples—sometimes as fesvsasall constant times
the number of dimensions. Thus SVMs combine the advantagesnparametric and
parametric models: they have the flexibility to represemhplex functions, but they
are resistant to overfitting.

You could say that SVMs are successful because of one keyhinand one neat trick. We
will cover each in turn. In Figure 18.30(a), we have a bindagsification problem with three
candidate decision boundaries, each a linear separatah d&ahem is consistent with all
the examples, so from the point of view of 0/1 loss, each wdeldequally good. Logistic
regression would find some separating line; the exact logaif the line depends aall the
example points. The key insight of SVMs is that some examaiesmore important than
others, and that paying attention to them can lead to betteerglization.

Consider the lowest of the three separating lines in (a)ortes very close to 5 of the
black examples. Although it classifies all the examplesemitly, and thus minimizes loss, it
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Figure 18.30 Support vector machine classification: (a) Two classes oftpdblack and
white circles) and three candidate linear separators. [{® maximum margin separator
(heavy line), is at the midpoint of th@argin (area between dashed lines). Thgport
vectors(points with large circles) are the examples closest to épasator.

should make you nervous that so many examples are close tméhét may be that other
black examples will turn out to fall on the other side of theeli

SVMs address this issue: Instead of minimizing expeetagirical losson the training
data, SVMs attempt to minimize expectgdneralizationloss. We don’t know where the
as-yet-unseen points may fall, but under the probabilisisumption that they are drawn
from the same distribution as the previously seen examfilese are some arguments from
computational learning theory (Section 18.5) suggestiag\we minimize generalization loss
by choosing the separator that is farthest away from the plesiwe have seen so far. We
call this separator, shown in Figure 18.30(b) thaximum margin separator. Themargin
is the width of the area bounded by dashed lines in the figungeetthe distance from the
separator to the nearest example point.

Now, how do we find this separator? Before showing the egustisome notation:
Traditionally SVMs use the convention that class labelstdrand -1, instead of the +1 and
0 we have been using so far. Also, where we put the intercéptle weight vectow (and
a corresponding dummy 1 value intg ), SVMs do not do that; they keep the intercept
as a separate parametér, With that in mind, the separator is defined as the set of point
{x:w-x+b=0}. We could search the spacewfandb with gradient descent to find the
parameters that maximize the margin while correctly cfgsgj all the examples.

However, it turns out there is another approach to solvirg gnoblem. We won't
show the details, but will just say that there is an alteugatepresentation called the dual
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representation, in which the optimal solution is found blyisg

1
arginaxz -5 Z oYYk (X - Xk) (18.13)
J gk
S TING subject to the constraints; > 0 and }_; o;y; =0. This is aquadratic programming

optimization problem, for which there are good softwareka@es. Once we have found the
vector« we can get back tev with the equatiorw = Zj a;X;, or we can stay in the dual
representation. There are three important properties oaton (18.13). First, the expression
ﬂl@ is convex; it has a single global maximum that can be foundiefiily. Secondthe data enter
the expression only in the form of dot products of pairs ohf®iT his second property is also
true of the equation for the separator itself, once the opitim) have been calculated, it is

h(x) = sign | Y ajy;(x-x;) = b (18.14)
J

A final important property is that the weights associated with each data point aezoex-
supporTVECTOR  Cept for thesupport vectors—the points closest to the separator. (They are called ‘@tpp

vectors because they “hold up” the separating plane.) Beecthere are usually many fewer

support vectors than examples, SVMs gain some of the adyesitaf parametric models.

What if the examples are not linearly separable? Figurel{8)3hows an input space
defined by attributeg = (x1, z2), with positive examplesy(= + 1) inside a circular region
and negative exampleg £ —1) outside. Clearly, there is no linear separator for thisopem.
Now, suppose we re-express the input data—i.e., we map ppahvectorx to a new vector
of feature valuesF'(x). In particular, let us use the three features

f1 = a:% s fg = a:% s f3 = \/51’1.1‘2 . (18.15)

We will see shortly where these came from, but for now, jusklat what happens. Fig-
ure 18.31(b) shows the data in the new, three-dimensiorakesgefined by the three features;
the data ardinearly separabldn this space! This phenomenon is actually fairly general: i
data are mapped into a space of sufficiently high dimensi@am they will almost always be
linearly separable—if you look at a set of points from enodgkctions, you'll find a way to
make them line up. Here, we used only three dimenstbisercise 18.16 asks you to show
that four dimensions suffice for linearly separating a eirshywhere in the plane (not just at
the origin), and five dimensions suffice to linearly sepasetg ellipse. In general (with some
special cases excepted) if we havadata points then they will always be separable in spaces
of N — 1 dimensions or more (Exercise 18.25).

Now, we would not usually expect to find a linear separatohim input space, but
we can find linear separators in the high-dimensional fesgpace'(x) simply by replacing
X; Xy, in Equation (18.13) withF'(x;)- F (X, ). This by itself is not remarkable—replacixdy
F(x) in anylearning algorithm has the required effect—but the dot poddhas some special
properties. It turns out that'(x;) - F'(X;) can often be computed without first computify

1 The reader may notice that we could have used fusind f2, but the 3D mapping illustrates the idea better.
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Figure 18.31 (a) A two-dimensional training set with positive examplestdack cir-
cles and negative examples as white circles. The true dectsbundaryz? + 22 < 1,
is also shown. (b) The same data after mapping into a thmeessional input space
(22, x3,+/22122). The circular decision boundary in (a) becomes a linearsi@eiboundary
in three dimensions. Figure 18.30(b) gives a closeup of¢pastor in (b).

for each point. In our three-dimensional feature space défory Equation (18.15), a little bit
of algebra shows that

F(x;) - F(xk) = (X5 - Xi)? .

(That's why thev/2 is in f3.) The expressiorix; - X;)? is called akernel function,!? and
is usually written ad{ (X, Xx). The kernel function can be applied to pairs of input data to
evaluate dot products in some corresponding feature sigeve can find linear separators
in the higher-dimensional feature spacéx) simply by replacing; - x; in Equation (18.13)
with a kernel function/ (x;, Xi). Thus, we can learn in the higher-dimensional space, but we
compute only kernel functions rather than the full list cdiieres for each data point.

The next step is to see that there’s nothing special aboketinel K (X, X ) = (X;-Xx)?.
It corresponds to a particular higher-dimensional feaspace, but other kernel functions
correspond to other feature spaces. A venerable result thematics,Mercer’s theo-
rem (1909), tells us that any “reasonabl&’kernel function corresponds womefeature
space. These feature spaces can be very large, even fououstooking kernels. For ex-
ample, thepolynomial kernel, K (x;,X;) = (1 + X; - X;)¢, corresponds to a feature space
whose dimension is exponential di

12 This usage of “kernel function” is slightly different fronhé kernels in locally weighted regression. Some
SVM kernels are distance metrics, but not all are.
13 Here, “reasonable” means that the matfix, = K (X;, X ) is positive definite.
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This then is the clevekernel trick : Plugging these kernels into Equation (18.13),
optimal linear separators can be found efficiently in featspaces with billions of (or, in
some cases, infinitely many) dimensiofike resulting linear separators, when mapped back
to the original input space, can correspond to arbitrarilgghy, nonlinear decision bound-
aries between the positive and negative examples.

In the case of inherently noisy data, we may not want a linepasator in some high-
dimensional space. Rather, we'd like a decision surfacelowar-dimensional space that
does not cleanly separate the classes, but reflects thgy rebthe noisy data. That is pos-
sible with thesoft margin classifier, which allows examples to fall on the wrong sidéhaf
decision boundary, but assigns them a penalty proportintide distance required to move
them back on the correct side.

The kernel method can be applied not only with learning atlgors that find optimal
linear separators, but also with any other algorithm that loa reformulated to work only
with dot products of pairs of data points, as in Equationsl3&nd 18.14. Once this is
done, the dot product is replaced by a kernel function and s lakernelized version
of the algorithm. This can be done easily feinearest-neighbors and perceptron learning
(Section 18.7.2), among others.

ENSEMBLE LEARNING

ENSEMBLE
LEARNING

So far we have looked at learning methods in which a singleothgsis, chosen from a
hypothesis space, is used to make predictions. The ideas#mble learningmethods is
to select a collection, censemble of hypotheses from the hypothesis space and combine
their predictions. For example, during cross-validatioa mvight generate twenty different
decision trees, and have them vote on the best classifidati@new example.

The motivation for ensemble learning is simple. Consideeasemble of =5 hy-
potheses and suppose that we combine their predictiong sisitple majority voting. For the
ensemble to misclassify a new exampaeleast three of the five hypotheses have to misclas-
sify it. The hope is that this is much less likely than a misclassifindy a single hypothesis.
Suppose we assume that each hypothiesig the ensemble has an error pfthat is, the
probability that a randomly chosen example is misclassbigt,. is p. Furthermore, suppose
we assume that the errors made by each hypothesisdependentin that case, ip is small,
then the probability of a large number of misclassificatiogsurring is minuscule. For ex-
ample, a simple calculation (Exercise 18.18) shows thaiguesn ensemble of five hypotheses
reduces an error rate of 1 in 10 down to an error rate of less thia 100. Now, obviously
the assumption of independence is unreasonable, becapsthéges are likely to be misled
in the same way by any misleading aspects of the training d&aiaif the hypotheses are at
least a little bit different, thereby reducing the corriedatbetween their errors, then ensemble
learning can be very useful.

Another way to think about the ensemble idea is as a genencoiv@nlarging the
hypothesis space. That is, think of the ensemble itself gpathesis and the new hypothesis





