
744 Chapter 18. Learning from Examples

is the fact that each regression problem will be easier to solve, because it involves only the
examples with nonzero weight—the examples whose kernels overlap the query point. When
kernel widths are small, this may be just a few points.

Most nonparametric models have the advantage that it is easyto do leave-one-out cross-
validation without having to recompute everything. With ak-nearest-neighbors model, for
instance, when given a test example(x, y) we retrieve thek nearest neighbors once, compute
the per-example lossL(y, h(x)) from them, and record that as the leave-one-out result for
every example that is not one of the neighbors. Then we retrieve thek + 1 nearest neighbors
and record distinct results for leaving out each of thek neighbors. WithN examples the
whole process isO(k), notO(kN).

18.9 SUPPORTVECTOR MACHINES

Thesupport vector machineor SVM framework is currently the most popular approach forSUPPORT VECTOR

MACHINE

“off-the-shelf” supervised learning: if you don’t have anyspecialized prior knowledge about
a domain, then the SVM is an excellent method to try first. There are three properties that
make SVMs attractive:

1. SVMs construct amaximum margin separator—a decision boundary with the largest
possible distance to example points. This helps them generalize well.

2. SVMs create a linear separating hyperplane, but they havethe ability to embed the
data into a higher-dimensional space, using the so-calledkernel trick . Often, data that
are not linearly separable in the original input space are easily separable in the higher-
dimensional space. The high-dimensional linear separatoris actually nonlinear in the
original space. This means the hypothesis space is greatly expanded over methods that
use strictly linear representations.

3. SVMs are a nonparametric method—they retain training examples and potentially need
to store them all. On the other hand, in practice they often end up retaining only a
small fraction of the number of examples—sometimes as few asa small constant times
the number of dimensions. Thus SVMs combine the advantages of nonparametric and
parametric models: they have the flexibility to represent complex functions, but they
are resistant to overfitting.

You could say that SVMs are successful because of one key insight and one neat trick. We
will cover each in turn. In Figure 18.30(a), we have a binary classification problem with three
candidate decision boundaries, each a linear separator. Each of them is consistent with all
the examples, so from the point of view of 0/1 loss, each wouldbe equally good. Logistic
regression would find some separating line; the exact location of the line depends onall the
example points. The key insight of SVMs is that some examplesare more important than
others, and that paying attention to them can lead to better generalization.

Consider the lowest of the three separating lines in (a). It comes very close to 5 of the
black examples. Although it classifies all the examples correctly, and thus minimizes loss, it

Section 18.9. Support Vector Machines 745

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(a) (b)

Figure 18.30 Support vector machine classification: (a) Two classes of points (black and
white circles) and three candidate linear separators. (b) The maximum margin separator
(heavy line), is at the midpoint of themargin (area between dashed lines). Thesupport
vectors(points with large circles) are the examples closest to the separator.

should make you nervous that so many examples are close to theline; it may be that other
black examples will turn out to fall on the other side of the line.

SVMs address this issue: Instead of minimizing expectedempirical losson the training
data, SVMs attempt to minimize expectedgeneralizationloss. We don’t know where the
as-yet-unseen points may fall, but under the probabilisticassumption that they are drawn
from the same distribution as the previously seen examples,there are some arguments from
computational learning theory (Section 18.5) suggesting that we minimize generalization loss
by choosing the separator that is farthest away from the examples we have seen so far. We
call this separator, shown in Figure 18.30(b) themaximum margin separator. ThemarginMAXIMUM MARGIN

SEPARATOR

MARGIN is the width of the area bounded by dashed lines in the figure—twice the distance from the
separator to the nearest example point.

Now, how do we find this separator? Before showing the equations, some notation:
Traditionally SVMs use the convention that class labels are+1 and -1, instead of the +1 and
0 we have been using so far. Also, where we put the intercept into the weight vectorw (and
a corresponding dummy 1 value intoxj,0), SVMs do not do that; they keep the intercept
as a separate parameter,b. With that in mind, the separator is defined as the set of points
{x : w · x + b= 0}. We could search the space ofw andb with gradient descent to find the
parameters that maximize the margin while correctly classifying all the examples.

However, it turns out there is another approach to solving this problem. We won’t
show the details, but will just say that there is an alternative representation called the dual

746 Chapter 18. Learning from Examples

representation, in which the optimal solution is found by solving

argmax
α

∑

j

αj −
1

2

∑

j,k

αjαkyjyk(xj · xk) (18.13)

subject to the constraintsαj ≥ 0 and
∑

j αjyj = 0. This is aquadratic programmingQUADRATIC

PROGRAMMING

optimization problem, for which there are good software packages. Once we have found the
vectorα we can get back tow with the equationw =

∑

j αjxj, or we can stay in the dual
representation. There are three important properties of Equation (18.13). First, the expression
is convex; it has a single global maximum that can be found efficiently. Second,the data enter
the expression only in the form of dot products of pairs of points.This second property is also
true of the equation for the separator itself; once the optimal αj have been calculated, it is

h(x) = sign





∑

j

αjyj(x · xj)− b



 . (18.14)

A final important property is that the weightsαj associated with each data point arezeroex-
cept for thesupport vectors—the points closest to the separator. (They are called “support”SUPPORT VECTOR

vectors because they “hold up” the separating plane.) Because there are usually many fewer
support vectors than examples, SVMs gain some of the advantages of parametric models.

What if the examples are not linearly separable? Figure 18.31(a) shows an input space
defined by attributesx = (x1, x2), with positive examples (y = + 1) inside a circular region
and negative examples (y =−1) outside. Clearly, there is no linear separator for this problem.
Now, suppose we re-express the input data—i.e., we map each input vectorx to a new vector
of feature values,F (x). In particular, let us use the three features

f1 = x2
1 , f2 = x2

2 , f3 =
√

2x1x2 . (18.15)

We will see shortly where these came from, but for now, just look at what happens. Fig-
ure 18.31(b) shows the data in the new, three-dimensional space defined by the three features;
the data arelinearly separablein this space! This phenomenon is actually fairly general: if
data are mapped into a space of sufficiently high dimension, then they will almost always be
linearly separable—if you look at a set of points from enoughdirections, you’ll find a way to
make them line up. Here, we used only three dimensions;11 Exercise 18.16 asks you to show
that four dimensions suffice for linearly separating a circle anywhere in the plane (not just at
the origin), and five dimensions suffice to linearly separateany ellipse. In general (with some
special cases excepted) if we haveN data points then they will always be separable in spaces
of N − 1 dimensions or more (Exercise 18.25).

Now, we would not usually expect to find a linear separator in the input spacex, but
we can find linear separators in the high-dimensional feature spaceF (x) simply by replacing
xj ·xk in Equation (18.13) withF (xj)·F (xk). This by itself is not remarkable—replacingx by
F (x) in any learning algorithm has the required effect—but the dot product has some special
properties. It turns out thatF (xj) · F (xk) can often be computed without first computingF

11 The reader may notice that we could have used justf1 andf2, but the 3D mapping illustrates the idea better.

Section 18.9. Support Vector Machines 747

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2

x1

0
0.5

1
1.5

2x1
2 0.5

1

1.5

2

2.5

x2
2

-3
-2
-1
0
1
2
3

√2x1x2

(a) (b)

Figure 18.31 (a) A two-dimensional training set with positive examples as black cir-
cles and negative examples as white circles. The true decision boundary,x2

1 + x2
2 ≤ 1,

is also shown. (b) The same data after mapping into a three-dimensional input space
(x2

1, x
2
2,
√

2x1x2). The circular decision boundary in (a) becomes a linear decision boundary
in three dimensions. Figure 18.30(b) gives a closeup of the separator in (b).

for each point. In our three-dimensional feature space defined by Equation (18.15), a little bit
of algebra shows that

F (xj) · F (xk) = (xj · xk)
2 .

(That’s why the
√

2 is in f3.) The expression(xj · xk)
2 is called akernel function,12 andKERNEL FUNCTION

is usually written asK(xj, xk). The kernel function can be applied to pairs of input data to
evaluate dot products in some corresponding feature space.So, we can find linear separators
in the higher-dimensional feature spaceF (x) simply by replacingxj · xk in Equation (18.13)
with a kernel functionK(xj , xk). Thus, we can learn in the higher-dimensional space, but we
compute only kernel functions rather than the full list of features for each data point.

The next step is to see that there’s nothing special about thekernelK(xj, xk)= (xj ·xk)
2.

It corresponds to a particular higher-dimensional featurespace, but other kernel functions
correspond to other feature spaces. A venerable result in mathematics,Mercer’s theo-
rem (1909), tells us that any “reasonable”13 kernel function corresponds tosomefeatureMERCER’S THEOREM

space. These feature spaces can be very large, even for innocuous-looking kernels. For ex-
ample, thepolynomial kernel, K(xj , xk)= (1 + xj · xk)

d, corresponds to a feature spacePOLYNOMIAL

KERNEL

whose dimension is exponential ind.

12 This usage of “kernel function” is slightly different from the kernels in locally weighted regression. Some
SVM kernels are distance metrics, but not all are.
13 Here, “reasonable” means that the matrixK jk = K(xj , xk) is positive definite.

748 Chapter 18. Learning from Examples

This then is the cleverkernel trick : Plugging these kernels into Equation (18.13),KERNEL TRICK

optimal linear separators can be found efficiently in feature spaces with billions of (or, in
some cases, infinitely many) dimensions.The resulting linear separators, when mapped back
to the original input space, can correspond to arbitrarily wiggly, nonlinear decision bound-
aries between the positive and negative examples.

In the case of inherently noisy data, we may not want a linear separator in some high-
dimensional space. Rather, we’d like a decision surface in alower-dimensional space that
does not cleanly separate the classes, but reflects the reality of the noisy data. That is pos-
sible with thesoft margin classifier, which allows examples to fall on the wrong side oftheSOFT MARGIN

decision boundary, but assigns them a penalty proportionalto the distance required to move
them back on the correct side.

The kernel method can be applied not only with learning algorithms that find optimal
linear separators, but also with any other algorithm that can be reformulated to work only
with dot products of pairs of data points, as in Equations 18.13 and 18.14. Once this is
done, the dot product is replaced by a kernel function and we have akernelized versionKERNELIZATION

of the algorithm. This can be done easily fork-nearest-neighbors and perceptron learning
(Section 18.7.2), among others.

18.10 ENSEMBLE LEARNING

So far we have looked at learning methods in which a single hypothesis, chosen from a
hypothesis space, is used to make predictions. The idea ofensemble learningmethods isENSEMBLE

LEARNING

to select a collection, orensemble, of hypotheses from the hypothesis space and combine
their predictions. For example, during cross-validation we might generate twenty different
decision trees, and have them vote on the best classificationfor a new example.

The motivation for ensemble learning is simple. Consider anensemble ofK =5 hy-
potheses and suppose that we combine their predictions using simple majority voting. For the
ensemble to misclassify a new example,at least three of the five hypotheses have to misclas-
sify it. The hope is that this is much less likely than a misclassification by a single hypothesis.
Suppose we assume that each hypothesishk in the ensemble has an error ofp—that is, the
probability that a randomly chosen example is misclassifiedby hk is p. Furthermore, suppose
we assume that the errors made by each hypothesis areindependent. In that case, ifp is small,
then the probability of a large number of misclassificationsoccurring is minuscule. For ex-
ample, a simple calculation (Exercise 18.18) shows that using an ensemble of five hypotheses
reduces an error rate of 1 in 10 down to an error rate of less than 1 in 100. Now, obviously
the assumption of independence is unreasonable, because hypotheses are likely to be misled
in the same way by any misleading aspects of the training data. But if the hypotheses are at
least a little bit different, thereby reducing the correlation between their errors, then ensemble
learning can be very useful.

Another way to think about the ensemble idea is as a generic way of enlarging the
hypothesis space. That is, think of the ensemble itself as a hypothesis and the new hypothesis

