-/’(5-'%
o0

First-Order
Logic (FOL)
part 1

FOL Overview

e First Order logic (FOL) is a powerful knowledge
representation (KR) system

e Used in Al systems in various ways, e.g., to
—Directly represent & reason about concepts & objects

—Formally specify meaning of KR systems (e.g., OWL)

—Form programming languages (e.g., Prolog) and rule-
based systems

—Make semantic database systems (Datalog) and
Knowledge graphs (Wikidata)

—Provide features useful in neural network deep
learning systems

https://en.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Rule-based_system
https://en.wikipedia.org/wiki/Datalog
https://en.wikipedia.org/wiki/Wikidata

First-order logic

e First-order logic (FOL) models the world in terms of
— Objects, which are things with individual identities
— Properties of objects that distinguish them from others
— Relations that hold among sets of objects

— Functions, a subset of relations where there is only one
“value” for any given “input”

e Examples:
— Objects: students, lectures, companies, cars ...

— Relations: isa, hasBrother, biggerThan, outside, hasPart,
color, occursAfter, owns, visits, precedes, ...

— Properties: blue, oval, even, large, ...
— Functions: hasFather, hasSSN, ...

User provides

e Constant symbols representing individuals in world
—BarackObama, Green, John, 3, “John Smith”

e Predicate symbols map individuals to truth values
—greater(5,3)
—green(Grass)
—color(Grass, Green)
—hasBrother(John, Robert)

e Function symbols map individuals to individuals
—hasFather(SashaObama) = BarackObama
—colorOf(Sky) = Blue

What do these mean?

e User should also indicate what these mean in a way
that humans will understand

—i.e., map to their own internal representations

e May be done via a combination of

— Choosing good names for formal terms, e.g. calling a
concept HumanBeing instead of Q5

— Comments in the definition #human being
— Descriptions and examples in documentation

— Reference to other representations, e.g., sameAs
/m/0dgw95 in Freebase and Person in schema.org

— Give examples like Donald Trump and Luke Skywalker to
help distinguish the concepts of a real and fictional person

https://www.wikidata.org/wiki/Q5
https://tools.wmflabs.org/freebase/m/0dgw9r
https://schema.org/Person

FOL Provides

eVariable symbols
—e.g., X, Y, ?foo, ?number
e Connectives

—Same as propositional logic: not (=), and
(A), or (Vv), implies (—), iff (<),
equivalence (5), ...

e Quantifiers
—Universal Vx or (Ax)

—Existential dx or (Ex)

Sentences: built from terms and atoms

eterm (denoting an individual): constant or vari-
able symbol, or n-place function of n terms, e.g.:

—Constants: john, umbc

—Variables: X, Y, Z

—Functions: mother_of(john), phone(mother(x))
e Ground terms have no variables in them

—Ground: john, father_of(father_of(john))
—Not Ground: father_of(X)

e Syntax may vary: maybe variables must start with
a “?” or a capital letter

Sentences: built from terms and atoms

e atomic sentences (which are either true or
false) are n-place predicates of n terms, e.g.:
—green(kermit)
—between(philadelphia, baltimore, dc)
—loves(X, mother(X))

e complex sentences formed from atomic ones
connected by the standard logical connectives
with quantifiers if there are variables, e.g.:
—loves(mary, john) v loves(mary, bill)
— Vx loves(mary, x)

What do atomic sentences mean?

e Unary predicates typically encode a type
—muppet(Kermit): kermit is a kind of muppet
—green(kermit): kermit is a kind of green thing
—integer(X): x is a kind of integer

e Non-unary predicates typically encode relations
or properties
—Loves(john, mary)

—Greater_than(2, 1)
—Between(newYork, philadelphia, baltimore)
—hasName(john, “John Smith”)

PPPPP

Ontology

Animal

aaaaaa

e Desighing a logic representation is like design-
ing a model in an object-oriented language

e Ontology: a “formal naming and definition of
the types, properties and relations of entities

for a domain of discourse”

eE.g.: schema.org ontology used to put semantic
data on Web pages to help search engines

—Here’s the semantic markup Google sees on our 671

class site

https://en.wikipedia.org/wiki/Ontology
http://schema.org/
https://search.google.com/structured-data/testing-tool/u/0/

Sentences: built from terms and atoms

e quantified sentences adds quantifiers V and 3

Vx loves(x, mother(x))
dx number(x) A greater(x, 100), prime(x)

e well-formed formula (wff): a sentence with no
free variables or where all variables are bound
by a universal or existential quantifier

In (Vx)P(x, y) xis bound & y is free so it’s not a wff

Quantifiers: V and 3

e Universal quantification

—(Vx)P(X) means P holds for all values of X
in the domain associated with variable?!

—E.g., (VX) dolphin(X) > mammal(X)
e Existential quantification

—(dx)P(X) means P holds for some value of X
in domain associated with variable

—E.g., (AX) mammal(X) A lays_eggs(X)

—This lets us make statements about an
object without identifying it

La variable’s domain is often not explicitly stated and is assumed by the context

Universal Quantifier: V
e Universal quantifiers typically used with
implies to form rules:
Logic: VX student(X) — smart(X)
Means: All students are smart
e Universal quantification rarely used without
implies:
Logic: VX student(X) A smart(X)
Means: Everything is a student and is smart
e What about this, though:
—Logic: VX alive(X) v dead(X)
—Means: everything is either alive or dead

Universal Quantifier: V

e What about this, though:
—Logic: VX alive(X) v dead(X)
—Means: everything is either alive or dead
e Can be rewritten using a standard tautology
-AvB=~A —>B
e Giving both of these (since AvB = BVA)
— VX ~alive(X) — dead(X)
— VX alive(X) - ~dead(X)

Existential Quantifier: 3

e Existential quantifiers usually used with and to
specify a list of properties about an individual

Logic: (7 X) student(X) A smart(X)
Meaning: There is a student who is smart
e Common mistake: represent this in FOL as:
Logic: (7 X) student(X) — smart(X)
Meaning: ?

Existential Quantifier: 3

e Existential quantifiers usually used with and to
specify a list of properties about an individual
Logic: (7 X) student(X) A smart(X)
Meaning: There is a student who is smart

e Common mistake: represent this in FOL as:
Logic: (7 X) student(X) — smart(X)
P—>Q="~PvQ
F X student(X) — smart(X) = 7 X ~student(X) v smart(X)

Meaning: There’s something that is either not a
student or is smart

Quantifier Scope

e FOL sentences have structure, like programs
e |n particular, variables in a sentence have a scope

e Suppose we want to say “everyone who is alive loves
someone”

(VX) alive(X) = (3 Y) loves(X, Y)
e Here’s how we scope the variables

(VX) alive(X) — (3Y) loves(X, Y)

Scope of x
— SCOpE Of y

Quantifier Scope

e Switching order of two universal quantifiers does
not change the meaning

— (VX)(VY)P(X,Y) © (VY)(VX) P(X,Y)
— Dogs hate cats (i.e., all dogs hate all cats)
e You can switch order of existential quantifiers
— (IX)(AY)P(X,Y) < (FY)(IX) P(X,Y)
— A cat killed a dog

e Switching order of universal and existential
quantifiers does change meaning:

— Everyone likes someone: (VX)(3Y) likes(X,Y)
—Someone is liked by everyone: (3Y)(VX) likes(X,Y)

def verifyl():
Everyone likes someone: (Vx)(3y) likes(x,y)

for plin people():
Every person has at

least one individual that
they like.

foundLike = False
for p2 in people():
if likes(pl, p2):
foundLike = True
break
if not foundLike:
print(pl, ‘does not like anyone ®’)
return False

return True

Procedural example 1

def verify2():
Someone is liked by everyone: (3y)(Vx) likes(x,y)
for p2 in people():

foundHater = False There is a person who is

liked by every person in
the universe.

for plin people():
if not likes(p1, p2):
foundHater = True
break
if not foundHater
print(p2, ‘is liked by everyone ©’)
return True

return False

Procedural example 2

Connections between V and 3

e \We can relate sentences involving ¥V and 3
using extensions to De Morgan’s laws:
1. (Vx) P(x) © —(3x) — P(x)
2. —(Vx) P(x) © (dx) =P(x)
3. (3 x) P(x) © = (V¥ x) =P(x)
4. —(3x) P(x) < (Vx) —=P(x)
e Examples

1. All dogs don’t like cats © No dog likes cats
2. Not all dogs bark © There is a dog that doesn’t bark

3. All dogs sleep < There is no dog that doesn’t sleep
4. There is a dog that talks © Not all dogs can’t talk

http://en.wikipedia.org/wiki/De_Morgan's_laws

Notational differences

e Different symbols for and, or, not, implies, ...
—-Vid=> AV e
—pvig”r)
—p+(q*r)

e Different syntax for variables vs. constants,
predicates vs. functions, etc.

Notational differences

e Typical logic notation
Vx Ay furry(x) A meows(x) A has(x, y), claw(y) = cat(x)

e Prolog
cat(X) :- furry(X), meows (X), has(X, Y), claw(Y).
e Lisp notations
(forall ?x (implies (and (furry ?x) (meows ?x)
(has ?x ?y) (claw ?y))
(cat ?x)))

. P t h o n c 0 d e #Graph from http:/www.doefamily.com/
@prefix doefamily: <http://www.doefamily.com/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax
M M @prefix owl: <http://www.w3.0rg/2002/07/owl#> .
e . g) py O n’ Og I C . I pvn @prefix dbpedia: <http://dbpedia.org/resource/> .
d rd

oe:John f:type foaf:Person .
oe:John owl:sameAs dbpedia:John_Doe
oe:John foaf:age 72 .

e:John foaf:mbox <mailto:john@doe.com> .

e Knowledge graph triples
e.g., in RDF /OWLI > % owlisanens dbpedia:Jane_Doe

foaf:
foaf:

age 12
phone

“512-475-6656" .

-ns#> .

https://github.com/aimacode/aima-python/blob/master/logic.ipynb

