Uninformed Search

Chapter 3

Some material adopted from notes by Charles R. Dyer, University of Wisconsin-Madison
Today’s topics

• Goal-based agents
• Representing states and actions
• Example problems
• Generic state-space search algorithm
• Specific algorithms
 – Breadth-first search
 – Depth-first search
 – Uniform cost search
 – Depth-first iterative deepening
• Example problems revisited
Allen Newell and Herb Simon developed the *problem space principle* as an AI approach in the late 60s/early 70s.

"The rational activity in which people engage to solve a problem can be described in terms of (1) a set of *states* of knowledge, (2) *operators* for changing one state into another, (3) *constraints* on applying operators and (4) *control* knowledge for deciding which operator to apply next."

Example: 8-Puzzle

Given an initial configuration of 8 numbered tiles on a 3x3 board, move the tiles to produce a desired goal configuration.
15 puzzle

• Popularized, but not invented, by Sam Loyd
• He offered $1000 to all who could solve it in 1896
• He sold many puzzles
• Its states form two disjoint spaces
• There was no path to solution from initial state!
Simpler: 3-Puzzle

Start:

```
3 2 1
```

Goal:

```
1 2 3
```

1. Start:

```
3 2 1
```

2. Move the empty space to the right:

```
2 3 1
```

3. Move the empty space down:

```
2 1 3
```

4. Move the empty space to the left:

```
1 2 3
```

5. Move the empty space up:

```
1 3 2
```

6. Move the empty space to the right:

```
1 3 2
```

7. Move the empty space down:

```
1 2 3
```

This is one possible sequence to solve the 3-Puzzle from start to goal.
Building goal-based agents

We must answer the following questions
– How do we represent the **state** of the “world”?
– What is the **goal** and how can we recognize it?
– What are the possible **actions**?
– What **relevant** information do we encode to describe states, actions and their effects and thereby solve the problem?

![Diagram](image)

- **initial state**
- **goal state**
Representing states

• State of an 8-puzzle?
Representing states

• State of an 8-puzzle?
• A 3x3 array of integer in \{0..8\}
• No integer appears twice
• 0 represents the empty space

• In Python, we might implement this using a nine-character string: “540681732”
• And write functions to make the 2D coordinates to an index
What’s the goal to be achieved?

• Describe situation we want to achieve, a set of properties that we want to hold, etc.
• Defining a **goal test** function that when applied to a state returns True or False
• For our problem:
  ```python
def isGoal(state):
    return state == “123405678”
  ```
What are the actions?

• **Primitive actions** for changing the state

 In a **deterministic** world: no uncertainty in an action’s effects (simple model)

• Given action and description of **current world state**, action completely specifies

 – Whether action **can** be applied to the current world (i.e., is it applicable and legal?) and

 – What state **results** after action is performed in the current world (i.e., no need for **history** information to compute the next state)
Representing actions

• Actions ideally considered as **discrete events** that occur at an **instant of time**

• Example, in a planning context
 – If state:inClass and perform action:goHome, then next state is state:atHome
 – There’s no time where you’re neither in class nor at home (i.e., in the state of “going home”)
Representing actions

• Actions for 8-puzzle?
Representing actions

- Actions for 8-puzzle?

- Number of actions/operators depends on the representation used in describing a state
 - Specify 4 possible moves for each of the 8 tiles, resulting in a total of \(4 \times 8 = 32\) actions
 - Or, Specify four moves for “blank” square and we only need 4 actions

- Representational shift can simplify a problem!
Representing states

- **Size of a problem** usually described in terms of possible **number of states**
 - Tic-Tac-Toe has about 3^9 states ($19,683 \approx 2 \times 10^4$)
 - Checkers has about 10^{40} states
 - Rubik’s Cube has about 10^{19} states
 - Chess has about 10^{120} states in a typical game
 - Go has 2×10^{170}

- State space size \approx solution difficulty
Representing states

• Our estimates were loose upper bounds
• How many possible, legal states does tic-tac-toe really have?
• Simple upper bound: nine board cells, each of which can be empty, O or X, so 3^9
• Only 593 states after eliminating
 – impossible states
 – Rotations and reflections
Can a Problem space be infinite?

Yes, examples include theorem proving and this simple example from Knuth (1964)

• Starting with the number 4, a sequence of square root, floor, and factorial operations can reach any desired positive integer

• To get to 5 from 4, do

\[
\left\lfloor \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{(4)!}}}}} \right\rfloor = 5.
\]

• \(\text{floor} (\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{(4)!}}}}}) \)
Are they infinitely hard to solve?

• No

• But you must be more careful in searching a space that may be infinite

• Some approaches (e.g. breadth first search) may be better than others (e.g., depth first search)
Some example problems

• Toy problems and micro-worlds
 – 8-Puzzle
 – Missionaries and Cannibals
 – Cryptarithmetic
 – Remove 5 Sticks
 – Water Jug Problem

• Real-world problems
The **8-Queens Puzzle**

Place eight queens on a chessboard such that no queen attacks any other.

We can generalize the problem to a NxN chessboard.

What are the states, goal test, actions?
Route Planning

Find a route from Arad to Bucharest

A simplified map of major roads in Romania used in our text
Remove 5 Sticks

Given this configuration of sticks, remove exactly five sticks so that the remaining ones form exactly three squares.

Other tasks:
- Remove 4 sticks and leave 4 squares
- Remove 3 sticks and leave 4 squares
- Remove 4 sticks and leave 3 squares
Water Jug Problem

- Two jugs J1 & J2 with capacity C1 & C2
- Initially J1 has W1 water and J2 has W2 water
 - e.g.: full 5 gallon jug and empty 2 gallon jug
- Possible actions:
 - Pour from jug X to jug Y until X empty or Y full
 - Empty jug X onto the floor
- Goal: J1 has G1 water and J2 G2
 - G1 or G2 can be -1 to represent any amount
- E.g.: initially full jugs with capacities 3 and 1 liters, goal is to have 1 liter in each
So...

- How can we represent the states?
- What’s an initial state; how to recognize a goal state
- What are the actions; how can we tell which can be done in a given state; what’s the resulting state
- How do we search for a solution from an initial state any goal state
- What is a solution, e.g.:
 - The goal state achieved, or
 - The path (i.e., sequence of actions) taking us from the initial state to a goal state?
Search in a state space

• Basic idea:
 – Create representation of initial state
 – Try all possible actions & connect states that result
 – Recursively apply process to the new states until we find a solution or dead ends

• We need to keep track of the connections between states and might use a
 – Tree data structure or
 – Graph data structure

• A graph structure is best in general...
Search in a state space

Consider a water jug problem with a 3-liter and 1-liter jug, an initial state of (3,1) and a goal stage of (1,1)

Tree model of space

Graph model of space

graph model avoids redundancy and loops and is usually preferred
Formalizing state space search

• A state space is a graph \((V, E)\) where \(V\) is a set of nodes and \(E\) is a set of arcs, and each arc is directed from a node to another node

• **Nodes:** data structures with state description and other info, e.g., node’s parent, name of action that generated it from parent, etc.

• **Arcs:** instances of actions, head is a state, tail is the state that results from action, label on arc is action’s name or id
Formalizing search in a state space

• Each arc has fixed, positive cost associated with it corresponding to the action cost
 – Simple case: all costs are 1

• Each node has a set of successor nodes corresponding to all legal actions that can be applied at node’s state
 – Expanding a node = generating its successor nodes and adding them and their associated arcs to the graph

• One or more nodes are marked as start nodes

• A goal test predicate is applied to a state to determine if its associated node is a goal node
Example: Water Jug Problem

- Two jugs J1 and J2 with capacity C1 and C2
- Initially J1 has W1 water and J2 has W2 water
 - e.g.: a full 5-gallon jug and an empty 2-gallon jug
- Possible actions:
 - Pour from jug X to jug Y until X empty or Y full
 - Empty jug X onto the floor
- Goal: J1 has G1 water and J2 G2
 - G1 or G0 can be -1 to represent any amount
Example: Water Jug Problem

Given full 5-gal. jug and empty 2-gal. jug, fill 2-gal jug with one gallon

• State representation?
 – General state?
 – Initial state?
 – Goal state?

• Possible actions?
 – Condition?
 – Resulting state?

<table>
<thead>
<tr>
<th>Name</th>
<th>Cond.</th>
<th>Transition</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Water Jug Problem

Given full 5-gal. jug and empty 2-gal. jug, fill 2-gal jug with one gallon

• State = (x,y), where x is water in jug 1; y is water in jug 2
• Initial State = (5,0)
• Goal State = (-1,1), where -1 means any amount

Action table

<table>
<thead>
<tr>
<th>Name</th>
<th>Cond.</th>
<th>Transition</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>dump1</td>
<td>x>0</td>
<td>(x,y)→(0,y)</td>
<td>Empty Jug 1</td>
</tr>
<tr>
<td>dump2</td>
<td>y>0</td>
<td>(x,y)→(x,0)</td>
<td>Empty Jug 2</td>
</tr>
<tr>
<td>pour_1_2</td>
<td>x>0 & y<C2</td>
<td>(x,y)→(x-D,y+D) D = min(x,C2-y)</td>
<td>Pour from Jug 1 to Jug 2</td>
</tr>
<tr>
<td>pour_2_1</td>
<td>y>0 & x<C1</td>
<td>(x,y)→(x+D,y-D) D = min(y,C1-x)</td>
<td>Pour from Jug 2 to Jug 1</td>
</tr>
</tbody>
</table>
Formalizing search

• **Solution**: sequence of actions associated with a path from a start node to a goal node

• **Solution cost**: sum of the arc costs on the solution path

 – If all arcs have same (unit) cost, then solution cost is length of solution (number of steps)

 – Algorithms generally require that arc costs cannot be negative (why?)
Formalizing search

• **State-space search:** searching through state space for solution by making explicit a portion of an implicit state-space graph to find a goal node
 – Can’t materializing whole space for large problems
 – Initially $V=\{S\}$, where S is the start node, $E=\{\}$
 – On expanding S, its **successor nodes** are generated and added to V and associated **arcs added to E**
 – Process continues until a goal node is found

• Nodes represent a **partial solution** path (+ cost of partial solution path) from S to the node
 – From a node there may be many possible paths (and thus solutions) with this partial path as a prefix
State-space search algorithm

;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure

function general-search (problem, QUEUEING-FUNCTION)
 nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
 loop
 if EMPTY(nodes) then return "failure"
 node = REMOVE-FRONT(nodes)
 if problem.GOAL-TEST(node.STATE) succeeds
 then return node
 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node, problem.OPERATORS))
 end

;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops
Key procedures to be defined

• EXPAND
 – Generate a node’s successor nodes, adding them to the graph if not already there

• GOAL-TEST
 – Test if state satisfies all goal conditions

• QUEUEING-FUNCTION
 – Maintain ranked list of nodes that are candidates for expansion
 – Changing definition of the QUEUEING-FUNCTION leads to different search strategies: Which node to expand next
Bookkeeping

Typical node data structure includes:

- State at this node
- Parent node(s)
- Action(s) applied to get to this node
- Depth of this node (# of actions on shortest known path from initial state)
- Cost of path (sum of action costs on best path from initial state)
Some issues

• Search process constructs a search tree/graph, where
 – **root** is initial state and
 – **leaf nodes** are nodes
 • not yet expanded (i.e., in list “nodes”) or
 • having no successors (i.e., they’re **deadends** because no operators were applicable and yet they are not goals)

• Search tree may be infinite due to loops; even graph may be infinite for some problems

• Solution is a *path* or a *node*, depending on problem.
 – E.g., in cryptarithmetic return a node; in 8-puzzle, a path

• Changing definition of the QUEUEING-FUNCTION leads to different search strategies
Informed vs. uninformed search

Uninformed search strategies (blind search)

– Use no information about likely *direction* of a goal
– Methods: breadth-first, depth-first, depth-limited, uniform-cost, depth-first iterative deepening, bidirectional

Informed search strategies (*heuristic* search)

– Use information about domain to (try to) (usually) head in the general direction of goal node(s)
– Methods: hill climbing, best-first, greedy search, beam search, algorithm A, algorithm A*
Evaluating search strategies

• **Completeness**
 – Guarantees finding a solution whenever one exists

• **Time complexity** *(worst or average case)*
 – Usually measured by *number of nodes expanded*

• **Space complexity**
 – Usually measured by maximum size of graph/tree during the search

• **Optimality** *(aka Admissibility)*
 – If a solution is found, is it *guaranteed* to be an optimal one, i.e., one with minimum cost
Classic uninformed search methods

- The four classic uninformed search methods
 - Breadth first search (BFS)
 - Depth first search (DFS)
 - Uniform cost search (*generalization of BFS*)
 - Iterative deepening (*blend of DFS and BFS*)

- To which we can add another technique
 - Bi-directional search (*hack on BFS*)
Example of uninformed search strategies

Consider this search space where S is the start node, G is the goal, and numbers are arc costs. Assume graph is not known in advance.
Breadth-First Search

ignore weights on arcs

<table>
<thead>
<tr>
<th>Expanded node</th>
<th>Nodes list (aka Fringe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^0</td>
<td>${ S^0 }$</td>
</tr>
<tr>
<td>A^3</td>
<td>${ A^3 B^1 C^8 }$</td>
</tr>
<tr>
<td>B^1</td>
<td>${ C^8 D^6 E^{10} G^{18} }$</td>
</tr>
<tr>
<td>C^8</td>
<td>${ D^6 E^{10} G^{18} G^{21} G^{13} }$</td>
</tr>
<tr>
<td>D^6</td>
<td>${ E^{10} G^{18} G^{21} G^{13} }$</td>
</tr>
<tr>
<td>E^{10}</td>
<td>${ G^{18} G^{21} G^{13} }$</td>
</tr>
<tr>
<td>G^{18}</td>
<td>${ G^{21} G^{13} }$</td>
</tr>
</tbody>
</table>

- Typically don’t check if node is goal until we expand it (why?)
- Solution path found is $S \ A \ G$, cost 18
- # nodes expanded (including goal node) = 7
Breadth-First Search (BFS)

- Long time to find solutions with many steps: we must look at all shorter length possibilities first

 • Complete tree of depth \(d \) where nodes have \(b \) children has \(1+b+b^2+...+b^d = \frac{(b^{(d+1)}-1)}{(b-1)} \) nodes = \(\Theta(b^d) \)

 • Tree with depth 12 & branching 10 > trillion nodes

 • If BFS expands 1000 nodes/sec and nodes uses 100 bytes, can take 35 years & uses 111TB of memory!

+ Always finds solution if one exists

+ Solution found is optimal
Breadth-First Search

• Enqueue nodes in **FIFO** (first-in, first-out) order
• Complete
• **Optimal** (i.e., admissible) finds shortest path, which is optimal if all operators have same cost
• **Exponential time and space complexity**, $O(b^d)$, where d is depth of solution; b is branching factor (i.e., # of children)
• **Long time to find long solutions** since we explore all shorter length possibilities first
Depth-First Search

Expanded node	Nodes list (aka fringe)
S^0 | $\{ A^3 B^1 C^8 \}$
A^3 | $\{ D^6 E^{10} G^{18} B^1 C^8 \}$
D^6 | $\{ E^{10} G^{18} B^1 C^8 \}$
E^{10} | $\{ G^{18} B^1 C^8 \}$
G^{18} | $\{ B^1 C^8 \}$

Solution path found is $S A G$, cost 18
Number of nodes expanded (including goal node) = 5
Depth-First (DFS)

- Enqueue nodes on nodes in LIFO (last-in, first-out) order, i.e., use stack data structure to order nodes
- **May not terminate** w/o *depth bound*, i.e., ending search below fixed depth D (depth-limited search)
- **Not complete** (with or w/o cycle detection, with or w/o a cutoff depth)
- **Exponential time**, $O(b^d)$, but **linear space**, $O(bd)$
- Can find **long solutions quickly** if lucky (and **short solutions slowly** if unlucky!)
- On reaching deadend, can only back up one level at a time even if problem occurs because of a bad choice at top of tree
Uniform-Cost Search (UCS)

• Enqueue nodes by path cost. i.e., let $g(n) =$ cost of path from start to current node n. Sort nodes by increasing value of $g(n)$.

• Aka Dijkstra’s Algorithm and similar to Branch and Bound Algorithm from operations research

• Complete (*)

• Optimal/Admissible (*)
 Depends on goal test being applied when node is removed from nodes list, not when its parent node is expanded & node first generated

• Exponential time and space complexity, $O(b^d)$
Uniform-Cost Search

Expanded node Nodes list

\(S^0 \) \{ \text{B}^1 \text{A}^3 \text{C}^8 \} \\
\(\text{B}^1 \) \{ \text{A}^3 \text{C}^8 \text{G}^{21} \} \\
\(\text{A}^3 \) \{ \text{D}^6 \text{C}^8 \text{E}^{10} \text{G}^{18} \text{G}^{21} \} \\
\(\text{D}^6 \) \{ \text{C}^8 \text{E}^{10} \text{G}^{18} \text{G}^{21} \} \\
\(\text{C}^8 \) \{ \text{E}^{10} \text{G}^{13} \text{G}^{18} \text{G}^{21} \} \\
\(\text{E}^{10} \) \{ \text{G}^{13} \text{G}^{18} \text{G}^{21} \} \\
\(\text{G}^{13} \) \{ \text{G}^{18} \text{G}^{21} \} \\

Solution path found is \(S \text{ C } \text{G} \), cost 13

Number of nodes expanded (including goal node) = 7
Depth-First Iterative Deepening (DFID)

- Do DFS to depth 0, then (if no solution) DFS to depth 1, etc.
- Often used with a tree search
- Complete
- Optimal/Admissible if all operators have unit cost, else finds shortest solution (like BFS)
- Time complexity a bit worse than BFS or DFS

Nodes near top of search tree generated many times, but since almost all nodes are near tree bottom, worst case time complexity still exponential, $O(b^d)$
Depth-First Iterative Deepening (DFID)

• If branching factor is b and solution is at depth d, then nodes at depth d are generated once, nodes at depth d-1 are generated twice, etc.
 – Hence \(b^d + 2b^{(d-1)} + ... + db \leq \frac{b^d}{(1 - 1/b)^2} = O(b^d) \).
 – If \(b=4 \), worst case is \(1.78 * 4^d \), i.e., 78% more nodes searched than exist at depth d (in worst case)

• **Linear space complexity**, \(O(bd) \), like DFS

• Has advantages of BFS (completeness) and DFS (i.e., limited space, finds longer paths quickly)

• Preferred for **large state spaces** where **solution depth is unknown**
How they perform

• **Depth-First Search:**
 - 4 Expanded nodes: S A D E G
 - Solution found: S A G (cost 18)

• **Breadth-First Search:**
 - 7 Expanded nodes: S A B C D E G
 - Solution found: S A G (cost 18)

• **Uniform-Cost Search:**
 - 7 Expanded nodes: S A D B C E G
 - Solution found: S C G (cost 13)
 Only uninformed search that worries about costs

• **Iterative-Deepening Search:**
 - 10 nodes expanded: S S A B C S A D E G
 - Solution found: S A G (cost 18)
Searching Backward from Goal

• Usually a successor function is reversible
 – i.e., can generate a node’s predecessors in graph

• If we know a single goal (rather than a goal’s properties), we could search backward to the initial state

• It might be more efficient
 – Depends on whether the graph fans in or out
Bi-directional search

- Alternate searching from the start state toward the goal and from the goal state toward the start
- Stop when the frontiers intersect
- Works well only when there are unique start & goal states
- Requires ability to generate “predecessor” states
- Can (sometimes) lead to finding a solution more quickly
Comparing Search Strategies

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
<th>Bidirectional (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>b^d</td>
<td>b^d</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
<td>b^{dr_2}</td>
</tr>
<tr>
<td>Space</td>
<td>b^d</td>
<td>b^d</td>
<td>bm</td>
<td>bl</td>
<td>bd</td>
<td>b^{dr_2}</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes, if $l \geq d$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Summary

• Search in a problem space is at the heart of many AI systems
• Formalizing the search in terms of states, actions, and goals is key
• The simple “uninformed” algorithms we examined can be augmented to heuristics to improve them in various ways
• But for some problems, a simple algorithm is best