
1

1

Game Playing
Ch. 5.1-5.3, 5.4.1, 5.5

Cynthia Matuszek – CMSC 671 Based on slides by Marie desJardin, Francisco Iacobelli

1

On to Games

• Tail end of Constraint Satisfaction

• Game playing
• Framework

• Game trees
• Minimax
• Alpha-beta pruning

• Adding randomness

34

We’ve seen search problems
where other agents’ moves
need to be taken into
account – but what if they are
actively moving against us?

Questions
from reading?

34

Why Games?

• Clear criteria for success

• Offer an opportunity to study problems involving
{hostile / adversarial / competing} agents.

• Interesting, hard problems which require minimal
setup

• Often define very large search spaces
• chess 35100 nodes in search tree, 1040 legal states

• Many problems can be formalized as games

35

35

• Chess:
• Deep Blue beat Gary Kasparov in 1997
• Garry Kasparav vs. Deep Junior (Feb 2003): tie!
• Kasparov vs. X3D Fritz (November 2003): tie!
• Deep Fritz beat world champion Vladimir Kramnik (2006)
• Now computers play computers

• Checkers: “Chinook” (sigh), an AI program with a
very large endgame database, is world champion, can
provably never be beaten. Retired 1995.

State-of-the-art

36

“A computer can’t be intelligent; one
could never beat a human at ____”

36

• Bridge: “Expert-level” AI, but no world champions
• “computer bridge world champion Jack played seven top

Dutch pairs … and two reigning European champions.
• A total of 196 boards were played. Jack defeated three out

of the seven pairs (including the Europeans). Overall, the
program lost by a small margin (359 versus 385).” (2006)
• Bridge is stochastic: the computer has imperfect

information.

• Go

State-of-the-art

37

“A computer can’t be intelligent; one
could never beat a human at ____”

wikipedia: Computer_bridge

37

www.wired.com/2017/05/googles-alphago-levels-board-games-power-grids

AlphaGo Master defeated Ke Jie by three to zero during its 60 straight wins in the
online games at the end of 2016 and beginning of 2017.

38

2

State-of-the-art: Go

• Computers finally got there: AlphaGo!
• Made by Google DeepMind in London

• 2015: Beat a professional Go player without handicaps

• 2016: Beat a 9-dan professional without handicaps

• 2017: Beat Ke Jie, #1 human player

• 2017: DeepMind published AlphaGo Zero
• No human games data
• Learns from playing itself

• Better than AlphaGo in 3 days of playing
39

39

Typical Games

• 2-person game

• Players alternate moves

• Easiest games are:
• Zero-sum: one player’s loss is the other’s gain
• Fully observable: both players have access to complete

information about the state of the game.
• Deterministic: No chance (e.g., dice) involved

• Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello

• Not: Bridge, Solitaire, Backgammon, ...
44

44

How to Play (How to Search)

• Obvious approach:
• From current game state:
1. Consider all the legal moves you can make
2. Compute new position resulting from each move
3. Evaluate each resulting position
4. Decide which is best

5. Make that move
6. Wait for your opponent to move
7. Repeat

45

x1 x2 x3 x4

45

How to Play (How to Search)

• Key problems:
• Representing the “board” (game state)
• We’ve seen that there are different ways to make these choices

• Generating all legal next boards
• That can get ugly

• Evaluating a position

46

x1 x2 x3 x4

46

Evaluation Function

• Evaluation function or static evaluator is used to
evaluate the “goodness” of a game position (state)

• Zero-sum assumption allows one evaluation
function to describe goodness of a board for both
players
• One player’s gain of n means the other loses n
• How?

47

47

Evaluation Function: The Idea

• I am always trying to reach the highest value

• You are always trying to reach the lowest value

• Captures everyone’s goal in a single function
• f (n) >> 0: position n good for me and bad for you
• f (n) << 0: position n bad for me and good for you
• f (n) = 0±ε : position n is a neutral position

• f (n) = +∞: win for me
• f (n) = -∞: win for you

48

48

3

Evaluation Function Examples

• Example of an evaluation function for Tic-Tac-Toe:
• f (n) = [#3-lengths open for ×] - [#3-lengths open for O]
• A 3-length is a complete row, column, or diagonal

• Alan Turing’s function for chess
• f (n) = w(n)/b(n)
• w(n) = sum of the point value of white’s pieces
• b(n) = sum of black’s

49

49

Evaluation function examples

• Most evaluation functions are specified as a
weighted sum of position features:
• f (n) = w1 * feat1(n) + w2 * feat2(n) + ... + wn * featk(n)

• Example features for chess: piece count, piece
placement, squares controlled, …

• Deep Blue had over 8000
features in its nonlinear
evaluation function!

50

square control, rook-in-file, x-
rays, king safety, pawn structure,
passed pawns, ray control,
outposts, pawn majority, rook on
the 7th blockade, restraint,
trapped pieces, color complex, ...

50

Evaluation Function: the Idea

• I am always trying to reach the highest value

• You are always trying to reach the lowest value

• Captures everyone’s goal in a single function
• f (n) >> 0: position n good for me and bad for you
• f (n) << 0: position n bad for me and good for you
• f (n) = 0±ε : position n is a neutral position

• f (n) = +∞: win for me
• f (n) = -∞: win for you

52

52

Game trees

• Problem spaces for
typical games are
represented as trees

• Player must decide
best single move to
make next

• Root node = current
board configuration

• Arcs = possible legal
moves for a player

53

I am maximizing f(n) on my turn

Opponent is
minimizing f(n)
on their turn

53

Game trees

• Static evaluator function
• Rates a board position
• f (board) = R, with f >0 for

me, f <0 for you

• If it is my turn to move:
• Root is labeled “MAX” node
• Otherwise it is a “MIN” node

(opponent’s turn)

• Each level’s nodes are all MAX or all MIN

• Nodes at level i are opposite those at level i +1
54

54

Minimax Procedure

• Create start node: MAX node, current board state

• Expand nodes down to a depth of lookahead

• Apply evaluation function at each leaf node

• “Back up” values for each non-leaf node until a
value is computed for the root node
• MIN: backed-up value is lowest of children’s values
• MAX: backed-up value is highest of children’s values

• Pick operator associated with the child node whose
backed-up value set the value at the root

55

55

4

https://www.youtube.com/watch?v=6ELUvkSkCts

lookahead = 3
max
min

56

Minimax Algorithm

2 7 1 8

MAX
MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

Static evaluator
value

2 7 1 8

2 1

2

Can only choose
“best” move up to
lookahead

57

Example: Nim

• In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table – we’ll play 7-coin Nim

• Each player in turn has to pick up either one or two objects
• Whoever picks up the last object loses

58

Partial Game Tree for Tic-Tac-Toe

• f (n) = +1 if position
is a win for X.

• f (n) = -1 if position is
a win for O.

• f (n) = 0 if position is
a draw.

59

Minimax Tree

MAX node

MIN node

f value
value computed

by minimax

60

Nim Game Tree

• In-class exercise:

• Draw minimax search tree for 4-coin Nim

• Things to consider:
• What’s your start state?
• What’s the maximum depth of the tree? Minimum?

• Pick up either one or two objects

• Whoever picks up the last object loses

61

61

5

Expectiminimax
Alpha-beta Pruning

62

Games 2

62

Nim Game Tree

2

Player 1 wins: +1

Player 2 wins: -1 4

3

2 1 1 0

0

01 0 0

63

63

Nim Game Tree

2

Player 1 wins: +1

Player 2 wins: -1 4

3

2 1 1 0

0

01 0 0

64

1

1

-1-1 -1

64

Nim Game Tree

2

Player 1 wins: +1

Player 2 wins: -1 4

3

2 1 1 0

0

01 0 0

65

1

1

-1-1 -11

1 -1 -1

-1 -1

-1

65

Improving Minimax

• Basic problem: must examine a number of states
that is exponential in d !

• Solution: judicious pruning
of the search tree

• “Cut off” whole sections that
can’t be part of the best solution
• Or, sometimes, probably won’t

• Can be a completeness vs. efficiency tradeoff, esp. in
stochastic problem spaces

66

Alpha-Beta Pruning

• We can improve on the performance of the
minimax algorithm through alpha-beta pruning
• Basic idea: “If you have an idea that is surely bad, don't take the

time to see how truly awful it is.” – Pat Winston

672 7 1

= 2

≤ 2

≤ 1

?

• We don’t need to compute
the value at this node.

• No matter what it is, it can’t
affect the value of the root
node.

• Because the MAX player
will choose this value.

MAX

MAX

MIN

67

6

Alpha-Beta Pruning

• Traverse search tree in depth-first order

• At each MAX node n, α(n) = maximum value found so far

• At each MIN node n, β(n) = minimum value found so far
• α starts at -∞ and increases, β starts at +∞ and decreases

• β-cutoff: Given a MAX node n,
• Cut off search below n (i.e., don’t look at any more of n’s children) if:

• α(n) ≥ β(i) for some MIN node ancestor i of n

• α-cutoff:
• Stop searching below MIN node n if:

• β(n) ≤ α(i) for some MAX node ancestor i of n
68

68

Alpha-beta Example (b=3)

69

3 12 8 2 14 1

3MIN

MAX 3

2 - prune 14 1 - prune

69

Alpha-Beta Pruning

70

MAX

MIN

MAX

70

Alpha-Beta Pruning: Exercise

71

71

Effectiveness of Alpha-Beta

• Alpha-beta is guaranteed to:
• Compute the same value for the root node as minimax
• With ≤ computation

• Worst case: nothing pruned
• Examine bd leaf nodes
• Each node has b children and a d-ply search is performed

• Best case: examine only (2b)d/2 leaf nodes.
• So you can search twice as deep as minimax!
• When each player’s best move is the first alternative generated

• In Deep Blue, empirically, alpha-beta pruning took
average branching factor from ~35 to ~6!

73

73

Games of Chance

• Backgammon: 2-player with
uncertainty

• Players roll dice to
determine what moves to make

• White has just rolled 5 and 6
and has four legal moves:
• 5-10, 5-11

• 5-11, 19-24
• 5-10, 10-16
• 5-11, 11-16

• Good for decision making in adversarial problems with skill
and luck

74

74

7

Game Trees with Chance

• Chance nodes (circles)
represent random events

• For a random event
with N outcomes:
• Chance node has N

distinct children
• Each has a probability

• Example:
• Rolling 2 dice à 21

distinct outcomes
• Not all equally likely!

75

Max
Rolls

Min
Rolls

75

Game Trees with Chance

• Use minimax to
compute values for
MAX and MIN nodes

• Use expected values for
chance nodes

76

• Over a max node, as in C:

expectimax(C) =
∑i(P(di) * maxvalue(i))

• Over a min node:

expectimin(C) = ∑i(P(di) * minvalue(i))

76

Game Trees with Chance

77

Meaning of the Evaluation Function

• Dealing with probabilities and expected values means being careful with
“meaning” of values returned by the static evaluator

• “Relative-order preserving” (as here) change won’t change minimax, but
could change the decision with chance nodes

A1 = best
move

A2 = best
move

2 outcomes,
P= {.9, .1}

78

Exercise: Oopsy-Nim

• Starts out like Nim

• Each player in turn has to pick up either one or two objects

• Sometimes (probability = 0.25), when you try to pick up two objects,
you drop them both

• Picking up a single object always works

• Question: Why can’t we draw the entire game tree?

• Exercise: Draw the 4-ply game tree (2 moves per player)

79

