Game Playing

Ch. 5.1-5.3, 5.4.1, 5.5

1

Why Games?

- Clear criteria for success
- Offer an opportunity to study problems involving \{hostile / adversarial / competing\} agents.
- Interesting, hard problems which require minimal setup
- Often define very large search spaces
- chess 35^{100} nodes in search tree, 10^{40} legal states
- Many problems can be formalized as games

35

State-of-the-art

- Bridge: "Expert-level" AI, but no world champions
- "computer bridge world champion Jack played seven top Dutch pairs ... and two reigning European champions.
- A total of 196 boards were played. Jack defeated three out of the seven pairs (including the Europeans). Overall, the program lost by a small margin (359 versus 385)." (2006)
- Bridge is stochastic: the computer has imperfect information.
- Go $\quad\left[\begin{array}{c}\text { "A computer can't be intelligent; one, } \\ \text { could never beat a human at }\end{array}\right.$

On to Games

- Tail end of Constraint Satisfaction
- Game playing
- Framework
- Game trees
- Minimax
- Alpha-beta pruning
- Adding randomness

Questions from reading?
We've seen search problems where other agents' moves need to be taken into account - but what if they are actively moving against us?

36

38

State-of-the-art: Go

- Computers finally got there: AlphaGo!
- Made by Google DeepMind in London
- 2015: Beat a professional Go player without handicaps
- 2016: Beat a 9-dan professional without handicaps
- 2017: Beat Ke Jie, \#1 human player
- 2017: DeepMind published AlphaGo Zero
- No human games data
- Learns from playing itself
- Better than AlphaGo in 3 days of playing

39

How to Play (How to Search)

- Obvious approach:
- From current game state:

1. Consider all the legal moves you can make
2. Compute new position resulting from each move
3. Evaluate each resulting position
4. Decide which is best
5. Make that move
6. Wait for your opponent to move

Repeat

45

Evaluation Function

- Evaluation function or static evaluator is used to evaluate the "goodness" of a game position (state)
- Zero-sum assumption allows one evaluation function to describe goodness of a board for both players
- One player's gain of n means the other loses n
- How?

Typical Games

- 2-person game
- Players alternate moves
- Easiest games are:
- Zero-sum: one player's loss is the other's gain
- Fully observable: both players have access to complete information about the state of the game.
Deterministic: No chance (e.g., dice) involved
- Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello
- Not: Bridge, Solitaire, Backgammon, ...

How to Play (How to Search)

- Key problems:
- Representing the "board" (game state)
- We've seen that there are different ways to make these choices
- Generating all legal next boards
- That can get ugly

Evaluating a position

46

Evaluation Function: The Idea

- I am always trying to reach the highest value
- You are always trying to reach the lowest value
- Captures everyone's goal in a single function
- $f(n) \gg 0$: position n good for me and bad for you
- $f(n) \ll 0$: position n bad for me and good for you
- $f(\boldsymbol{n})=\mathbf{0} \pm \varepsilon$: position n is a neutral position
- $f(n)=+\infty$: win for me
- $f(n)=-\infty$: win for you

Evaluation Function Examples

- Example of an evaluation function for Tic-Tac-Toe:
- $f(n)=[\# 3$-lengths open for $\times]$ - [\#3-lengths open for O]
- A 3-length is a complete row, column, or diagonal
- Alan Turing's function for chess
- $f(n)=w(n) / b(n)$
- $w(n)=$ sum of the point value of white's pieces
- $b(n)=$ sum of black's

Evaluation function examples

- Most evaluation functions are specified as a weighted sum of position features:
- $f(n)=w_{1}{ }^{*}$ feat $_{1}(n)+w_{2}{ }^{*}$ feat $_{2}(n)+\ldots+w_{n}{ }^{*}$ feat $_{k}(n)$
- Example features for chess: piece count, piece placement, squares controlled, ...
- Deep Blue had over $\mathbf{8 0 0 0}$ square control, rook-in-file, x features in its nonlinear rays, king safety, pawn structure, evaluation function! passed pawns, ray control, outposts, pawn majority, rook on
the $7^{\text {th }}$ blockade, restraint, trapped pieces, color complex,

50

53

Minimax Procedure

- Create start node: MAX node, current board state
- Expand nodes down to a depth of lookahead
- Apply evaluation function at each leaf node
- "Back up" values for each non-leaf node until a value is computed for the root node
- min: backed-up value is lowest of children's values - MAX: backed-up value is highest of children's values
- Pick operator associated with the child node whose backed-up value set the value at the root

56

58

60

57

Partial Game Tree for Tic-Tac-Toe

59

Nim Game Tree

- In-class exercise:
- Draw minimax search tree for 4 -coin Nim
- Things to consider:
- What's your start state?
- What's the maximum depth of the tree? Minimum?
- Pick up either one or two objects
- Whoever picks up the last object loses

61

62

64

Improving Minimax

- Basic problem: must examine a number of states that is exponential in d !
- Solution: judicious pruning of the search tree
- "Cut off" whole sections that can't be part of the best solution - Or, sometimes, probably won't
- Can be a completeness vs. efficiency tradeoff, esp. in stochastic problem spaces

Nim Game Tree

Player 1 wins: +1
Player 2 wins: - 1

63

65

Alpha-Beta Pruning

- We can improve on the performance of the minimax algorithm through alpha-beta pruning
- Basic idea: "If you have an idea that is surely bad, don't take the time to see how truly awful it is." - Pat Winston

67

Alpha-Beta Pruning

- Traverse search tree in depth-first order
- At each MAX node $\mathrm{n}, \alpha(\mathrm{n})=$ maximum value found so far
- At each MIN node $\mathrm{n}, \beta(\mathrm{n})=$ minimum value found so far - α starts at $-\infty$ and increases, β starts at $+\infty$ and decreases
- $\boldsymbol{\beta}$-cutoff: Given a MAX node n,
- Cut off search below n (i.e., don't look at any more of n's children) if:
- $\alpha(n) \geq \beta(i)$ for some MIN node ancestor i of n
- α-cutoff:
- Stop searching below MIN node n if:
$\beta(\mathrm{n}) \leq \alpha(\mathrm{i})$ for some MAX node ancestor i of n

68

70

Effectiveness of Alpha-Beta

- Alpha-beta is guaranteed to:
- Compute the same value for the root node as minimax
- With \leq computation
- Worst case: nothing pruned
- Examine b^{d} leaf nodes
- Each node has b children and a d-ply search is performed
- Best case: examine only $(2 b)^{d / 2}$ leaf nodes.
- So you can search twice as deep as minimax!
- When each player's best move is the first alternative generated
- In Deep Blue, empirically, alpha-beta pruning took average branching factor from ~ 35 to ~ 6 !

Alpha-beta Example ($b=3$)

69

Alpha-Beta Pruning: Exercise

Games of Chance

- Backgammon: 2-player with uncertainty
- Players roll dice to determine what moves to make
- White has just rolled 5 and 6 and has four legal moves:
5-10, 5-11

- 5-11, 19-24

5-10, 10-16
5-11, 11-16

- Good for decision making in adversarial problems with skill and luck

75

77

Game Trees with Chance

- Use minimax to compute values for MAX and MIN nodes
- Use expected values for chance nodes
- Over a max node, as in C: $\underset{\Sigma}{\operatorname{expectimax}}(\mathrm{C})=$ $\sum_{i}\left(\mathrm{P}\left(d_{i}\right) *\right.$ maxvalue $\left.(i)\right)$
- Over a min node:
$\operatorname{expectimin}(\mathrm{C})=\sum_{i}\left(\mathrm{P}\left(d_{i}\right) * \operatorname{minvalue}(i)\right)$

76

78

Exercise: Oopsy-Nim

- Starts out like Nim
- Each player in turn has to pick up either one or two objects
- Sometimes (probability $=0.25$), when you try to pick up two objects, you drop them both
- Picking up a single object always works

- Question: Why can't we draw the entire game tree?
- Exercise: Draw the 4-ply game tree (2 moves per player)

