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Game Playing
Ch. 5.1-5.3, 5.4.1, 5.5

Cynthia Matuszek – CMSC 671 Based on slides by Marie desJardin, Francisco Iacobelli
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On to Games

• Tail end of  Constraint Satisfaction

• Game playing
• Framework

• Game trees
• Minimax
• Alpha-beta pruning

• Adding randomness
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We’ve seen search problems 
where other agents’ moves 
need to be taken into 
account – but what if they are 
actively moving against us?

Questions 
from reading?
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Why Games?

• Clear criteria for success

• Offer an opportunity to study problems involving 
{hostile / adversarial / competing} agents.

• Interesting, hard problems which require minimal 
setup

• Often define very large search spaces
• chess 35100 nodes in search tree, 1040 legal states

• Many problems can be formalized as games
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• Chess: 
• Deep Blue beat Gary Kasparov in 1997
• Garry Kasparav vs. Deep Junior (Feb 2003): tie!  
• Kasparov vs. X3D Fritz (November 2003): tie! 
• Deep Fritz beat world champion Vladimir Kramnik (2006)
• Now computers play computers

• Checkers: “Chinook” (sigh), an AI program with a 
very large endgame database, is world champion, can 
provably never be beaten. Retired 1995.

State-of-the-art
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“A computer can’t be intelligent; one  
could never beat a human at  ____”
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• Bridge: “Expert-level” AI, but no world champions
• “computer bridge world champion Jack played seven top 

Dutch pairs … and two reigning European champions. 
• A total of 196 boards were played. Jack defeated three out 

of the seven pairs (including the Europeans). Overall, the 
program lost by a small margin (359 versus 385).” (2006)
• Bridge is stochastic: the computer has imperfect 

information.

• Go

State-of-the-art
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“A computer can’t be intelligent; one  
could never beat a human at  ____”

wikipedia: Computer_bridge

37

www.wired.com/2017/05/googles-alphago-levels-board-games-power-grids

AlphaGo Master defeated Ke Jie by three to zero during its 60 straight wins in the 
online games at the end of 2016 and beginning of 2017. 
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State-of-the-art: Go

• Computers finally got there: AlphaGo!
• Made by Google DeepMind in London

• 2015: Beat a professional Go player without handicaps

• 2016: Beat a 9-dan professional without handicaps

• 2017: Beat Ke Jie, #1 human player

• 2017: DeepMind published AlphaGo Zero
• No human games data
• Learns from playing itself

• Better than AlphaGo in 3 days of  playing
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Typical Games

• 2-person game

• Players alternate moves 

• Easiest games are:
• Zero-sum: one player’s loss is the other’s gain
• Fully observable: both players have access to complete 

information about the state of  the game.  
• Deterministic: No chance (e.g., dice) involved 

• Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello

• Not: Bridge, Solitaire, Backgammon, ...
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How to Play (How to Search)

• Obvious approach:
• From current game state:
1. Consider all the legal moves you can make
2. Compute new position resulting from each move
3. Evaluate each resulting position 
4. Decide which is best

5. Make that move
6. Wait for your opponent to move 
7. Repeat
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x1 x2 x3 x4
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How to Play (How to Search)

• Key problems:
• Representing the “board” (game state)
• We’ve seen that there are different ways to make these choices

• Generating all legal next boards
• That can get ugly

• Evaluating a position
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x1 x2 x3 x4
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Evaluation Function

• Evaluation function or static evaluator is used to 
evaluate the “goodness” of a game position (state)

• Zero-sum assumption allows one evaluation 
function to describe goodness of  a board for both
players
• One player’s gain of n means the other loses n
• How?

47

47

Evaluation Function: The Idea

• I am always trying to reach the highest value

• You are always trying to reach the lowest value

• Captures everyone’s goal in a single function
• f (n)  >> 0: position n good for me and bad for you
• f (n) << 0:  position n bad for me and good for you
• f (n) = 0±ε : position n is a neutral position

• f (n) = +∞: win for  me
• f (n) = -∞: win for you  
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Evaluation Function Examples

• Example of  an evaluation function for Tic-Tac-Toe:
• f (n) = [#3-lengths open for ×] - [#3-lengths open for O] 
• A 3-length is a complete row, column, or diagonal

• Alan Turing’s function for chess
• f (n) = w(n)/b(n)
• w(n) = sum of the point value of white’s pieces 
• b(n) = sum of black’s
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Evaluation function examples

• Most evaluation functions are specified as a 
weighted sum of position features:
• f (n) = w1 * feat1(n) + w2 * feat2(n) + ... + wn * featk(n) 

• Example features for chess: piece count, piece 
placement, squares controlled, …

• Deep Blue had over 8000
features in its nonlinear
evaluation function!
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square control, rook-in-file, x-
rays, king safety, pawn structure, 
passed pawns, ray control, 
outposts, pawn majority, rook on 
the 7th blockade, restraint, 
trapped pieces, color complex, ...
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Evaluation Function: the Idea

• I am always trying to reach the highest value

• You are always trying to reach the lowest value

• Captures everyone’s goal in a single function
• f (n)  >> 0: position n good for me and bad for you
• f (n) << 0:  position n bad for me and good for you
• f (n) = 0±ε : position n is a neutral position

• f (n) = +∞: win for  me
• f (n) = -∞: win for you  
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Game trees

• Problem spaces for 
typical games are 
represented as trees

• Player must decide 
best single move to 
make next

• Root node = current 
board configuration

• Arcs = possible legal 
moves for a player
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I am maximizing f(n) on my turn

Opponent is
minimizing f(n) 
on their turn

53

Game trees

• Static evaluator function
• Rates a board position
• f (board) = R, with f >0 for 

me, f <0 for you

• If  it is my turn to move:
• Root is labeled “MAX” node
• Otherwise it is a “MIN” node

(opponent’s turn)

• Each level’s nodes are all MAX or all MIN

• Nodes at level i are opposite those at level i +1 
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Minimax Procedure

• Create start node: MAX node, current board state

• Expand nodes down to a depth of lookahead

• Apply evaluation function at each leaf  node 

• “Back up” values for each non-leaf  node until a 
value is computed for the root node
• MIN: backed-up value is lowest of children’s values 
• MAX: backed-up value is highest of children’s values 

• Pick operator associated with the child node whose 
backed-up value set the value at the root
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https://www.youtube.com/watch?v=6ELUvkSkCts

lookahead = 3
max
min

56

Minimax Algorithm

2 7 1 8

MAX
MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

Static evaluator 
value

2 7 1 8

2 1

2

Can only choose 
“best” move up to 
lookahead
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Example: Nim

• In Nim, there are a certain number of objects (coins, sticks, 
etc.) on the table – we’ll play 7-coin Nim

• Each player in turn has to pick up either one or two objects
• Whoever picks up the last object loses
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Partial Game Tree for Tic-Tac-Toe

• f (n) = +1 if position 
is a win for X.

• f (n) = -1 if position is 
a win for O.

• f (n) = 0 if position is 
a draw.
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Minimax Tree

MAX node

MIN node

f value
value computed 

by minimax
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Nim Game Tree

• In-class exercise: 

• Draw minimax search tree for 4-coin Nim

• Things to consider:
• What’s your start state?
• What’s the maximum depth of the tree? Minimum?

• Pick up either one or two objects

• Whoever picks up the last object loses
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Expectiminimax
Alpha-beta Pruning
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Games 2
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Nim Game Tree

2

Player 1 wins: +1

Player 2 wins: -1 4

3

2 1 1 0

0

01 0 0
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Nim Game Tree

2

Player 1 wins: +1

Player 2 wins: -1 4

3

2 1 1 0

0

01 0 0
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1

1

-1-1 -1
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Nim Game Tree

2

Player 1 wins: +1

Player 2 wins: -1 4

3

2 1 1 0

0

01 0 0
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1

1

-1-1 -11

1 -1 -1

-1 -1

-1
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Improving Minimax

• Basic problem: must examine a number of  states 
that is exponential in d !

• Solution: judicious pruning
of the search tree

• “Cut off” whole sections that 
can’t be part of  the best solution
• Or, sometimes, probably won’t

• Can be a completeness vs. efficiency tradeoff, esp. in 
stochastic problem spaces
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Alpha-Beta Pruning

• We can improve on the performance of  the 
minimax algorithm through alpha-beta pruning
• Basic idea: “If  you have an idea that is surely bad, don't take the 

time to see how truly awful it is.” – Pat Winston 

672 7 1

= 2

≤ 2 

≤ 1

?

• We don’t need to compute 
the value at this node.

• No matter what it is, it can’t 
affect the value of the root 
node.

• Because the MAX player
will choose this value.

MAX

MAX

MIN
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Alpha-Beta Pruning

• Traverse search tree in depth-first order 

• At each MAX node n, α(n) =  maximum value found so far

• At each MIN node n, β(n) =  minimum value found so far
• α starts at -∞ and increases, β starts at +∞ and decreases

• β-cutoff: Given a MAX node n,
• Cut off  search below n (i.e., don’t look at any more of  n’s children) if:

• α(n) ≥ β(i) for some MIN node ancestor i of  n

• α-cutoff: 
• Stop searching below MIN node n if:

• β(n) ≤ α(i) for some MAX node ancestor i of  n
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Alpha-beta Example (b=3)
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3 12 8 2 14 1

3MIN

MAX 3

2 - prune 14 1 - prune
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Alpha-Beta Pruning
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MAX

MIN

MAX

70

Alpha-Beta Pruning: Exercise
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Effectiveness of  Alpha-Beta

• Alpha-beta is guaranteed to:
• Compute the same value for the root node as minimax
• With ≤ computation

• Worst case: nothing pruned
• Examine bd leaf  nodes
• Each node has b children and a d-ply search is performed 

• Best case: examine only (2b)d/2 leaf  nodes.
• So you can search twice as deep as minimax! 
• When each player’s best move is the first alternative generated  

• In Deep Blue, empirically, alpha-beta pruning took 
average branching factor from ~35 to ~6!
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Games of  Chance

• Backgammon: 2-player with 
uncertainty

• Players roll dice to 
determine what moves to make

• White has just rolled 5 and 6 
and has four legal moves:
• 5-10, 5-11

• 5-11, 19-24
• 5-10, 10-16
• 5-11, 11-16

• Good for decision making in adversarial problems with skill 
and luck
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Game Trees with Chance

• Chance nodes (circles) 
represent random events

• For a random event 
with N outcomes:
• Chance node has N 

distinct children
• Each has a probability

• Example: 
• Rolling 2 dice à 21 

distinct outcomes
• Not all equally likely!
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Max
Rolls

Min
Rolls
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Game Trees with Chance

• Use minimax to 
compute values for 
MAX and MIN nodes

• Use expected values for 
chance nodes
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• Over a max node, as in C: 

expectimax(C) = 
∑i(P(di) * maxvalue(i))

• Over a min node:

expectimin(C) = ∑i(P(di) * minvalue(i))
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Game Trees with Chance
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Meaning of  the Evaluation Function

• Dealing with probabilities and expected values means being careful with 
“meaning” of values returned by the static evaluator

• “Relative-order preserving” (as here) change won’t change minimax, but 
could change the decision with chance nodes

A1 = best 
move

A2 = best 
move

2 outcomes, 
P= {.9, .1}
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Exercise: Oopsy-Nim

• Starts out like Nim

• Each player in turn has to pick up either one or two objects

• Sometimes (probability = 0.25), when you try to pick up two objects, 
you drop them both

• Picking up a single object always works

• Question: Why can’t we draw the entire game tree?

• Exercise:  Draw the 4-ply game tree (2 moves per player)
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