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Local Search
Ch. 4.1-4.2

Cynthia Matuszek – CMSC 671

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Dr. 
Matuszek @ Villanova University, which are based on Hwee Tou Ng at Berkeley, which 

are based on Russell at Berkeley. Some diagrams are based on AIMA.
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Bookkeeping

• HW 1 in, HW 2 out tonight
• (for sanity checking)

• Python lecture?

• Piazza notes:
• Please make a new post with new questions
• Only use the “respond” feature for stuff in that thread

• Please tag posts properly
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Today’s Class

• Local Search 

• Iterative improvement methods

• Hill climbing

• Simulated annealing

• Local beam search

• Genetic algorithms

• Online search
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“If the path to the goal 
does not matter… [we 
can use] a single current 
node and move to 
neighbors of that node.”

– R&N pg. 121
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Local Search Algorithms

• Sometimes the path to the goal is irrelevant
• Goal state itself is the solution
• an objective function to evaluate states

• In such cases, we can use local search algorithms

• Keep a single “current” state, try to improve it

6

Local Search Example: n-Queens

• Put n-queens on an n×n board with no two queens on 
the same row, column, or diagonal

• Does it matter how we got to D?

• We only need the state – not the
history/path

• Once we reach D, can forget A, B/C

A B D

C
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Local Search Algorithms
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• Sometimes the path to the goal is irrelevant
• Goal state itself  is the solution
• an objective function to evaluate states

• State space = set of  “complete” configurations
• That is, all elements of a solution are present
• E.g., all the queens are on the board in some position

• Find configuration satisfying constraints

• In such cases, we can use local search algorithms

• Keep a single “current” state, try to improve it

Very efficient!

Why?
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Landscapes            . `

• Search graph can be a landscape

• Each node has successor(s) it can reach (called s)
• Its children, unless there are loops

• Each successor has some “goodness” (desirability) 
according to the objective function

• h (n) – h (s) is a positive, negative, or 0

• Positive is “uphill” (moving 
to a more desirable state)
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Minor hassle: 
Sometimes maximizing, 
sometimes minimizing.
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State Space (Landscape)
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State Space (Landscape)
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State Space (Landscape)
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Iterative Improvement Search

• Start with an initial guess 

• Gradually improve it until it is legal or optimal

• Some examples:
• Hill climbing
• Simulated annealing
• Constraint satisfaction

18

18

Hill Climbing on State Surface

• Concept: 
trying to reach 
the “highest” 
(most 
desirable) 
point (state)

• “Height” 
Defined by 
Evaluation 
Function
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Hill Climbing Search

• Looks one step ahead to determine if any successor is 
“better” than current state, then moves to best choice

• If there exists a successor s for the current state n such that 
• h(s) > h(n) – it’s better than where we are now
• h(s) >= h(t) for all the successors t of  n – and better than other choices

then move from n to s. Otherwise, halt at n. 

• A kind of Greedy search in that it uses h
• But, does not allow backtracking or jumping to an alternative path 
• Doesn’t “remember” where it has been

• Not complete
• Search will terminate at local minima, plateaux, ridges.
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f(n) = -(number of tiles out of place)

Hill Climbing Example
(backwards moves omitted for 

brevity, but algorithm must 
consider them)
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Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html

local maximum

ridge

plateau

Exploring the Landscape

• Local Maxima: 
• Peaks that aren’t the highest 

point in the whole space

• Plateaus:
• A broad flat region that gives the 

search algorithm no direction 
(do a random walk)

• Ridges:
• Flat like a plateau, but with 

drop-offs to the sides; steps to 
the North, East, South and West 
may go down, but a step to the 
NW may go up.
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Drawbacks of  Hill Climbing

• Problems: local maxima, plateaus, ridges

• Remedies: 
• Random restart: keep restarting the search from random 

locations until a goal is found.
• Problem reformulation: reformulate the search space to 

eliminate these problematic features

• Some problem spaces are great for hill climbing; 
others are terrible
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Example of  a Local Optimum
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right

f = -(manhattan distance)
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Some Extensions of  Hill Climbing

• Simulated Annealing  
• Escape local maxima by allowing some “bad” moves but 

gradually decreasing their frequency

• Local Beam Search
• Keep track of  k states rather than just one

• At each iteration:

• All successors of  the k states are generated and evaluated

• Best k are chosen for the next iteration
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Some Extensions of  Hill Climbing

• Stochastic (probabilistic) Beam Search
• Chooses semi-randomly from “uphill” possibilities

• “Steeper” moves have a higher probability of  being chosen

• Random-Restart Climbing
• Can actually be applied to any form of  search

• Pick random starting points until one leads to a solution

• Genetic Algorithms
• Each successor is generated from two predecessor (parent) 

states

26

26



5

• Length of  downward “steps” proportional to negative of  the 
gradient (slope) at the current state
• “Steepest descent” à long “steps”
• Jump to a node that is “farther away” if  f (�) difference is large

• Gradient descent procedure for finding the argx min f(x)
• choose initial x0 randomly

• repeat:

• until the sequence x0, x1, …, xi, xi+1 converges

• Step sizeη(eta) is small (~0.1–0.05)

• Good for differentiable, continuous spaces

Gradient Descent (or Ascent)
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xi+1 ← xi – η f ’ (xi)
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Gradient Descent

28 https://www.youtube.com/watch?v=ClotAJHZ3oE
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Gradient Ascent / Descent

Images from http://en.wikipedia.org/wiki/Gradient_descent29
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Gradient Methods vs. Newton’s Method

• Newton’s method (calculus):

xi+1 ← xi – η f ’ (xi) / f ’’ (xi) 

• Newton’s method uses 2nd

order information (the second 
derivative, or, curvature) to 
take a more direct route to the 
minimum.

• The second-order information 
is more expensive to compute, 
but converges more quickly.

Contour lines of a function (blue)
• Gradient descent (green)
• Newton’s method (red)

Images from http://en.wikipedia.org/wiki/Newton's_method_in_optimization
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Simulated Annealing

• Conceptually: Escape local maxima by allowing 
some “bad” (locally counterproductive)  moves but 
gradually decreasing their frequency

• Simulated annealing (SA): analogy between the way 
metal cools into a minimum-energy crystalline 
structure and the search for a minimum generally
• In very hot metal, molecules can move fairly freely
• They are slightly less likely to move out of a stable 

structure
• As metal cools, molecules are more likely to stay 
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Simulated Annealing (II)

• Can avoid becoming trapped at local minima.

• Uses a random local search that:
• Accepts “moves” that increase objective function f
• As well as some that decrease it

• Uses a control parameter T
• By analogy with the original application 

• Is known as the system “temperature”

• T starts out high and gradually decreases toward 0
32

freedom to 
make “bad” 
moves

32



6

Simulated Annealing (IV)

• f (s) represents the quality of  state n (high is good)

• A “bad” move from A to B is accepted with probability
P(moveA→B) ≈ e( f  (B) – f  (A))  / T

• f (B) – f (A) is negative – ‘bad’ moves have relative probability <1   
• f (B) – f (A) is positive – ‘good’ have relative probability >1

• Temperature
• Higher temperature = more likely to make a “bad” move
• As T tends to zero, this probability tends to zero
• SA becomes more like hill climbing

• If  T is lowered slowly enough, SA is complete and admissible. 
• domain-specific 
• sometimes hard to determine
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The Simulated Annealing Algorithm 
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no history –
we only keep 
‘current’. 
Local!
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Local Beam Search

• Begin with k random states 
• k, instead of one, current state(s)

• Generate all successors of  these states

• Keep the k best states across all successors

• Stochastic beam search
• Probability of keeping a state is a function of its heuristic 

value
• More likely to keep “better” successors
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Genetic Algorithms

• The Idea: 
• New states generated by 

“mutating” a single state or 
“reproducing” (combining) 
two parent states

• Selected for their fitness

• Similar to stochastic beam search

• Start with k random states (the initial population)
• Encoding used for the “genome” of  an individual strongly 

affects the behavior of  the search
• Must have some combinable representation of  state spaces
• Genetic algorithms / genetic programming are a research area
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Tabu Meta-Search

• Problem: Local search “stuck” at local maxima

• Solution: relax search rules
1. At each step, make a “bad” move if there’s no good one
2. Add “prohibitions” to discourage search from returning  

to recently visited areas of the search space (“cycling”) 

• How: Maintain a list of  k previously visited states, 
and prevent the search from revisiting them
• Why not always do this?

Russell & Norvig, en.wikipedia.org/wiki/Tabu_search
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“Online” Search

• Interleave computation and action (search some, act some)

• Exploration: Don’t know outcomes of actions

• So agent must try them!

• Competitive ratio = Path cost found* / Path cost that could be found** 

* On average, or in an adversarial scenario (worst case)

** If the agent knew transition functions and could use offline search

• Relatively easy if actions are reversible 

• LRTA* (Learning Real-Time A*): Update h(s) (in a state table) as new 
nodes are found
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More about online search and 
nondeterministic actions next time…
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Summary: Local Search (I)

• State space can be treated as a “landscape” of  
movement through connected states 

• We’re trying to find “high” (good) points

• Best-first search: a class of  search algorithms where 
minimum-cost nodes are expanded first

• Greedy search: uses minimal estimated cost h(n) to 
the goal state as measure of  goodness
• Reduces search time, but is neither complete nor optimal
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Summary: Local Search (II)

• Hill-climbing algorithms keep only a single state in 
memory, but can get stuck on local optima

• Simulated annealing escapes local optima, and is complete 
and optimal given a “long enough” cooling schedule

• Genetic algorithms search a space by modeling biological 
evolution

• Online search algorithms are useful in state spaces with 
partial/no information
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Questions?
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Class Exercise:
Local Search for n-Queens

Q

Q

Q

Q

Q

Q

(more on constraint satisfaction heuristics next time...)

Heuristic?

State space?
Search algorithm?

Example moves?
Problems?
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