
1

Local Search
Ch. 4.1-4.2

Cynthia Matuszek – CMSC 671

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Dr.
Matuszek @ Villanova University, which are based on Hwee Tou Ng at Berkeley, which

are based on Russell at Berkeley. Some diagrams are based on AIMA.

1

Bookkeeping

• HW 1 in, HW 2 out tonight
• (for sanity checking)

• Python lecture?

• Piazza notes:
• Please make a new post with new questions
• Only use the “respond” feature for stuff in that thread

• Please tag posts properly

2

2

Today’s Class

• Local Search

• Iterative improvement methods

• Hill climbing

• Simulated annealing

• Local beam search

• Genetic algorithms

• Online search

3

“If the path to the goal
does not matter… [we
can use] a single current
node and move to
neighbors of that node.”

– R&N pg. 121

3

E

Local Search Algorithms

• Sometimes the path to the goal is irrelevant
• Goal state itself is the solution
• an objective function to evaluate states

• In such cases, we can use local search algorithms

• Keep a single “current” state, try to improve it

6

Local Search Example: n-Queens

• Put n-queens on an n×n board with no two queens on
the same row, column, or diagonal

• Does it matter how we got to D?

• We only need the state – not the
history/path

• Once we reach D, can forget A, B/C

A B D

C

7

E

Local Search Algorithms

8

• Sometimes the path to the goal is irrelevant
• Goal state itself is the solution
• an objective function to evaluate states

• State space = set of “complete” configurations
• That is, all elements of a solution are present
• E.g., all the queens are on the board in some position

• Find configuration satisfying constraints

• In such cases, we can use local search algorithms

• Keep a single “current” state, try to improve it

Very efficient!

Why?

8

2

Landscapes . `

• Search graph can be a landscape

• Each node has successor(s) it can reach (called s)
• Its children, unless there are loops

• Each successor has some “goodness” (desirability)
according to the objective function

• h (n) – h (s) is a positive, negative, or 0

• Positive is “uphill” (moving
to a more desirable state)

9

Minor hassle:
Sometimes maximizing,
sometimes minimizing.

9

State Space (Landscape)

S

A 1 B 4

2

C
3

10

State Space (Landscape)

S

A 1 B 4

2

f (S) = 2
f (A) = 1
f (B) = 4
f (C) = 3

C
3

11

State Space (Landscape)

B

S

S

A 1 B 4

2

f (S) = 2
f (A) = 1
f (B) = 4
f (C) = 3

C
3

12

State Space (Landscape)

A
S

B

S

A 1 B 4

2

f (S) = 2
f (A) = 1
f (B) = 4
f (C) = 3

C
3

13

State Space (Landscape)

A
S

B

A
S

B

S

A 1 B 4

2

f (S) = 2
f (A) = 1
f (B) = 4
f (C) = 3

C
3

14

3

State Space (Landscape)

A
S

B

A
S

B

S

A 1 B 4

2

f (S) = 2
f (A) = 1
f (B) = 4
f (C) = 3

C
3

15

State Space (Landscape)

A
S

B

A
S

B

S

A 1 B 4

2

f (S) = 2
f (A) = 1
f (B) = 4
f (C) = 3

C
3

C

16

State Space (Landscape)

A
S

B

S

A 1 B 4

2

f (S) = 2
f (A) = 1
f (B) = 4
f (C) = 3

C
3

C

plateau
/

17

Iterative Improvement Search

• Start with an initial guess

• Gradually improve it until it is legal or optimal

• Some examples:
• Hill climbing
• Simulated annealing
• Constraint satisfaction

18

18

Hill Climbing on State Surface

• Concept:
trying to reach
the “highest”
(most
desirable)
point (state)

• “Height”
Defined by
Evaluation
Function

19

19

Hill Climbing Search

• Looks one step ahead to determine if any successor is
“better” than current state, then moves to best choice

• If there exists a successor s for the current state n such that
• h(s) > h(n) – it’s better than where we are now
• h(s) >= h(t) for all the successors t of n – and better than other choices

then move from n to s. Otherwise, halt at n.

• A kind of Greedy search in that it uses h
• But, does not allow backtracking or jumping to an alternative path
• Doesn’t “remember” where it has been

• Not complete
• Search will terminate at local minima, plateaux, ridges.

20

20

4

2 8 3
1 6 4
7 5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

1 3
8 4

7 6 5

2

3
1 8 4
7 6 5

2

1 3
8 4
7 6 5

2
start goal

-5

h = -3

h = -3

h = -2

h = -1

h = 0h = -4

-5

-4

-4-3

-2

f(n) = -(number of tiles out of place)

Hill Climbing Example
(backwards moves omitted for

brevity, but algorithm must
consider them)

21

Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html

local maximum

ridge

plateau

Exploring the Landscape

• Local Maxima:
• Peaks that aren’t the highest

point in the whole space

• Plateaus:
• A broad flat region that gives the

search algorithm no direction
(do a random walk)

• Ridges:
• Flat like a plateau, but with

drop-offs to the sides; steps to
the North, East, South and West
may go down, but a step to the
NW may go up.

22

Drawbacks of Hill Climbing

• Problems: local maxima, plateaus, ridges

• Remedies:
• Random restart: keep restarting the search from random

locations until a goal is found.
• Problem reformulation: reformulate the search space to

eliminate these problematic features

• Some problem spaces are great for hill climbing;
others are terrible

23

23

Example of a Local Optimum

1 2 5
8 7 4

6 3
4

1 2 3
8
7 6 5

f = -6

f = 0

start goal
f = -7

2 5
7 4

8 6 3

1
move
up

1 2 5
8 7 4

3
f = -7

6

move
right

f = -(manhattan distance)
24

24

Some Extensions of Hill Climbing

• Simulated Annealing
• Escape local maxima by allowing some “bad” moves but

gradually decreasing their frequency

• Local Beam Search
• Keep track of k states rather than just one

• At each iteration:

• All successors of the k states are generated and evaluated

• Best k are chosen for the next iteration

25

25

Some Extensions of Hill Climbing

• Stochastic (probabilistic) Beam Search
• Chooses semi-randomly from “uphill” possibilities

• “Steeper” moves have a higher probability of being chosen

• Random-Restart Climbing
• Can actually be applied to any form of search

• Pick random starting points until one leads to a solution

• Genetic Algorithms
• Each successor is generated from two predecessor (parent)

states

26

26

5

• Length of downward “steps” proportional to negative of the
gradient (slope) at the current state
• “Steepest descent” à long “steps”
• Jump to a node that is “farther away” if f (�) difference is large

• Gradient descent procedure for finding the argx min f(x)
• choose initial x0 randomly

• repeat:

• until the sequence x0, x1, …, xi, xi+1 converges

• Step sizeη(eta) is small (~0.1–0.05)

• Good for differentiable, continuous spaces

Gradient Descent (or Ascent)

27

xi+1 ← xi – η f ’ (xi)

27

Gradient Descent

28 https://www.youtube.com/watch?v=ClotAJHZ3oE

28

Gradient Ascent / Descent

Images from http://en.wikipedia.org/wiki/Gradient_descent29

29

Gradient Methods vs. Newton’s Method

• Newton’s method (calculus):

xi+1 ← xi – η f ’ (xi) / f ’’ (xi)

• Newton’s method uses 2nd

order information (the second
derivative, or, curvature) to
take a more direct route to the
minimum.

• The second-order information
is more expensive to compute,
but converges more quickly.

Contour lines of a function (blue)
• Gradient descent (green)
• Newton’s method (red)

Images from http://en.wikipedia.org/wiki/Newton's_method_in_optimization

30

Simulated Annealing

• Conceptually: Escape local maxima by allowing
some “bad” (locally counterproductive) moves but
gradually decreasing their frequency

• Simulated annealing (SA): analogy between the way
metal cools into a minimum-energy crystalline
structure and the search for a minimum generally
• In very hot metal, molecules can move fairly freely
• They are slightly less likely to move out of a stable

structure
• As metal cools, molecules are more likely to stay

31

31

Simulated Annealing (II)

• Can avoid becoming trapped at local minima.

• Uses a random local search that:
• Accepts “moves” that increase objective function f
• As well as some that decrease it

• Uses a control parameter T
• By analogy with the original application

• Is known as the system “temperature”

• T starts out high and gradually decreases toward 0
32

freedom to
make “bad”
moves

32

6

Simulated Annealing (IV)

• f (s) represents the quality of state n (high is good)

• A “bad” move from A to B is accepted with probability
P(moveA→B) ≈ e(f (B) – f (A)) / T

• f (B) – f (A) is negative – ‘bad’ moves have relative probability <1
• f (B) – f (A) is positive – ‘good’ have relative probability >1

• Temperature
• Higher temperature = more likely to make a “bad” move
• As T tends to zero, this probability tends to zero
• SA becomes more like hill climbing

• If T is lowered slowly enough, SA is complete and admissible.
• domain-specific
• sometimes hard to determine

33

The Simulated Annealing Algorithm

35

no history –
we only keep
‘current’.
Local!

35

Local Beam Search

• Begin with k random states
• k, instead of one, current state(s)

• Generate all successors of these states

• Keep the k best states across all successors

• Stochastic beam search
• Probability of keeping a state is a function of its heuristic

value
• More likely to keep “better” successors

36

36

Genetic Algorithms

• The Idea:
• New states generated by

“mutating” a single state or
“reproducing” (combining)
two parent states

• Selected for their fitness

• Similar to stochastic beam search

• Start with k random states (the initial population)
• Encoding used for the “genome” of an individual strongly

affects the behavior of the search
• Must have some combinable representation of state spaces
• Genetic algorithms / genetic programming are a research area

37

+

37

Tabu Meta-Search

• Problem: Local search “stuck” at local maxima

• Solution: relax search rules
1. At each step, make a “bad” move if there’s no good one
2. Add “prohibitions” to discourage search from returning

to recently visited areas of the search space (“cycling”)

• How: Maintain a list of k previously visited states,
and prevent the search from revisiting them
• Why not always do this?

Russell & Norvig, en.wikipedia.org/wiki/Tabu_search

38

“Online” Search

• Interleave computation and action (search some, act some)

• Exploration: Don’t know outcomes of actions

• So agent must try them!

• Competitive ratio = Path cost found* / Path cost that could be found**

* On average, or in an adversarial scenario (worst case)

** If the agent knew transition functions and could use offline search

• Relatively easy if actions are reversible

• LRTA* (Learning Real-Time A*): Update h(s) (in a state table) as new
nodes are found

39

More about online search and
nondeterministic actions next time…

39

7

Summary: Local Search (I)

• State space can be treated as a “landscape” of
movement through connected states

• We’re trying to find “high” (good) points

• Best-first search: a class of search algorithms where
minimum-cost nodes are expanded first

• Greedy search: uses minimal estimated cost h(n) to
the goal state as measure of goodness
• Reduces search time, but is neither complete nor optimal

40

40

Summary: Local Search (II)

• Hill-climbing algorithms keep only a single state in
memory, but can get stuck on local optima

• Simulated annealing escapes local optima, and is complete
and optimal given a “long enough” cooling schedule

• Genetic algorithms search a space by modeling biological
evolution

• Online search algorithms are useful in state spaces with
partial/no information

41

Questions?
41

Class Exercise:
Local Search for n-Queens

Q

Q

Q

Q

Q

Q

(more on constraint satisfaction heuristics next time...)

Heuristic?

State space?
Search algorithm?

Example moves?
Problems?

42

