

22

23

Simulated Annealing

- Escape local maxima by allowing *some* "bad" moves but gradually decreasing their frequency
- Local Beam Search
 - Keep track of k states rather than just one
 - At each iteration:
 - * All successors of the k states are generated and evaluated
 - Best k are chosen for the next iteration

25

•

· As metal cools, molecules are more likely to stay

- State space can be treated as a "landscape" of movement through connected states
- We're trying to find "high" (good) points
- **Best-first search**: a class of search algorithms where minimum-cost nodes are expanded first
- **Greedy search**: uses minimal estimated cost *h*(n) to the goal state as measure of goodness
 - Reduces search time, but is neither complete nor optimal

Class Exercise: Local Search for <i>n</i> -Queens						
Q	Q	Q		State sp Search Exampl Problem	State space? Search algorithm? Example moves? Problems?	
			Q			
				Q		
					Q	
(more on constraint satisfaction heuristics next time)						

42

Summary: Local Search (II)

- Hill-climbing algorithms keep only a single state in memory, but can get stuck on local optima
- **Simulated annealing** escapes local optima, and is complete and optimal given a "long enough" cooling schedule
- **Genetic algorithms** search a space by modeling biological evolution
- Online search algorithms are useful in state spaces with partial/no information
 Questions?