
1

Informed Search
AI Class 5 (Ch. 3.5-3.7)

Dr. Cynthia Matuszek – CMSC 671

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Dr.
Matuszek @ Villanova University, which are based on Hwee Tou Ng at Berkeley, which

are based on Russell at Berkeley. Some diagrams are based on AIMA.

“An informed search
strategy—one that uses
problem specific
knowledge… can find
solutions more efficiently
then an uninformed
strategy.” – R&N pg. 92

1

Blind Search (Redux)

• Last time:
• Breadth-first
•Depth-first
•Uniform-cost
• Iterative

deepening

2

• From the book:
• Bidirectional
•Holy Grail Search

2

Today’s Class

• Heuristic search

• Heuristic functions

• Admissibility

• Best-first search
• Greedy search, beam

search, A, A*
• Examples

• Memory-conserving
variations of A*

3

“An informed search
strategy—one that uses
problem specific
knowledge… can find
solutions more efficiently
then an uninformed
strategy.”

– R&N pg. 92

Questions?

3

Definition: Heuristic

Free On-line Dictionary of Computing*
1. A rule of thumb, simplification, or educated guess
2. Reduces, limits, or guides search in particular domains
3. Does not guarantee feasible solutions; often with no

theoretical guarantee
Playing chess: try to take the opponent’s queen

Getting someplace: head in that compass direction when possible

WordNet (r) 1.6*
1. Commonsense rule (or set of rules) intended to increase

the probability of solving some problem

*Heavily edited for clarity4

4

Heuristic Search

5

• Uninformed search is generic
• Node selection depends only on shape of tree and node

expansion strategy

• Domain knowledge à better decisions (sometimes)
• Knowledge about the specific problem

• Often calculated based on state

5

Is It A Heuristic?

• A heuristic function is:
•An estimate of how close we are to a goal
• We don’t assume perfect knowledge
• That would be holy grail search
• The estimate can be wrong
• Based on domain-specific information
• Computable from the current state description

6

6

2

Heuristic Search

7

• Romania: Aradà Bucharest (for example)

next time maybe a

quick DFS version

of the problem

7

Heuristic Search

8

• Romania:
• Eyeballing it à certain cities first
• They “look closer” to where we are going

• Can domain
knowledge be
captured in a
heuristic?

8

S

G

Heuristics Examples

9

• 8-puzzle:
• # of tiles in wrong place

• 8-puzzle (better):

• Sum of distances from goal
• Captures distance and

number of nodes

• Romania:

• Straight-line distance from
start node to Bucharest
• Captures “closer to Bucharest”

9

Heuristic Function

10

• All domain-specific knowledge is encoded in
heuristic function h

• h is some estimate of how desirable a move is
• How “close” (we think, maybe) it gets us to our goal

• Usually:
• h(n) ≥ 0: for all nodes n
• h(n) = 0: n is a goal node
• h(n) = ∞: n is a dead end (no goal can be reached from n)

10

Example Search Space Revisited

S

CBA

D GE

1 5 8

9 4 5
3

7

8

8 4 3

¥¥ 0

start state

goal state

arc cost

h value

11

11

Weak vs. Strong Methods

• Weak methods:
• Extremely general, not tailored to a specific situation

• Examples
• Subgoaling: split a large problem into several smaller ones that can

be solved one at a time.
• Space splitting: try to list possible solutions to a problem, then try

to rule out classes of these possibilities
• Means-ends analysis: consider current situation and goal, then

look for ways to shrink the differences between the two

• Called “weak” methods because they do not take
advantage of more powerful domain-specific heuristics

12

12

3

Domain Information
• Informed methods add domain-specific information!

• Goal: select the best path to continue searching

• Define h(n) to estimate the “goodness” of node n
• h(n) = estimated cost (or distance) of minimal cost path from

n to a goal state

13

13

Straight Lines to Budapest (km)

14 R&N pg. 68, 93

hSLD(n)

14

Admissible Heuristics

• Admissible heuristics never overestimate cost
• They are optimistic – think goal is closer than it is

• h(n) ≤ h*(n)
• where h*(n) is true cost to reach goal from n

• hSLD(Lugoj) = 244
• Can there be a shorter path?

• Using admissible heuristics guarantees that the first
solution found will be optimal

15

15

Admissibility

• Admissibility is a property of heuristics
• They are optimistic – think goal is closer than it is

• (Or, exactly right)

• Is h(n): “1 kilometer” admissible?

• Admissible algorithms
can be pretty bad!

• Using admissible heuristics guarantees that the first
solution found will be optimal, for some algorithms (A*).

16

16

Admissibility and Optimality

• Intuitively:
• When A* finds a path of length k, it has already tried

every other path which can have length ≤ k
• Because all frontier nodes have been sorted in ascending

order of f(n)=g(n)+h(n)

• Does an admissible heuristic guarantee optimality
for greedy search?
• Reminder: f(n) = h(n), always choose node “nearest” goal
• No sorting beyond that

17

A* IS NOT admissible – it is optimal when using
an admissible algorithm – watch your language

17

Best-First Search

• A generic way of referring to informed methods

• Use an evaluation function f (n) for each node
àestimate of “desirability”
• f (n) incorporates domain-specific information
• Different f (n) à Different searches

• h(n) instead ranks alternative paths at a node

18

18

4

Best-First Search (more)

• Order nodes on the list by
• Increasing value of f (n)

• Expand most desirable unexpanded node
• Implementation:
• Order nodes in frontier in decreasing order of desirability

• Special cases:
• Greedy best-first search
• A* search

19

19

Greedy Best-First Search

• Idea: always choose “closest node” to goal
• Most likely to lead to a solution quickly

• So, evaluate nodes based only
on heuristic function
• f(n) = h(n)

• Sort nodes by increasing
values of f

• Select node believed to be closest
to a goal node (hence “greedy”)
• That is, select node with smallest f value

20

a

gb

g

h=2

h=0

h=4

hc

d

e
i

h=1

h=1

h=1

h=1

h=0

FIX DOUBLE g

20

Greedy Best-First Search

• Admissible?
• Why not?

• Example:
• Greedy search will find:

aàbàcàdàeàg ; cost = 5
• Optimal solution:

aàgàhài ; cost = 3

• Not complete (why?)

21

a

gb

c

d

e

g

h

i

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0

21

Straight Lines to Budapest (km)

22 R&N pg. 68, 93

hSLD(n)

Budapest à bucharest all over

22

Greedy Best-First Search: Ex. 1

S

G

224

242

What can we
say about the
search space?

23

24

Greedy Best-First Search: Ex. 2

hSLD(n)

24

5

25

Greedy Best-First Search: Ex. 2

25

Greedy Best-First Search: Ex. 2

26

26

27

Greedy Best-First Search: Ex. 2

27

Beam Search

• Use an evaluation function f (n) = h(n), but the
maximum size of the nodes list is k, a fixed constant

• Only keeps k best nodes as candidates for expansion,
and throws the rest away

• More space-efficient than greedy search, but may
throw away a node that is on a solution path

• Not complete

• Not admissible

28

28

Quick Terminology Reminders
• What is f (n)?
• An evaluation function

that gives…

• A cost estimate of...
• The distance from n to G

• What is h(n)?
• A heuristic function

that…
• Encodes domain

knowledge about...
• The search space

• What is h*(n)?
• A heuristic function that

gives the…

• True cost to reach goal from n

• Why don’t we just use that?

• What is g(n)?
• The path cost of getting from

S to n
• describes the “already spent”

costs of the current search

Move this slide WAY up

36

Algorithm A*

• Use evaluation function f (n) = g(n) + h(n)

• g(n) = minimal-cost path from any S to state n
• That is, the cost of getting to the node so far

• Ranks nodes on frontier by estimated cost of solution
• From start node, through given node, to goal

• Not complete if h(n) can = ∞

37

37

6

A* Search

• Idea: Evaluate nodes by combining g(n), the cost of
reaching the node, with h(n), the cost of getting from
the node to the goal.

• Evaluation function:
f(n) = g(n) + h(n)
• g(n) = cost so far to reach n
• h(n) = estimated cost from n to goal
• f(n) = estimated total cost of path

through n to goal

38

S

C

G

8

5

3

0

cost
h

0

13

8

g

38

A* Search

• Avoid expanding paths that are already expensive
• Combines costs-so-far with expected-costs

• A* is complete iff
• Branching factor is finite
• Every operator has a fixed positive cost

• A* is admissible iff
• h(n) is admissible

39

S

C

G

8

5

3

0

cost
h

0

9

8

g

39

A* Example 1

40

40

A* Example 1

41

41

A* Example 1

42

42

A* Example 1

43

43

7

A* Example 1

44

44

A* Example 1

45

45

Algorithm A*

• Algorithm A with constraint that h(n) ≤ h*(n)
• h*(n) = true cost of the minimal cost path from n to a goal.

• Therefore, h(n) is an underestimate of the distance to the
goal

• h() is admissible when h(n) ≤ h*(n)
• Guarantees optimality

• A* is complete whenever the branching factor is finite,
and every operator has a fixed positive cost

• A* is admissible

46

46

Example Search Space Revisited

S

CBA

D GE

1 5 8

9 4 5
3

7

8

8 4 3

¥¥ 0

start state

goal state

arc cost

h value

parent pointer

0

1

4 8 9

85

g value

47

47

Example
n g(n) h(n) f (n) h*(n)
S 0 8 8 9
A1 8 9 9
B 5 4 9 4
C 8 3 11 5
D4 ∞ ∞ ∞
E 8 ∞ ∞ ∞
G9 0 9 0

• h*(n) is the (hypothetical) perfect heuristic.

• Since h(n) ≤ h*(n) for all n, h is admissible

• Optimal path = S B G with cost 9.
48

S

CBA

D GE

1 5 8

9 4 5
3

7

8

8 4 3

¥¥ 0

cost
h

0

1

4 8 9

85

g

48

Greedy Search
f (n) = h(n)

Node Node
expanded list

{ S(8) }

S { C(3) B(4) A(8) }

C { G(0) B(4) A(8) }

G { B(4) A(8) }

• Solution path found is S C G, 3 nodes expanded.

• Fast!! But NOT optimal.

49

S

CBA

D GE

1 5 8

9 4 5
3

7

8

8 4 3

¥¥ 0

cost
h

0

1

4 8 9

85

g

49

8

A* Search
f (n) = g(n) + h(n)

node exp. nodes list
{ S(8) }

S { A(9) B(9) C(11) }

A { B(9) G(10) C(11) D(∞) E(∞) }

B { G(9) G(10) C(11) D(inf) E(∞) }

G { C(11) D(∞) E(∞) }

• Solution path found is S B G, 4 nodes expanded..

• Still pretty fast, and optimal
50

S

CBA

D GE

1 5 8

9 4 5
3

7

8

8 4 3

¥¥ 0

cost

h

0

1

4 8 9

85

g

50

Proof of the Optimality of A*

• Assume that A* has selected G2, a goal state with a
suboptimal solution (g(G2) > f *).

• We show that this is impossible.
• Choose a node n on the optimal path to G.
• Because h(n) is admissible, f (n) ≤ f *.
• If we choose G2 instead of n for expansion, f(G2) ≤ f(n).
• This implies f (G2) ≤ f *.
• G2 is a goal state: h(G2) = 0, f (G2) = g(G2).
• Therefore g(G2) ≤ f *
• Contradiction.

51

51

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance
(i.e., # of squares each tile is

from desired location)

• h1(S) = ?

• h2(S) = ?

52

Start

Goal

52

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance
(i.e., # of squares each tile is

from desired location)

• h1(S) = 8

• h2(S) = 3+1+2+2+2+3+3+2 = 18

53

Start

Goal

53

Dealing with Hard Problems

• For large problems, A* often requires too much space.

• Two variations conserve memory: IDA* and SMA*

• IDA* – iterative deepening A*
• uses successive iteration with growing limits on f. For example,
• A* but don’t consider any node n where f (n) > 10
• A* but don’t consider any node n where f (n) > 20
• A* but don’t consider any node n where f (n) > 30, ...

• SMA* – Simplified Memory-Bounded A*
• uses a queue of restricted size to limit memory use.
• throws away the “oldest” worst solution.

54

54

What’s a Good Heuristic?

• If h1(n) < h2(n) ≤ h*(n) for all n, then:
• Both are admissible
• h2 is strictly better than (dominates) h1.

• How do we find one?

1. Relaxing the problem:
• Remove constraints to create a (much) easier problem
• Use the solution cost for this problem as the heuristic function

2. Combining heuristics:
• Take the max of several admissible heuristics
• Still have an admissible heuristic, and it’s better!

55

55

9

What’s a Good Heuristic? (2)

3. Use statistical estimates to compute h
• May lose admissibility

4. Identify good features, then use a learning
algorithm to find a heuristic function

• Also may lose admissibility

• Why are these a good idea, then?
• Machine learning can give you answers you don’t “think of”
• Can be applied to new puzzles without human intervention
• Often work

56

56

Some Examples of Heuristics?

• 8-puzzle?
• Manhattan distance

• Driving directions?
• Straight line distance

• Crossword puzzle?

• Making a medical diagnosis?

57

57

Summary: Informed Search

• Best-first search: general search where the minimum-cost
nodes (according to some measure) are expanded first.

• Greedy search: uses minimal estimated cost h(n) to the
goal state as measure. Reduces search time but, is neither
complete nor optimal.

• A* search: combines UCS and greedy search
• f (n) = g(n) + h(n)
• A* is complete and optimal, but space complexity is high.
• Time complexity depends on the quality of the heuristic function.

• IDA* and SMA* reduce the memory requirements of A*.
58

58

In-class Exercise: Creating Heuristics
8-Puzzle

N-Queens

Boat Problems
Remove 5

Sticks

Water Jug Problem

5 2

Route Planning

59

cabbage

wolf

sheep

59

In-Class
Exercise

S

CBA

D GE

3 1 8

15 20 5
3

7

8

8 4 3

¥¥ 0
h value

arc
cost

Apply the following to search this space. At each search step, show:
the current node being expanded, g(n) (path cost so far), h(n) (heuristic

estimate), f (n) (evaluation function), and h*(n) (true goal distance).

Depth-first search Breadth-first search A* search
Uniform-cost search Greedy search

60

