Informed Search
Al Class 5 (Ch. 3.5-3.7)

“An informed search
strategy—one that uses
problem specific
knowledge... can find
solutions more efficiently
then an uninformed
strategy.” - R&N pg. 92

-t .

Dr. Cynthia Matuszek — CMSC 671)

Today’s Class

Heuristic search Qu eStj OnS?

Heuristic functions

Admissibility strategy—on? .that uses
problem specific

Best-first search knowledge... can find

+ Greedy search, beam solutions more efficiently
search, A, A* then an uninformed

- Examples strategy.”

“An informed search

Memory-conserving - R&N pg. 92
variations of A*

Heuristic Search

* Uninformed search is generic

* Node selection depends only on shape of tree and node
expansion strategy

* Domain knowledge - better decisions (sometimes)
- Knowledge about the specific problem
+ Often calculated based on state

Blind Search (Redux)

* Last time: * From the book:
* Breadth-first - Bidirectional
 Depth-first - Holy Grail Search
* Uniform-cost

- Iterative
deepening

Definition: Heuristic

Free On-line Dictionary of Computing*
. A rule of thumb, simplification, or educated guess
. Reduces, limits, or guides search in particular domains
. Does not guarantee feasible solutions; often with no
theoretical guarantee
Playing chess: try to take the opponent’s queen
Getting someplace: head in that compass direction when possible

WordNet (r) 1.6*

| Commonsense rule (or set of rules) intended to increase
the probability of solving some problem

4

Is It A Heuristic?

* A heuristic function is:

* An estimate of how close we are to a goal
* We don’t assume perfect knowledge
 That would be holy grail search
* The estimate can be wrong
* Based on domain-specific information
* Computable from the current state description

Heuristic Search

* Romania: Arad-> Bucharest (for example)

Heuristics Examples

* 8-puzzle:
« # of tiles in wrong place

» 8-puzzle (better):

* Sum of distances from goal
* Captures distance and
number of nodes

* Romania:

- Straight-line distance from
start node to Bucharest

* Captures “closer to Buchargest”

Example Search Space Revisited

start state

Heuristic Search

¢ Romania:

* Eyeballing it > certain cities first
« They “look closer”/to where we are going

Can domain

knowledge be
captured in a
heuristic?

Heuristic Function

All domain-specific knowledge is encoded in
heuristic function 4

h is some estimate of how desirable a move is
* How “close” (we think, maybe) it gets us to our goal

Usually:

* h(n)>0: for all nodes n

* h(n) =0: nis a goal node

* h(n) = oo: nis a dead end (no goal can be reached from 7)

10

Weak vs. Strong Methods

Weak methods:

* Extremely general, not tailored to a specific situation

Examples

« Subgoaling: split a large problem into several smaller ones that can
be solved one at a time.

* Space splitting: try to list possible solutions to a problem, then try
to rule out classes of these possibilities

© Means-ends analysis: consider current situation and goal, then
look for ways to shrink the differences between the two

Called “weak” methods because they do not take
advantage of more powerful domain-specific heuristics

12

Domain Information Straight Lines to Budapest (km)

. e . hsto(n)
¢ Informed methods add domain-specific information!

* Goal: select the best path to continue searching

IFEER ¥

* Define h(n) to estimate the “goodness” of node n

* h(n) = estimated cost (or distance) of minimal cost path from
n to a goal state

a

HP IO

Admissible Heuristics Admissibility

» Admissible heuristics never overestimate cost Admissibility is a property of heuristics
* They are optimistic — think goal is closer than it is - They are optimistic — think goal is closer than it is
. h(n) < h*(n) * (Or, exactly right) =

* where /’(n) is true cost to reach goal from # Is h(n): “1 kilometer” admissible? = =

* hsep(Lugoj) = 244 Admissible algorithms bl
* Can there be a shorter path? can be pretty bad! . iy

‘ Using admissible. heuristi(fs guarantees that the first Using admissible heuristics guarantees that the first
solution found will be optimal solution found will be optimal, for some algorithms (A*).

15 16

Admissibility and Optimality Best-First Search

¢ Intuitively: A generic way of referring to informed methods

* When A* finds a path of length £, it has already tried . .
every other path which can have length <k Use an evaluation function f'(n) for each node

« Because all frontier nodes have been sorted in ascending > estimate of “desirability”
order of fn)=g(n)+h(n) * f(n) incorporates domain-specific information

* Does an admissible heuristic guarantee optimality * Different f(n) > Different searches

for greedy search?
- Reminder: f{n) = h(n), always choose node “nearest” goal * h(n) instead ranks alternative paths at a node
* No sorting beyond that

Best-First Search (more) Greedy Best-First Search

* Idea: always choose “closest node” to goal

* Order nodes on the list by . OS2
* Most likely to lead to a solution quickly

« Increasing value of f(n)
* So, evaluate nodes based only

* Expand most desirable unexpanded node on heuristic function
+ Implementation: X DOUBLE g
[V

* Order nodes in frontier in decreasing order of desirability [odes by increasing
values of /'

* Special cases: * Select node believed to be closest

* Greedy best-first search to a goal node (hence “greedy”)
© A* search * That is, select node with smallest f'value

20

Greedy Best-First Search Straight Lines to Budapest (km)

hsip(n
+ Admissible? stofn)
* Why not?

* Example:
* Greedy search will find:
aDbDcDdDeDg; cost=5

* Optimal solution:

aDg>hDi; cost=3

o
°
o
42
-
Bl
»

Y

| FRngHANYY EY

* Not complete (why?)

P

Greedy Best-First Search: Ex. 1 Greedy Best-First Search: Ex. 2

What can we
say about the

_ | search space? hsip(n)
q

Greedy Best-First Search: Ex. 2 Greedy Best-First Search: Ex. 2

Greedy Best-First Search: Ex. 2 Beam Search

Use an evaluation function f'(n) = h(n), but the
maximum size of the nodes list is k, a fixed constant

Only keeps k best nodes as candidates for expansion,
and throws the rest away

More space-efficient than greedy search, but may
throw away a node that is on a solution path

Not complete
Not admissible

Quick Terminology Reminders Algorithm A*

* What s f(n)? * What is #*(n)? Use evaluation function f(n) = g() + h(n)
* An evaluation function . A heuristic function that
that gives... gives the... g(n) = minimal-cost path from any S to state

love this slide VWAY up |* * True cost to reach goal from 7 * That is, the cost of getting to the node so far

1nto G
nto * Why don’t we just use that? X . .
« What is 4(n)? Ranks nodes on frontier by estimated cost of solution

- A heuristic function * What is g(n)? * From start node, through given node, to goal
that. .. * The path cost of getting from

* Encodes domain Ston Not complete if 4(n) can = oo

knowledge about... « describes the “already spent”
+ The search space costs of the current search

A" Search A" Search

¢ Idea: Evaluate nodes by combining g(n), the cost of Avoid expanding paths that are already expensive
reaching the node, with h(n), the cost of getting from

the node to the goal. + Combines costs-so-far with expected-costs
* A*is complete iff
» Evaluation function: * Branching factor is finite
Sn) =g(n) + h(n) + Every operator has a fixed positive cost
* g(n) = cost so far to reach n
 h(n) = estimated cost from 7 to goal * A*is admissible iff

* fin) = estimated total cost of path * h(n) is admissible
through 7 to goal

A" Example 1 A" Example 1

D> Ch

A" Example 1 A" Example 1

> A

=T G

5200200490 4170074100 $3u300a283

A" Example 1 A" Example 1

- >
e e

OT 14300

253«20025)

AUt A1%emse 100 ”’-I;-'.’

Algorithm A* Example Search Space Revisited

Algorithm A with constraint that k() < h*(n) parent pointer start state
© h*(n) = true cost of the minimal cost path from # to a goal.

Therefore, h(n) is an underestimate of the distance to the
goal

h() is admissible when /(n) < h*(n)

L] 3
* Guarantees optimality
. . e \h value
A¥* is complete whenever the branching factor is finite,

and every operator has a fixed positive cost g value
A* is admissible

goal state

Example Greedy Search

h(n) f(n) S () =h(n)
8

Node Node
expanded list
{ s(8) }
{ C(3) B(4) A(8) }
{ G(0) B(4) A(8) }
h*(n) is the (hypothetical) perfect heuristic. { B(4) A(8) }
« Since h(n) < h*(n) for all n, h is admissible * Solution path found is S C G, 3 nodes expanded.
+ Optimal path = S B G with cost 9. * Fast!! But NOT optimal.
18

A* Search

() =g(n) + h(n)

node exp. nodes list
{ 8(8) }

{ A(9) B(9) C(11) }
{ B(9) G(10) C(11) D(%°) E(®) }
{ G(9) G(10) C(11) D(inf) E(w) }
{ C(11) D(») E(%») }

* Solution path found is S B G, 4 nodes expanded..

« Still pretty fast, and optimal

Admissible heuristics

E.g., for the 8-puzzle:
hy(n) = number of misplaced tiles

hy(n) = total Manhattan distance
(i.e., # of squares each tile is
from desired location)

m(8) =7
(S)="

Dealing with Hard Problems

For large problems, A* often requires too much space.
Two variations conserve memory: IDA* and SMA*

IDA* — iterative deepening A*

* uses successive iteration with growing limits on /. For example,
* A* but don’t consider any node n where f'(n) > 10
« A* but don’t consider any node n where f () > 20
* A* but don’t consider any node n where f'(n) > 30, ...

SMA* — Simplified Memory-Bounded A*
* uses a queue of restricted size to limit memory use.
* throws away the “oldest” worst solution.

54

Proof of the Optimality of A*

» Assume that A* has selected G», a goal state with a
suboptimal solution (g(G>) > f*).
* We show that this is impossible.
* Choose a node 7 on the optimal path to G.
* Because A(n) is admissible, f'(n) <f*.
« If we choose G instead of n for expansion, f(G>) < f(n).
* This implies £ (G;) <f*.
© G,is a goal state: h(G>) =0, 1(G>) = g(G>).
* Therefore g(G2) <f*
* Contradiction.

Admissible heuristics

E.g., for the 8-puzzle:
hy(n) = number of misplaced tiles
hy(n) = total Manhattan distance

(i.e., # of squares each tile is
from desired location)

m(8) =38
(S) = 3+1+2+2+2+3+3+2 = 18

53

What’s a Good Heuristic?

If hy(n) < ha(n) < h*(n) for all n, then:
* Both are admissible
* hy is strictly better than (dominates) /.

How do we find one?

. Relaxing the problem:
© Remove constraints to create a (much) easier problem
* Use the solution cost for this problem as the heuristic function

. Combining heuristics:
* Take the max of several admissible heuristics
« Still have an admissible heuristic, and it’s better!

55

What’s a Good Heuristic? (2)

3. Use statistical estimates to compute /
May lose admissibility

4. Identify good features, then use a learning
algorithm to find a heuristic function

Also may lose admissibility

* Why are these a good idea, then?
Machine learning can give you answers you don’t “think of”
Can be applied to new puzzles without human intervention
Often work

Summary: Informed Search

Best-first search: general search where the minimum-cost
nodes (according to some measure) are expanded first.

Greedy search: uses minimal estimated cost h(n) to the
goal state as measure. Reduces search time but, is neither
complete nor optimal.

A* search: combines UCS and greedy search
JS () = g(m) + h(n)
A* is complete and optimal, but space complexity is high.
Time complexity depends on the quality of the heuristic function.

IDA* and SMA* reduce the memory requirements of A*.
58

In-Class
Exercise

Apply the following to search this space. At each search step, show:
the current node being expanded, g(#) (path cost so far), 4(n) (heuristic
estimate), f(n) (evaluation function), and /#*(n) (true goal distance).

Depth-first search Breadth-first search A* search
Uniform-cost search Greedy search

Some Examples of Heuristics?

* 8-puzzle?
Manhattan distance

 Driving directions?
Straight line distance

* Crossword puzzle?

* Making a medical diagnosis?

In-class Exercise: Creating Heuristics
Remove 5
8-Puzzle Boat Problems Sticks

cabbage sheep

wolf

Water Jug Problem

59

