ifici i H k 1
Artificial Intelligence Omewor

Uninformed Search (Ch. 3.4) * Blackboard is open! Check access before tomorrow

(and a little more formalization) » See corrections in Piazza:
* Point values in III.2 should be 3, 6, and 9
() * Your PDF file should contain parts I, II, and IV
f NG + Example return in I1I.1.(b) should be in brackets:
@ « lottery() = [75, 235, 7, 100]

* Common Mistakes:

« Don’t print additional information
« Functions should return or print, not both
 No extra arguments or return values

Dy, Cynthia Matuszek — CI S ted with t from: Dr_] « Return or output things in the order and format specified
2

Questions? Formalizing Search: Review

Bread-first, depth-first, uniform cost search A state space is a
graph (V, E):

 Vis a set of nodes
Goal tests (states)

+ Eisaset of arcs

Generation and expansion

Complexity, completeness, and optimality operations/actions)

EY
Queueing function - '-{i = @ |
fﬁ

State space contains
all possible states

Formalizing Search: III Formalizing Search: IV

Solution: a sequence of operators... State-space search: searching through a state space
* Giving a path for a solution

* Through state space By making explicit a sufficient portion of an
- From a start node to a goal node implicit state-space graph to find a goal node

. . * Initially V={S}, where S is the start node
Solution cost: sum of arc costs on solution path . .
* When S is expanded, its successors are generated; those

« If all arcs have the same cost, then the solution cost = the nodes are added to V and the arcs are added to E
length of the solution + This process continues until a goal node is found

It isn’t usually practical to represent entire space

10

Formalizing Search: V

* Each node implicitly or explicitly represents a
partial solution path from start node to itself

(And a cost!)

In general, from a node there are many possible paths (and
therefore solutions) that have this partial path as a prefix

Generation vs. Expansion

* Selecting a state means making that node current

* Expanding the current state means applying every
legal action to the current state

* Which generates a new set of nodes
D@/D\CD

R&N p2. 68,80

Some Issues

* Return a path or a node depending on problem
In 8-queens return a node
8-puzzle return a path
‘What about Sheep & Wolves?

* Changing definition of Queueing-Function 2>
different search strategies
How do you choose what to expand next?*

* All of search is answering this question!

17

State-Space Search Algorithm

function general-search (problem, QUEUEING-FUNCTION)
;5 problem describes start state, operators, goal test,
55 and operator costs
;5 queueing-function is a comparator function that
55 ranks two states
;5 returns either a goal node or failure o
nodes = MAKE-QUEUE (MAKE -NODE (problem.INITIAL-STATE)) l \
oo M
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds
then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
problem.OPERATORS))

6 7

P =
if EMPTY(nodes) then return "failure" ! N
o = =

;5 Note: The goal test is NOT done when nodes are generated
55 Note: This algorithm does not detect loops

12

Key Procedures

* EXPAND

Generate all successor
nodes of a given node i
+ “What nodes can I reach from here ~ “ff
(by taking what actions)?” =+
=

i W
¢ GOAL-TEST i o
Test if state satisfies 53
goal conditions

* QUEUEING-FUNCTION

Maintain a ranked list of nodes that are expansion candidates
* “What should I explore next?”

14

Review: Characteristics

Completeness: Is the algorithm guaranteed to find
a solution (if one exists)?

Optimality: Does it find the optimal solution?

(The solution with the lowest path cost of all possible
solutions)

Time complexity: How long does it take to find a
solution? (# of nodes expanded/visited)

Space complexity: How much memory is needed to
perform the search? (max # of nodes in list)

18 R&N pg. 68,30

Uninformed vs. Informed Search Why Apply Goal Test Late?

* Uninformed (aka “blind”) search * Why does it matter when the goal test is applied (expansion
+ Use no information about the “direction” of the goal time vs. generation time)?
node(s)

* No way tell know if we’re “doing well so far”

* Breadth-first, depth-first, depth-limited, uniform-cost,

depth-first iterative deepening, bidirectional /@\ki is

+ Optimality and complexity of the algorithms are strongly affected!

* Informed (aka “heuristic”) search (next class)

* Use domain information to (try to) (usually) head in the 3 5
general direction of the goal node(s) @ 7&3} 5%
20

« Hill climbing, best-first, greedy search, beam search, A, A*

19

Breadth-First BFS

* Enqueue nodes in FIFO (first-in, first-out) order
* Characteristics: D> @

- Complete (meaning?)
- Optimal (i.e., admissible) if all operators have the same cost
 Otherwise, not optimal but finds solution with shortest path length
- Exponential time and space complexity, O(b?), where:

* dis the depth of the solution

* b is the branching factor (number of children) at each node

* Takes a long time to find long-path solutions

22

23

BFS

24

Breadth-First: Analysis Breadth-First: O(Example)

+ Takes a long time to find long-path solutions 1+b+b2+... +b?=(b*! - 1)/(b-1) nodes
* Must look at all shorter length possibilities first * Tree where: d=12
* A complete search tree of depth d where each non-leaf * Every node at depths 0, ..., 11 has 10 children (b=10)
node has b children: - Every node at depth 12 has 0 children
_ + 1+ 10+ 100+ 1000 + ... + 1012 = (1013-1)/9 = O(10'2)
2 d d+1
1+b+b%+ ... +b%=(b"" - 1)/(b-1) nodes nodes in the complete search tree
« If BFS expands 1000 nodes/sec and each node uses 100
bytes of storage
* Checks a lot of short-path solutions quickly * Will take 35 years to run in the worst case
+ Will use 111 terabytes of memory

- What if we expand nodes when they are selected?

29

Depth-First (DFS) DFS

* Enqueue nodes in LIFO (last-in, first-out) order
« That is, nodes used as a stack data structure to order nodes

* Characteristics:

+ Might not terminate without a “depth bound”

« ILe., cutting off search below a fixed depth D (“depth-limited
search”) Loops?

* Not complete Infinite search spaces?
» With or without cycle detection, and with or without a cutoff depth

+ Exponential time, O(bd), but only linear space, O(bd)

30

31

14
/7 N\
@ oo

ANA)
OO DO

A
ORORGRC)

Depth-First (DFS): Analysis

» DFS:
* Can find long solutions quickly if lucky
+ And short solutions slowly if unlucky

* When search hits a dead end
* Can only back up one level at a time*

- Even if the “problem” occurs because of a bad operator
choice near the top of the tree

* Hence, only does “chronological backtracking”
* Why?

Uniform-Cost (UCS)

Enqueue nodes by path cost:
- Let g(n) = ¢ost of path from start node to current node n
« Sort nodes by increasing value of g
« Identical to breadth-first search if all operators have equal cost
“Dijkstra’s Algorithm” in algorithms literature
“Branch and Bound Algorithm” in operations research literature
Complete (*)
Optimal/ Admissible (*)
* Admissibility depends on the goal test being applied when a node is removed

from the nodes list, not when its parent node 1s expanded and the node is
first generated

Exponential time and space complexity, O(bd)

44

UCS Implementation

For each frontier node, save the total cost of the
path from the initial state to that node

Expand the frontier node with the lowest path cost
Equivalent to breadth-first if step costs all equal

Equivalent to Dijkstra’s algorithm in general

Uniform-cost search example

Expansion order:

/ }\(S,p,dbearfeG)

Example: Path Costs

Romama with step costs in ki

‘;\wm—

FIsGEIARELEY

Animation of

the Uniform-
Cost search -

Algorithm

https://www.youtube.com/watch?v=XyoucHYKYSE

Shaul Markovitch © 2018

47

Depth-First Iterative Deepening (DFID)

DFS to depth O (i.e., treat start node until solution found do:
as having no successors) - DFS with depth cutoff ¢;
Iff no solution, do DFS to depth 1 c=chl

Complete

Optimal/Admissible if all operators have the same cost
 Otherwise, not optimal, but guarantees finding solution of shortest length

Time complexity is a little worse than BFS or DFS

Nodes near the top of the tree are generated multiple times
« Because most nodes are near the bottom of a tree, worst case time
complexity is still exponential, O(bd)

50

Iterative deepening search (c=1)

Limit = 1 o) @A@ ./3\9 ./.\.

Nodes visited: 3

Iterative deepening search (c=3)

LI B B e D
LA A LA AL Sl (AL L L S

| Nodes visited: 3+4+8 = 15|

Depth-First Iterative Deepening

If branching factor is b and solution is at depth d, then nodes

at depth d are generated once, nodes at depth d-1 are

generated twice, etc.

* Hence b® + 2b@D + . + db<b¢ / (1 - 1/b)> = O(bY).

- If b=4, then worst case is 1.78 * 44, i.e., 78% more nodes searched
than exist at depth d (in the worst case).

Linear space complexity, O(bd), like DFS

Has advantage of both BFS (completeness) and DFS
(limited space, finds longer paths more quickly)

Generally preferred for large state spaces where solution
depth is unknown

Iterative deepening search (c=2)

L . L L e L L

| Nodes visited: 3+4 = 7|

Iterative deepening search (c=3)
Next: 3+4+8+16 = 31

) Next: 3+4+8+16+32 = 63
Next: 3+4+8+16+32+64 = 127

The point: because cost is
exponential, you're not really
redoing that much work!

» El
. » -
LI B B e D
LA A LA L L Sl (AL L L

| Nodes visited: 3+4+8 = |5 |

Example for Illustrating Search Strategies

Depth-First Search

Expanded node Nodes list
{80}
SO { A3 Bl C8 }
A3 { DSEI GI8 B! C8}
D6 {ENGI8BIC8}
El0 {GIBBIC8}
Gl8 {B1C8}
Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) = 5

S7

Uniform-Cost Search . # %‘i
Expanded node Nodes list / é l

{8}
S0 {B'AC8}
Bl { A3 C& GZl }
A3 { D6 CB ElD GIS GZ[}
D¢ {CX El0GI8 Gl }
CS { ElO Gl3 GlS G21 }
EIO { GlJ GlS GZI)
G13 { G18 Gll }
Solution path found is S C G, cost 13
Number of nodes expanded (including goal node) = 7

59

Comparing Search Strategies

Complete Optimal Time complexity ~Space complexity
Breadth first search: yes yes O(bd) O(bd)

Depth first search no O(bm) O(bm)
Depth limitedsearch ~ if 1 == O(bl) O(bl)
depth first iterative y y O(bd) O(bd)

deepening search

bi-directional search y O(bd/l) O(bd/z)

b is branching factor, d is depth of the shallowest solution,
m is the maximum depth of the search tree, | is the depth limit

61

Lk ® 3o
L

Breadth-First Search & %\'&

Expanded node Nodes list
(8%}

S0 {ASB'C8}
A3 { BI CS Dﬁ ElO GIS }
Bl { CS D6 ElO GlS G21 }
cs (DFEVGB G2 GBY
])6 { Ell) G18 GZI G13 }
ElO { GIS Gll GIS }
GlB { GZl G13 }

/é/

Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) = 7

58

How they Perform

Depth-First Search:
Expanded nodes: SADE G
Solution found: S A G (cost 18)
Breadth-First Search: @
Expanded nodes: SABCDEG 20
Solution found: S A G (cost 18) %
Uniform-Cost Search: é
Expanded nodes: SADBCE G

Solution found: S C G (cost 13)
This is the only uninformed search that worries about costs.

Iterative-Deepening Search:

nndec exmanded: SRARCSADFE (G

Avoiding Repeated States

Ways to reduce size of state space (with increasing
computational costs)

In increasing order of effectiveness:

Do not return to the state you just came from.
Do not create paths with cycles in them.
Do not generate any state that was ever created before.

« Effect depends on frequency of loops in state space.

Worst case, storing as many nodes as exhaustive search!
62

A State Space that Generates an

Exponentially Growing Search Space

Bi-directional Search

Alternate searching from
- start state = goal
« goal state - start

1 1 c

For next time: What’s a real
world problem where you can’t

generate predecessors!?
preaecessor states. ;\.é\?_

N

S
‘?‘L ny
)

e
Can (sometimes) find a solution fast 4;}»”
, _{;

A4

65

Holy Grail Search

‘Why not go straight to the solution, without
any wasted detours off to the side?

If we knew where the solution was we wouldn’t be

searching!

If only we knew where we were headed...

Bi-directional Search

Alternate searching from
« start state = goal
- goal state -> start

Stop when the frontiers intersect.

Works well only when there are
unique start and goal states

Requires ability to generate
“predecessor” states.

Can (sometimes) find a solution fast

64

Holy Grail Search

Expanded node Nodes list ®
{80}
{C8 A3B!}
{G3 A3 B!}
{ASB'}

Solution path found is S C G, cost 13 (optimal)

Number of nodes expanded (including goal node) = 3

(minimum possible!)

66

8-Puzzle Revisited

* What’s a good

algorithm?

* Depth-first search?

* Breadth-first search?
* Uniform-cost?

- Iterative deepening?

10

Sudoku, Naively

State space: 4x4 matrix, divided into four 2x2 matrices:
, B, C, D, cells containing values [1-4

Operators:

Put a 2 in square <x,y>
Preconditions:

« <x,y> is empty 1
© <X, (YED>#2<x, (y£2)>#25 ... 3 x4

o <(x£1),y>#2; ... <(x£3),y>#2 3
< if<x,y>in A, then3 g A; ... 4

How many operators is that? How many preconditions?
Goal: all blocks are filled

Sudoku, Naively

State space: 4x4 matrix, divided into four 2x2 matrices:
A, B, C, D, cells containing values [1-4]

Operators:

Put a 2 in square <x,y>

Preconditions:
v <x,y> is empty 1

© <X, (YED>#2<x, (22> #2 ... 3 x4

o <(x£1),y>#2; ... <(x£3),y>#2 3
.« if<x,y>in A, then3 g A; ... 4

How many operators is that?
Goal: all blocks are filled

Sudoku, Naively

State space: 4x4 matrix, divided into four 2x2 matrices:
A, B, C, D, cells containing values [1-4]

Operators:

Put a 2 in square <x,y>

Preconditions:
v <x,y> is empty 1

V<X, (yE1)>#2;<x, (y£2)>#2; ... 3 x4

v <(xE1), y> #2; ... <(xE3),y>#23
« if<x,y>in A ,then3 ¢ A; ...

How many operators is that?
Goal: all blocks are filled

Sudoku, Naively

State space: 4x4 matrix, divided into four 2x2 matrices:

A, B, C, D, cells containing values [1-4]

Operators:
Put a 2 in square <x,y>

Preconditions:
* <x,y> is empty 1

© <X (YED>#2<x, (y£2)>#2; .. 3 x4

o <(xE1),y>#2; ... <(x£3),y>#2 3
.« if<x,y>in A, then3 g A; ... 4

How many operators is that?
Goal: all blocks are filled

Sudoku, Naively

State space: 4x4 matrix, divided into four 2x2 matrices:

A, B, C, D, cells containing values [1-4]

Operators:
Put a 2 in square <x,y>

Preconditions:

v <x,y> is empty 1
v <x, (yE1)> #2; <x, (y£2)> #£2; .. 3 x4

o <(x£1),y>#2; ... <(x£3),y>#2 3
« if<x,y>in A, then3 g A; ... 4

How many operators is that?
Goal: all blocks are filled

Sudoku, Naively

State space: 4x4 matrix, divided into four 2x2 matrices:
A, B, C, D, cells containing values [1-4]

Operators:
Put a 2 in square <x,y>

Preconditions:

v <x,y> is empty 1
V<x, (yE1)>#2; <x, (y£2)>#2; .. 3 x4

V<(xx1),y>#2; ... <(x£3),y>#2 3
Xif <x,y>in A, then 3 € A; ... 4

How many operators is that?
Goal: all blocks are filled

11

Sudoku, Naively

State space: 4x4 matrix, divided into _gour 2x2 matrices:

, B, C, D, cells containing values [

Operators:

Put a 2 in square <x,y>

Preconditions:
v/ <x,y> is empty 1

V<x, (yED)> #2; <x, (y£2)>#2; ... 3 x 4

V<(xx1),y>#£2; ... <(xx4),y>#2 3
Xif <x,y>in A, then 3 € A; ... 4

How many operators is that?
Goal: all blocks are filled

“Satisficing”

Wikipedia: “Satisfici . searching until
an acceptability thres! old is met”

Contrast with optimality Another piece of

Satisficable problems do not get more problem
benefit from finding an optimal solution definition

Ex: You have an A in the class. Studying for four hours will

ﬁet you a 95 on the final. Studying for four more (e1ght
ours) will get you a 99 on the final. What to do?

A combination of satisfy and suffice

Introduced by Herbert A. Simon in 1956

76

12

