
1

Slides adapted with thanks from: Dr. Marie desJardin

Artificial Intelligence
Uninformed Search (Ch. 3.4)

(and a little more formalization)

Dr. Cynthia Matuszek – CMSC 671

Some material adapted from slides by Gang Hua of Stevens Institute of Technology

Some material adapted from slides by Charles R. Dyer, University of Wisconsin-Madison

S

CBA

D GE

3 1 8

15 20 5
3

7

NOTE: this (already) contains the last few slides from class 3

1

Homework 1

• Blackboard is open! Check access before tomorrow

• See corrections in Piazza:
• Point values in III.2 should be 3, 6, and 9
• Your PDF file should contain parts I, II, and IV
• Example return in III.1.(b) should be in brackets:
• lottery() ⇒ [75, 235, 7, 100]

• Common Mistakes:
• Don’t print additional information
• Functions should return or print, not both

• No extra arguments or return values
• Return or output things in the order and format specified

2

2

Questions?

• Bread-first, depth-first, uniform cost search

• Generation and expansion

• Goal tests

• Queueing function

• Complexity, completeness, and optimality

• Heuristic functions (for informed search)

• Admissibility
3

3

Formalizing Search: Review

• A state space is a
graph (V, E):
• V is a set of nodes

(states)
• E is a set of arcs

(agent
operations/actions)

• State space contains
all possible states

8

8

Formalizing Search: III

• Solution: a sequence of operators...
• Giving a path
• Through state space
• From a start node to a goal node

• Solution cost: sum of arc costs on solution path
• If all arcs have the same cost, then the solution cost = the

length of the solution

9

9

Formalizing Search: IV

• State-space search: searching through a state space
for a solution

• By making explicit a sufficient portion of an
implicit state-space graph to find a goal node
• Initially V={S}, where S is the start node
• When S is expanded, its successors are generated; those

nodes are added to V and the arcs are added to E
• This process continues until a goal node is found

• It isn’t usually practical to represent entire space

10

10

2

Formalizing Search: V

• Each node implicitly or explicitly represents a
partial solution path from start node to itself
• (And a cost!)
• In general, from a node there are many possible paths (and

therefore solutions) that have this partial path as a prefix

11

11

State-Space Search Algorithm
function general-search (problem, QUEUEING-FUNCTION)
;; problem describes start state, operators, goal test,
;; and operator costs
;; queueing-function is a comparator function that
;; ranks two states
;; returns either a goal node or failure

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop

if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds

then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))
end

;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops

12

A1 A
2

A
3

A
6

A
7

12

Generation vs. Expansion

• Selecting a state means making that node current

• Expanding the current state means applying every
legal action to the current state

• Which generates a new set of nodes

13 R&N pg. 68, 80

13

Key Procedures

• EXPAND
• Generate all successor

nodes of a given node
• “What nodes can I reach from here

(by taking what actions)?”

• GOAL-TEST
• Test if state satisfies

goal conditions

• QUEUEING-FUNCTION
• Maintain a ranked list of nodes that are expansion candidates
• “What should I explore next?”

14

14

Some Issues

• Return a path or a node depending on problem
• In 8-queens return a node
• 8-puzzle return a path
• What about Sheep & Wolves?

• Changing definition of Queueing-Functionà
different search strategies
• How do you choose what to expand next?*

* All of search is answering this question!
17

17

Review: Characteristics

• Completeness: Is the algorithm guaranteed to find
a solution (if one exists)?

• Optimality: Does it find the optimal solution?
• (The solution with the lowest path cost of all possible

solutions)

• Time complexity: How long does it take to find a
solution? (# of nodes expanded/visited)

• Space complexity: How much memory is needed to
perform the search? (max # of nodes in list)

18 R&N pg. 68, 80

18

3

Uninformed vs. Informed Search

• Uninformed (aka “blind”) search
• Use no information about the “direction” of the goal

node(s)
• No way tell know if we’re “doing well so far”

• Breadth-first, depth-first, depth-limited, uniform-cost,
depth-first iterative deepening, bidirectional

• Informed (aka “heuristic”) search (next class)
• Use domain information to (try to) (usually) head in the

general direction of the goal node(s)
• Hill climbing, best-first, greedy search, beam search, A, A*

19

19

Why Apply Goal Test Late?

• Why does it matter when the goal test is applied (expansion
time vs. generation time)?

• Optimality and complexity of the algorithms are strongly affected!

20

S

CBA

D GE

3 1 8

15 20 5
3

7

20

Breadth-First

• Enqueue nodes in FIFO (first-in, first-out) order

• Characteristics:
• Complete (meaning?)

• Optimal (i.e., admissible) if all operators have the same cost

• Otherwise, not optimal but finds solution with shortest path length

• Exponential time and space complexity, O(bd), where:

• d is the depth of the solution

• b is the branching factor (number of children) at each node

• Takes a long time to find long-path solutions

22

22

BFS

23

BFS

24

BFS

25

4

BFS

26

BFS

D

27

Breadth-First: Analysis

• Takes a long time to find long-path solutions
• Must look at all shorter length possibilities first
• A complete search tree of depth d where each non-leaf

node has b children:

1 + b + b2 + ... + bd = (bd+1 - 1)/(b-1) nodes

• What if we expand nodes when they are selected?

• Checks a lot of short-path solutions quickly

28

28

Breadth-First: O(Example)

1 + b + b2 + ... + bd = (bd+1 - 1)/(b-1) nodes
• Tree where: d=12

• Every node at depths 0, ..., 11 has 10 children (b=10)
• Every node at depth 12 has 0 children
• 1 + 10 + 100 + 1000 + ... + 1012 = (1013 - 1)/9 = O(1012)

nodes in the complete search tree
• If BFS expands 1000 nodes/sec and each node uses 100

bytes of storage
• Will take 35 years to run in the worst case

• Will use 111 terabytes of memory

29

29

Depth-First (DFS)

• Enqueue nodes in LIFO (last-in, first-out) order
• That is, nodes used as a stack data structure to order nodes

• Characteristics:
• Might not terminate without a “depth bound”
• I.e., cutting off search below a fixed depth D (“depth-limited

search”)

• Not complete
• With or without cycle detection, and with or without a cutoff depth

• Exponential time, O(bd), but only linear space, O(bd)

30

Loops?

Infinite search spaces?

30

DFS

31

5

DFS

32

DFS

33

DFS

34

DFS

35

DFS

36

DFS

37

6

DFS

38

DFS

39

DFS

40

DFS

41

DFS

42

Depth-First (DFS): Analysis

• DFS:
• Can find long solutions quickly if lucky
• And short solutions slowly if unlucky

• When search hits a dead end
• Can only back up one level at a time*
• Even if the “problem” occurs because of a bad operator

choice near the top of the tree
• Hence, only does “chronological backtracking”

* Why?

43

43

7

Uniform-Cost (UCS)

• Enqueue nodes by path cost:
• Let g(n) = cost of path from start node to current node n
• Sort nodes by increasing value of g
• Identical to breadth-first search if all operators have equal cost

• “Dijkstra’s Algorithm” in algorithms literature

• “Branch and Bound Algorithm” in operations research literature

• Complete (*)

• Optimal/Admissible (*)
• Admissibility depends on the goal test being applied when a node is removed

from the nodes list, not when its parent node is expanded and the node is
first generated

• Exponential time and space complexity, O(bd)

44

44

Example: Path Costs

45

45

UCS Implementation

• For each frontier node, save the total cost of the
path from the initial state to that node

• Expand the frontier node with the lowest path cost

• Equivalent to breadth-first if step costs all equal

• Equivalent to Dijkstra’s algorithm in general

46

Uniform-cost Search Example

https://www.youtube.com/watch?v=XyoucHYKYSE

47

Uniform-cost search example
Expansion order:

(S,p,d,b,e,a,r,f,e,G)

48

Depth-First Iterative Deepening (DFID)

50

until solution found do:
DFS with depth cutoff c;
c = c+1

1. DFS to depth 0 (i.e., treat start node
as having no successors)

2. Iff no solution, do DFS to depth 1

• Complete

• Optimal/Admissible if all operators have the same cost
• Otherwise, not optimal, but guarantees finding solution of shortest length

• Time complexity is a little worse than BFS or DFS

• Nodes near the top of the tree are generated multiple times
• Because most nodes are near the bottom of a tree, worst case time

complexity is still exponential, O(bd)

50

8

Iterative deepening search (c=1)

Nodes visited: 3

51

Iterative deepening search (c=2)

Nodes visited: 3+4 = 7

52

Iterative deepening search (c=3)

Nodes visited: 3+4+8 = 15

53

Iterative deepening search (c=3)

Nodes visited: 3+4+8 = 15

Next: 3+4+8+16 = 31

Next: 3+4+8+16+32 = 63

Next: 3+4+8+16+32+64 = 127

The point: because cost is
exponential, you’re not really

redoing that much work!

54

Depth-First Iterative Deepening

• If branching factor is b and solution is at depth d, then nodes
at depth d are generated once, nodes at depth d-1 are
generated twice, etc.
• Hence bd + 2b(d-1) + ... + db ≤ bd / (1 - 1/b)2 = O(bd).
• If b=4, then worst case is 1.78 * 4d, i.e., 78% more nodes searched

than exist at depth d (in the worst case).

• Linear space complexity, O(bd), like DFS

• Has advantage of both BFS (completeness) and DFS
(limited space, finds longer paths more quickly)

• Generally preferred for large state spaces where solution
depth is unknown

55

55

Example for Illustrating Search Strategies

56

S

CBA

D GE

3 1 8

15
20 5

3
7

56

9

Depth-First Search

Expanded node Nodes list

{ S0 }

S0 { A3 B1 C8 }

A3 { D6 E10 G18 B1 C8 }

D6 { E10 G18 B1 C8 }

E10 { G18 B1 C8 }

G18 { B1 C8 }

Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) = 5

57

S

CBA

D GE

3 1 8

15 20 5
3

7

57

Expanded node Nodes list

{ S0 }

S0 { A3 B1 C8 }

A3 { B1 C8 D6 E10 G18 }

B1 { C8 D6 E10 G18 G21 }

C8 { D6 E10 G18 G21 G13 }

D6 { E10 G18 G21 G13 }

E10 { G18 G21 G13 }

G18 { G21 G13 }

Solution path found is S A G , cost 18

Number of nodes expanded (including goal node) = 7

58

Breadth-First Search
S

CBA

D GE

3 1 8

15 20 5
3

7

58

Uniform-Cost Search

Expanded node Nodes list

{ S0 }

S0 { B1 A3 C8 }

B1 { A3 C8 G21 }

A3 { D6 C8 E10 G18 G21 }

D6 { C8 E10 G18 G1 }

C8 { E10 G13 G18 G21 }

E10 { G13 G18 G21 }

G13 { G18 G21 }

Solution path found is S C G, cost 13

Number of nodes expanded (including goal node) = 7

59

S

CBA

D GE

3 1 8

15 20 5
3

7

59

How they Perform

• Depth-First Search:
• Expanded nodes: S A D E G
• Solution found: S A G (cost 18)

• Breadth-First Search:
• Expanded nodes: S A B C D E G
• Solution found: S A G (cost 18)

• Uniform-Cost Search:
• Expanded nodes: S A D B C E G
• Solution found: S C G (cost 13)
This is the only uninformed search that worries about costs.

• Iterative-Deepening Search:
• nodes expanded: S S A B C S A D E G
• Solution found: S A G (cost 18)

S

CBA

D GE

3 1 8

15
20 5

3
7

60

Comparing Search Strategies

61

61

Avoiding Repeated States

• Ways to reduce size of state space (with increasing
computational costs)

• In increasing order of effectiveness:

1. Do not return to the state you just came from.
2. Do not create paths with cycles in them.
3. Do not generate any state that was ever created before.

• Effect depends on frequency of loops in state space.
• Worst case, storing as many nodes as exhaustive search!

62

62

10

A State Space that Generates an

Exponentially Growing Search Space

63

63

Bi-directional Search

• Alternate searching from
• start state à goal
• goal state à start

• Stop when the frontiers intersect.

• Works well only when there are
unique start and goal states

• Requires ability to generate
“predecessor” states.

• Can (sometimes) find a solution fast

64

64

Bi-directional Search

• Alternate searching from
• start state à goal
• goal state à start

• Stop when the frontiers intersect.

• Works well only when there are
unique start and goal states

• Requires ability to generate
“predecessor” states.

• Can (sometimes) find a solution fast

65

For next time: What’s a real
world problem where you can’t

generate predecessors?

65

Holy Grail Search

Expanded node Nodes list

{ S0 }

S0 {C8 A3 B1 }

C8 { G13 A3 B1 }

G13 { A3 B1 }

Solution path found is S C G, cost 13 (optimal)

Number of nodes expanded (including goal node) = 3

(minimum possible!)

66

S

CBA

D GE

3 1 8

15 20 5
3

7

66

Holy Grail Search

• Why not go straight to the solution, without
any wasted detours off to the side?

• If we knew where the solution was we wouldn’t be
searching!

If only we knew where we were headed…

67

67

8-Puzzle Revisited

• What’s a good
algorithm?
• Depth-first search?

• Breadth-first search?
• Uniform-cost?

• Iterative deepening?

68

S

G

?

68

11

Sudoku, Naïvely

• State space: 4x4 matrix, divided into four 2x2 matrices:
A, B, C, D, cells containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:
• <x,y> is empty
• <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that? How many preconditions?

• Goal: all blocks are filled

3
1

3
2

69

1
3
3
4

x 4

69

Sudoku, Naïvely

• State space: 4x4 matrix, divided into four 2x2 matrices:
A, B, C, D, cells containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:
• <x,y> is empty
• <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

3
1

3 2

2

70

1
3
3
4

x 4

70

Sudoku, Naïvely

• State space: 4x4 matrix, divided into four 2x2 matrices:
A, B, C, D, cells containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:
ü<x,y> is empty
• <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

3
1

3 2

2

71

1
3
3
4

x 4

71

Sudoku, Naïvely

• State space: 4x4 matrix, divided into four 2x2 matrices:
A, B, C, D, cells containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:
ü<x,y> is empty
ü<x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

3
1

3 2

2

72

1
3
3
4

x 4

72

Sudoku, Naïvely

• State space: 4x4 matrix, divided into four 2x2 matrices:
A, B, C, D, cells containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:
ü<x,y> is empty
ü<x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
ü<(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

3
1

3 2

2

73

1
3
3
4

x 4

73

Sudoku, Naïvely

• State space: 4x4 matrix, divided into four 2x2 matrices:
A, B, C, D, cells containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:
ü<x,y> is empty
ü<x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
ü<(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
✘ if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

3
1

3 2

2

74

1
3
3
4

x 4

74

12

Sudoku, Naïvely

• State space: 4x4 matrix, divided into four 2x2 matrices:
A, B, C, D, cells containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:
ü<x,y> is empty
ü<x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
ü<(x±1), y> ≠ 2; ... <(x±4), y> ≠ 2
✘ if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

3
1

3
2

75

1
3
3
4

x 4

75

“Satisficing”

• Wikipedia: “Satisficing is … searching until
an acceptability threshold is met”

• Contrast with optimality
• Satisficable problems do not get more

benefit from finding an optimal solution

• Ex: You have an A in the class. Studying for four hours will
get you a 95 on the final. Studying for four more (eight
hours) will get you a 99 on the final. What to do?

• A combination of satisfy and suffice

• Introduced by Herbert A. Simon in 1956

76

Another piece of
problem

definition

76

