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Slides adapted with thanks from: Dr. Marie desJardin

Artificial Intelligence
Uninformed Search (Ch. 3.4)

(and a little more formalization)

Dr. Cynthia Matuszek – CMSC 671

Some material adapted from slides by Gang Hua of  Stevens Institute of  Technology

Some material adapted from slides by Charles R. Dyer, University of  Wisconsin-Madison

S

CBA

D GE

3 1 8

15 20 5
3

7

NOTE: this (already) contains the last few slides from class 3
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Homework 1

• Blackboard is open! Check access before tomorrow

• See corrections in Piazza:
• Point values in III.2 should be 3, 6, and 9 
• Your PDF file should contain parts I, II, and IV
• Example return in III.1.(b) should be in brackets: 
• lottery() ⇒ [75, 235, 7, 100]

• Common Mistakes:
• Don’t print additional information 
• Functions should return or print, not both

• No extra arguments or return values
• Return or output things in the order and format specified
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Questions?

• Bread-first, depth-first, uniform cost search

• Generation and expansion

• Goal tests

• Queueing function

• Complexity, completeness, and optimality

• Heuristic functions (for informed search)

• Admissibility
3
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Formalizing Search: Review

• A state space is a 
graph (V, E):
• V is a set of nodes

(states)
• E is a set of arcs

(agent 
operations/actions)

• State space contains 
all possible states
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Formalizing Search: III

• Solution: a sequence of  operators... 
• Giving a path 
• Through state space 
• From a start node to a goal node

• Solution cost: sum of arc costs on solution path
• If all arcs have the same cost, then the solution cost = the 

length of the solution
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Formalizing Search: IV

• State-space search: searching through a state space 
for a solution 

• By making explicit a sufficient portion of  an 
implicit state-space graph to find a goal node 
• Initially V={S}, where S is the start node
• When S is expanded, its successors are generated; those 

nodes are added to V and the arcs are added to E
• This process continues until a goal node is found

• It isn’t usually practical to represent entire space
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Formalizing Search: V

• Each node implicitly or explicitly represents a 
partial solution path from start node to itself
• (And a cost!) 
• In general, from a node there are many possible paths (and 

therefore solutions) that have this partial path as a prefix
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State-Space Search Algorithm
function general-search (problem, QUEUEING-FUNCTION)
;; problem describes start state, operators, goal test,
;;    and operator costs
;; queueing-function is a comparator function that 
;; ranks two states
;; returns either a goal node or failure

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop

if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds

then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))
end

;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops
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Generation vs. Expansion

• Selecting a state means making that node current

• Expanding the current state means applying every 
legal action to the current state

• Which generates a new set of  nodes

13 R&N pg. 68, 80
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Key Procedures

• EXPAND
• Generate all successor 

nodes of  a given node
• “What nodes can I reach from here 

(by taking what actions)?”

• GOAL-TEST
• Test if  state satisfies 

goal conditions

• QUEUEING-FUNCTION
• Maintain a ranked list of  nodes that are expansion candidates
• “What should I explore next?”
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Some Issues

• Return a path or a node depending on problem
• In 8-queens return a node
• 8-puzzle return a path
• What about Sheep & Wolves?

• Changing definition of Queueing-Functionà
different search strategies
• How do you choose what to expand next?*

* All of  search is answering this question!
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Review: Characteristics

• Completeness: Is the algorithm guaranteed to find 
a solution (if  one exists)?

• Optimality: Does it find the optimal solution?
• (The solution with the lowest path cost of all possible 

solutions)

• Time complexity: How long does it take to find a 
solution? (# of  nodes expanded/visited)

• Space complexity: How much memory is needed to 
perform the search? (max # of  nodes in list)

18 R&N pg. 68, 80
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Uninformed vs. Informed Search

• Uninformed (aka “blind”) search
• Use no information about the “direction” of the goal 

node(s) 
• No way tell know if  we’re “doing well so far”

• Breadth-first, depth-first, depth-limited, uniform-cost, 
depth-first iterative deepening, bidirectional

• Informed (aka “heuristic”) search (next class)
• Use domain information to (try to) (usually) head in the 

general direction of the goal node(s)
• Hill climbing, best-first, greedy search, beam search, A, A*
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Why Apply Goal Test Late?

• Why does it matter when the goal test is applied (expansion 
time vs. generation time)?

• Optimality and complexity of  the algorithms are strongly affected!

20
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Breadth-First

• Enqueue nodes in FIFO (first-in, first-out) order

• Characteristics:
• Complete (meaning?)

• Optimal (i.e., admissible) if  all operators have the same cost

• Otherwise, not optimal but finds solution with shortest path length

• Exponential time and space complexity, O(bd), where:

• d is the depth of  the solution 

• b is the branching factor (number of  children) at each node

• Takes a long time to find long-path solutions
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BFS
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BFS

24

BFS
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BFS

26

BFS

D
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Breadth-First: Analysis

• Takes a long time to find long-path solutions
• Must look at all shorter length possibilities first 
• A complete search tree of depth d where each non-leaf 

node has b children:

1 + b + b2 + ... + bd = (bd+1 - 1)/(b-1) nodes 

• What if we expand nodes when they are selected?

• Checks a lot of short-path solutions quickly
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Breadth-First: O(Example)

1 + b + b2 + ... + bd = (bd+1 - 1)/(b-1) nodes 
• Tree where: d=12

• Every node at depths 0, ..., 11 has 10 children (b=10)
• Every node at depth 12 has 0 children
• 1 + 10 + 100 + 1000 + ... + 1012 = (1013 - 1)/9 = O(1012) 

nodes in the complete search tree
• If BFS expands 1000 nodes/sec and each node uses 100 

bytes of storage
• Will take 35 years to run in the worst case

• Will use 111 terabytes of memory
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Depth-First (DFS)

• Enqueue nodes in LIFO (last-in, first-out) order
• That is, nodes used as a stack data structure to order nodes 

• Characteristics:
• Might not terminate without a “depth bound”
• I.e., cutting off  search below a fixed depth D ( “depth-limited 

search”)

• Not complete
• With or without cycle detection, and with or without a cutoff  depth

• Exponential time, O(bd), but only linear space, O(bd)
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Loops?

Infinite search spaces?
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DFS

32

DFS
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36

DFS
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DFS
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DFS
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DFS
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DFS
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DFS
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Depth-First (DFS): Analysis

• DFS:
• Can find long solutions quickly if lucky
• And short solutions slowly if unlucky

• When search hits a dead end
• Can only back up one level at a time*
• Even if the “problem” occurs because of a bad operator 

choice near the top of the tree
• Hence, only does “chronological backtracking”

* Why?
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Uniform-Cost (UCS)

• Enqueue nodes by path cost:
• Let g(n) = cost of  path from start node to current node n
• Sort nodes by increasing value of  g
• Identical to breadth-first search if all operators have equal cost

• “Dijkstra’s Algorithm” in algorithms literature 

• “Branch and Bound Algorithm” in operations research literature 

• Complete (*)

• Optimal/Admissible (*)
• Admissibility depends on the goal test being applied when a node is removed 

from the nodes list, not when its parent node is expanded and the node is 
first generated 

• Exponential time and space complexity, O(bd)
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Example: Path Costs
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UCS Implementation

• For each frontier node, save the total cost of  the 
path from the initial state to that node

• Expand the frontier node with the lowest path cost

• Equivalent to breadth-first if  step costs all equal

• Equivalent to Dijkstra’s algorithm in general
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Uniform-cost Search Example

https://www.youtube.com/watch?v=XyoucHYKYSE
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Uniform-cost search example
Expansion order:

(S,p,d,b,e,a,r,f,e,G)
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Depth-First Iterative Deepening (DFID)

50

until solution found do:
DFS with depth cutoff c;
c = c+1

1. DFS to depth 0 (i.e., treat start node 
as having no successors)

2. Iff no solution, do DFS to depth 1

• Complete 

• Optimal/Admissible if  all operators have the same cost
• Otherwise, not optimal, but guarantees finding solution of  shortest length

• Time complexity is a little worse than BFS or DFS 

• Nodes near the top of the tree are generated multiple times
• Because most nodes are near the bottom of  a tree, worst case time 

complexity is still exponential, O(bd) 
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Iterative deepening search (c=1)

Nodes visited: 3

51

Iterative deepening search (c=2)

Nodes visited: 3+4 = 7

52

Iterative deepening search (c=3)

Nodes visited: 3+4+8 = 15
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Iterative deepening search (c=3)

Nodes visited: 3+4+8 = 15

Next: 3+4+8+16 = 31

Next: 3+4+8+16+32 = 63

Next: 3+4+8+16+32+64 = 127

The point: because cost is 
exponential, you’re not really 

redoing that much work!
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Depth-First Iterative Deepening

• If branching factor is b and solution is at depth d, then nodes 
at depth d are generated once, nodes at depth d-1 are 
generated twice, etc. 
• Hence bd + 2b(d-1) + ... + db ≤ bd / (1 - 1/b)2 = O(bd). 
• If  b=4, then worst case is 1.78 * 4d, i.e., 78% more nodes searched 

than exist at depth d (in the worst case). 

• Linear space complexity, O(bd), like DFS

• Has advantage of both BFS (completeness) and DFS 
(limited space, finds longer paths more quickly) 

• Generally preferred for large state spaces where solution 
depth is unknown

55

55

Example for Illustrating Search Strategies
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Depth-First Search 

Expanded node  Nodes list

{ S0 }

S0 { A3 B1 C8 }

A3 { D6 E10 G18 B1 C8 }    

D6 { E10 G18 B1 C8 }

E10 { G18 B1 C8 }               

G18 { B1 C8 } 

Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) = 5
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Expanded node  Nodes list

{ S0 }

S0 { A3 B1 C8 }

A3 { B1 C8 D6 E10 G18 }   

B1 { C8 D6 E10 G18 G21 }

C8 { D6 E10 G18 G21 G13 }         

D6 { E10 G18 G21 G13 }   

E10 { G18 G21 G13 }     

G18 { G21 G13 }

Solution path found is S A G , cost 18

Number of nodes expanded (including goal node) = 7
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Breadth-First Search
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Uniform-Cost Search 

Expanded node  Nodes list

{ S0 }

S0 { B1 A3 C8 }

B1 { A3 C8 G21 }

A3 { D6 C8 E10 G18 G21 }

D6 { C8 E10 G18 G1 }

C8 { E10 G13 G18 G21 }       

E10 { G13 G18 G21 }

G13 { G18 G21 }                             

Solution path found is S C G, cost 13

Number of  nodes expanded (including goal node) = 7
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How they Perform

• Depth-First Search:
• Expanded nodes: S A D E G 
• Solution found: S A G (cost 18)

• Breadth-First Search: 
• Expanded nodes: S A B C D E G 
• Solution found: S A G (cost 18)

• Uniform-Cost Search: 
• Expanded nodes: S A D B C E G 
• Solution found: S C G (cost 13)
This is the only uninformed search that worries about costs.

• Iterative-Deepening Search: 
• nodes expanded: S S A B C S A D E G 
• Solution found: S A G (cost 18)
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Comparing Search Strategies 
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Avoiding Repeated States 

• Ways to reduce size of  state space (with increasing 
computational costs)

• In increasing order of  effectiveness:

1. Do not return to the state you just came from. 
2. Do not create paths with cycles in them. 
3. Do not generate any state that was ever created before.

• Effect depends on frequency of  loops in state space.
• Worst case, storing as many nodes as exhaustive search! 

62
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A State Space that Generates an

Exponentially Growing Search Space
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Bi-directional Search

• Alternate searching from 
• start state à goal 
• goal state à start

• Stop when the frontiers intersect.

• Works well only when there are 
unique start and goal states

• Requires ability to generate
“predecessor” states.

• Can (sometimes) find a solution fast

64
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Bi-directional Search

• Alternate searching from 
• start state à goal 
• goal state à start

• Stop when the frontiers intersect.

• Works well only when there are 
unique start and goal states

• Requires ability to generate
“predecessor” states.

• Can (sometimes) find a solution fast
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For next time:  What’s a real 
world problem where you can’t 

generate predecessors?
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Holy Grail Search

Expanded node  Nodes list

{ S0 }

S0 {C8 A3 B1 }

C8 { G13 A3 B1 }    

G13 { A3 B1 } 

Solution path found is S C G, cost 13 (optimal)

Number of  nodes expanded (including goal node) = 3 

(minimum possible!)
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Holy Grail Search

• Why not go straight to the solution, without 
any wasted detours off  to the side?

• If  we knew where the solution was we wouldn’t be 
searching!

If only we knew where we were headed…
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8-Puzzle Revisited

• What’s a good 
algorithm?
• Depth-first search?

• Breadth-first search?
• Uniform-cost?

• Iterative deepening?

68
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Sudoku, Naïvely

• State space: 4x4 matrix, divided into four 2x2 matrices: 
A, B, C, D, cells containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:
• <x,y> is empty
• <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that? How many preconditions?

• Goal: all blocks are filled

3
1

3
2
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Sudoku, Naïvely

• State space: 4x4 matrix, divided into four 2x2 matrices: 
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Sudoku, Naïvely

• State space: 4x4 matrix, divided into four 2x2 matrices: 
A, B, C, D, cells containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:
ü<x,y> is empty
• <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
• <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
• if <x,y> in A, then 3 ∉ A; …

• How many operators is that?
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Sudoku, Naïvely

• State space: 4x4 matrix, divided into four 2x2 matrices: 
A, B, C, D, cells containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:
ü<x,y> is empty
ü<x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
ü<(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
✘ if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled

3
1

3 2

2

74

1
3
3
4

x 4

74



12

Sudoku, Naïvely

• State space: 4x4 matrix, divided into four 2x2 matrices: 
A, B, C, D, cells containing values [1-4]

• Operators:
• Put a 2 in square <x,y>
• Preconditions:
ü<x,y> is empty
ü<x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
ü<(x±1), y> ≠ 2; ... <(x±4), y> ≠ 2
✘ if <x,y> in A, then 3 ∉ A; …

• How many operators is that?

• Goal: all blocks are filled
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“Satisficing”

• Wikipedia: “Satisficing is … searching until
an acceptability threshold is met”

• Contrast with optimality
• Satisficable problems do not get more

benefit from finding an optimal solution

• Ex: You have an A in the class. Studying for four hours will 
get you a 95 on the final. Studying for four more (eight 
hours) will get you a 99 on the final. What to do?

• A combination of satisfy and suffice

• Introduced by Herbert A. Simon in 1956
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Another piece of 
problem 

definition
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