
1

Slides adapted with thanks from: Dr. Marie desJardin

Artificial Intelligence
Class 3: Search (Ch. 3.1–3.3)

Dr. Cynthia Matuszek – CMSC 671
Some material adopted from notes by Charles R. Dyer, University of Wisconsin-Madison

1

Pre-Reading: Questions?

• Search (a.k.a. state-space search)

• Concepts:
• Initial state • Transition model
• State space graph • Step cost
• Goal test (cf. goal) • Path cost
• Actions • Solution / optimal solution

• Open-loop/closed-loop systems

• Expanding vs. generating a state

• The frontier (a.k.a. open list)

2

2

What’s a “State”?

• The current value of everything in the agent’s “world”
• “State space”: all possible states

• Everything in the problem representation

• Values of all parameters at a particular point in time

• Examples:
• Chess board: 8x8 grid, location of all pieces
• Tic-tac-toe: 3x3 grid, whether each is X, O, or open
• Robot soccer: Location of all players, location of ball, possibly

last known trajectory of all players (if sequential)
• Travel: Cities, distances between cities, agent’s current city

4

4

Some Examples

Agent Type Performance
Measure

Environment Actuators Sensors

Robot soccer
player

Winning game,
goals

for/against

Field, ball,
own team,
other team,
own body

Devices (e.g.,
legs) for

locomotion
and kicking

Camera, touch
sensors,

accelerometers,
orientation

sensors,
wheel/joint
encoders

Internet
book-shopping

agent

Obtain
requested/
Interesting

books,
minimize

expenditure

Internet

Follow link,
enter/submit
data in fields,
display to user

Web pages,
user requests

PEAS

Task
Environment

Observable Deterministic Episodic Static Discrete Agents

Robot
soccer

Partially Stochastic Sequential Dynamic Continuous Multi

Internet
book-

shopping

Partially Deterministic Sequential Static

Discrete Single

Environment

5

Today’s Class

• Goal-based agents

• Representing states and operators

• Example problems

• Generic state-space search algorithm

Everything in AI comes down to search.

Goal: understand search, and understand why.

6

6

Why Search?

• Traditional (non-AI) problems are likely tractable.
• Either they can be solved by listing all possible states…

• Tic-tac-toe: 39 = 19,683 states (3 values for each cell, nine cells)*
• Still big, but a computer can explore all possible choices during play

• Or there’s a mechanical approach to finding a solution

• Can’t memorize the space of answers, but you don’t need to

7

X

O

X
…

X

O O

X

X O O O

O O O

O O O

* Of course, there are fewer valid states

345,781,000 ✕ 234,567,431,000

7

2

Why Search? (2)

• “Intelligent” problems are usually intractable.
• Either the state space is too large to enumerate…

• We don’t know what a good
solution is until we find it…
• Or, somehow, we have more

states than we can explore.
examples.gurobi.com/traveling-salesman-problem, en.wikipedia.org/wiki/Free_Internet_Chess_Server, www.smbc-comics.com/comic/recommendations

8

Why Search? (2)

• “Intelligent” problems are usually intractable.
• Either the state space is too large to enumerate…

• We don’t know what a good
solution is until we try it…
• Or, somehow, we have more

states than we can examine.
examples.gurobi.com/traveling-salesman-problem, en.wikipedia.org/wiki/Free_Internet_Chess_Server, www.smbc-comics.com/comic/recommendations

9

Why Search? (3)

• We can’t search intractable problems exhaustively,
so we must consider them cleverly.

• Understanding the problem space is the first step.

needpix.com, machinelearnings.co/understanding-alphago-948607845bb1

10

Search: The Core Idea

• For any problem:
• World is (always) in some state
• Agents take actions, which

change the state

• We need a sequence of
actions that gets the world
into a particular goal state.

• To find it, we search the
space of actions and states.

11

some

action

some other

actionA1 A2A4

A3 A6 A7A5

11

Building Goal-Based Agents

• To build a goal-based agent we need to decide:
• What is the goal to be achieved?
• What are the possible actions?
• What relevant information must be encoded…
• To describe the state of the world?

• To describe the available transitions?

• To solve the problem?

Initial
state

Goal
stateActions

12

12

What is the Goal?

• A situation we want to achieve

• A set of properties that we want to hold

• Must define a “goal test”
• What does it mean to achieve it?
• Have we done so?

• This is a hard question that is rarely tackled in AI!
• Often, we assume the system designer or user will specify the goal

• For people, we stress the importance of establishing clear
goals for as the first step towards solving a problem.
• What are your goals?
• What problem(s) are you trying to solve?

13

13

3

What Are Actions?

• Primitive actions or events:
• Make changes in the world
• In order to achieve a (sub)goal
• Actions are also known as operators or moves

• Examples:
Low-level:
• Chess:	“advance	a	pawn”
• Navigation:	“take	a	step”
• Finance:	“sell	10%	of	stock	X”

14

High-level	:
• Chess:	“clear a	path	for	a	queen”
• Navigation:	“go	home”
• Finance:	“sell	best-return	shares”

14

Actions and Determinism

• In a deterministic world there is no uncertainty in
an action’s effects

• Current world state + chosen action fully specifies:

1. Whether that action can be done in current world
• Is it applicable? (E.g.: Do I own any of stock X to sell?)
• Is it legal? (E.g.: Can’t just move a pawn sideways.)

2. World state after action is performed

15

After last pt:
•No need for
“history”
information
•Everything is
encapsulated
by state

Wha?

15

Representing Actions

• Actions here are:
• Discrete events
• That occur at an instant of time

• For example:
• State: “Mary is in class”

• Action “Go home”

• New state: “Mary is at home”

• There is no representation of a state where she is in
between (i.e., in the state of “going home”).

16

A1 A2A4

16

Sliding Tile Puzzles

• 15-puzzles, 8-puzzles

• How do we represent states?

• How do we represent actions?
• Tile-1 moves north
• Tile-1 moves west
• Tile-1 moves east
• Tile-1 moves south
• Tile-2 moves north
• Tile-2 moves west
• …

commons.wikimedia.org/wiki/File:15-puzzle-shuffled.svg,	 commons.wikimedia.org/wiki/File:15-puzzle-loyd-bis2.svg

17

• Number of actions / operators depends on
representation used in describing a state

• 8-puzzle:
• Could specify 4 possible

moves (actions) for each
of the 8 tiles:

4*8=32 operators.

• Or, could specify four moves for the “blank” square:

4 operators!

• Careful representation can simplify a problem!

Representing Actions

18

…

18

Representing States

• What information about the world sufficiently describes all
aspects relevant to solving the goal?

• That is: what knowledge must be in a state description to
adequately describe the current state of the world?

• The size of a problem is usually described in terms of the
number of states that are possible
• Tic-Tac-Toe has about 39 states.

• Checkers has about 1040 states.

• Rubik’s Cube has about 1019 states.

• Chess has about 10120 states in a typical game.

19

19

4

Closed World Assumption

• We generally use the Closed World Assumption:

“All necessary information about a problem
domain is available in each percept so that each
state is a complete description of the world.”

• No incomplete information at any point in time.
• A statement that is true is always known to be true.
∴ If we do not know something is true, it is false.

en.wikipedia.org/wiki/Closed-world_assumption20

20

Some Example Problems

• Toy problems and micro-worlds
• 8-Puzzle
• Boat Problems

• Cryptarithmetic

• Remove 5 Sticks
• Water Jug Problem

• Real-world problems

21

21

8-Puzzle

Given an initial configuration of 8 numbered tiles
on a 3 x 3 board, move the tiles in such a way so as
to produce a desired goal configuration of the tiles.

22

22

8-Puzzle

• State: 3 x 3 array describing where tiles
are

• Operators: Move blank square Left,
Right, Up or Down
• This is a more efficient encoding of the

operators!

• Initial State: Starting configuration of
the board

• Goal: Some configuration of the board

23

23

The 8-Queens Problem

Place eight (or
N) queens on a
chessboard such

that no queen
can reach any

other

24

24

Boat Problems

1 sheep, 1 wolf, 1 cabbage, 1 boat

• Goal: Move everything across the river.

• Constraints:
• The boat can hold you plus one thing.

• Wolf can never be alone with sheep.

• Sheep can never be alone with cabbage.

• State: location of sheep, wolf, cabbage on shores and boat.

• Operators: Move ferry containing some set of occupants
across the river (in either direction) to the other side.

25

25

5

Remove 5 Sticks

• Given the following
configuration of sticks,
remove exactly 5 sticks
in such a way that the
remaining
configuration forms
exactly 3 squares.

26

26

Some Real-World Problems

• Route finding

• Touring (traveling salesman)

• Logistics

• VLSI layout

• Robot navigation

• Learning

28

28

Knowledge Representation Issues

• What’s in a state?
• Is the color of the tiles relevant to solving an 8-puzzle?
• Is sunspot activity relevant to predicting the stock market?

• What to represent is a very hard problem!
• Usually left to the system designer to specify.

• What level of abstraction to describe the world?
• Too fine-grained and we “miss the forest for the trees”
• Too coarse-grained and we miss critical information

29

29

Knowledge Representation Issues

• Number of states depends on:
• Representation choices
• Level of abstraction

• In the Remove-5-Sticks problem:
• If we represent individual sticks, then there are 17-choose-

5 possible ways of removing 5 sticks (6188)
• If we represent the “squares” defined by 4 sticks, there are

6 squares initially and we must remove 3
• So, 6-choose-3 ways of removing 3 squares (20)

30

30

Formalizing Search in a State Space

• A state space is a
graph (V, E):
• V is a set of nodes
• E is a set of arcs
• Each arc is directed

from a node to
another node

• How does that
work for 8-puzzle?

31

31

Formalizing Search in a State Space

• V: A node is a data structure that contains:
• State description
• Bookeeping information: parent(s) of the node, name of

operator that generated the node from that parent, etc.

• E: Each arc is an instance (single occurrence) of
one operator.
• When operator is applied to the arc’s source node (state),

then

• Resulting state is associated with the arc’s destination node

32

32

6

Formalizing Search

• Each arc has a fixed, positive cost
• Corresponding to the cost of the operator
• What is “cost” of doing that action?

• Each node has a set of successor nodes
• Corresponding to all operators (actions) that can apply at

source node’s state
• Expanding a node is generating successor nodes, and

adding them (and associated arcs) to the state-space graph

33

33

Formalizing Search II

• One or more nodes are
designated as start
nodes

• A goal test predicate is
applied to a state to
determine if its
associated node is a goal
node

34

34

Water Jug Problem

Name Cond. Transition Effect

Empty5 – (x,y)→(0,y) Empty 5-gal.
jug

Empty2 – (x,y)→(x,0) Empty 2-gal.
jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2-gal. into
5-gal.

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5-gal. into
2-gal.

5to2part y < 2 (1,y)→(0,y+1) Pour partial 5-
gal. into 2-gal.

Given a full 5-gallon jug
and an empty 2-gallon
jug, the goal is to fill the
2-gallon jug with exactly
one gallon of water.

State = (x,y), where x is

the number of gallons of
water in the 5-gallon jug
and y is # of gallons in
the 2-gallon jug

Initial State = (5,0)

Goal State = (*,1)
(* means any amount)

Operator table

35

35

CLASS EXERCISE

• Representing a Sudoku puzzle as a search space
• What are the states?
• What are the operators?
• What are the constraints

(on operator application)?

• What is the description
of the goal state?

• Let's try it!

3

1

3

2

38

38

Formalizing Search III

• A solution is a sequence of operators that is
associated with a path in a state space from a start
node to a goal node.

• The cost of a solution is the sum of the arc costs on
the solution path.
• If all arcs have the same (unit) cost, then the solution cost

is just the length of the solution (number of steps / state
transitions)

39

39

Formalizing Search IV

• State-space search: searching through a state space
for a solution by making explicit a sufficient
portion of an implicit state-space graph to find a
goal node
• Initially V={S}, where S is the start node
• When S is expanded, its successors are generated; those

nodes are added to V and the arcs are added to E
• This process continues until a goal node is found

• It isn’t usually practical to represent entire space

40

40

7

Formalizing Search V

• Each node implicitly or explicitly represents a
partial solution path (and its cost) from start node
to given node.
• In general, from a node there are many possible paths (and

therefore solutions) that have this partial path as a prefix

41

41

State-Space Search Algorithm
function general-search (problem, QUEUEING-FUNCTION)
;; problem describes start state, operators, goal test,
;; and operator costs
;; queueing-function is a comparator function that
;; ranks two states
;; returns either a goal node or failure

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop

if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds

then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))
end

;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops

42

A1 A
2

A
3

A
6

A
7

42

Generation vs. Expansion

• Selecting a state means making that node current

• Expanding the current state means applying every
legal action to the current state

• Which generates a new set of nodes

43 R&N pg. 68, 80

43

Key Procedures

• EXPAND
• Generate all successor

nodes of a given node
• “What nodes can I reach from here

(by taking what actions)?”

• GOAL-TEST
• Test if state satisfies

goal conditions

• QUEUEING-FUNCTION
• Used to maintain a ranked list of nodes that are candidates

for expansion
• “What should I explore next?”

44

44

Algorithm Bookkeeping

• Typical node data structure includes:
• State at this node
• Parent node
• Operator applied to get to this node
• Depth of this node
• That is, number of operator applications since initial state

• Cost of the path
• Sum of each operator application so far

45

45

Some Issues

• Search process constructs a search tree, where:
• Root is the initial state and
• Leaf nodes are nodes that are either:
• Not yet expanded (i.e., they are in the list “nodes”) or

• Have no successors (i.e., they're “dead ends”, because no operators
can be applied, but they are not goals)

• Search tree may be infinite
• Even for small search space
• How?

46

46

8

Some Issues

• Return a path or a node depending on problem
• In 8-queens return a node
• 8-puzzle return a path
• What about Sheep & Wolves?

• Changing definition of Queueing-Functionà
different search strategies
• How do you choose what to expand next?

47

47

Evaluating Search Strategies

• Completeness:
• Guarantees finding a solution if one exists

• Time complexity:
• How long (worst or average case) does it take to find a solution?
• Usually measured in number of states visited/nodes expanded

• Space complexity:
• How much space is used by the algorithm?
• Usually measured in maximum size of the “nodes” list during search

• Optimality / Admissibility
• If a solution is found, is it guaranteed to be optimal (the solution with

minimum cost)?

48

48

Summary

• Search is at the heart of AI.

• Formalizing states, actions, &c. makes them
searchable.

49

49

