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Slides adapted with thanks from: Dr. Marie desJardin

Artificial Intelligence
Class 3: Search (Ch. 3.1–3.3)

Dr. Cynthia Matuszek – CMSC 671
Some material adopted from notes by Charles R. Dyer, University of  Wisconsin-Madison
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Pre-Reading: Questions?

• Search (a.k.a. state-space search)

• Concepts:
• Initial state • Transition model
• State space graph • Step cost
• Goal test (cf. goal) • Path cost
• Actions • Solution / optimal solution

• Open-loop/closed-loop systems

• Expanding vs. generating a state

• The frontier (a.k.a. open list)
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What’s a “State”?

• The current value of  everything in the agent’s “world”
• “State space”: all possible states

• Everything in the problem representation

• Values of  all parameters at a particular point in time

• Examples:
• Chess board: 8x8 grid, location of  all pieces
• Tic-tac-toe: 3x3 grid, whether each is X, O, or open
• Robot soccer: Location of  all players, location of  ball, possibly

last known trajectory of  all players (if  sequential)
• Travel: Cities, distances between cities, agent’s current city
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Some Examples

Agent Type Performance 
Measure 

Environment Actuators Sensors 

Robot soccer 
player 

Winning game, 
goals 

for/against 
 

Field, ball, 
own team, 
other team, 
own body 

Devices (e.g., 
legs) for 

locomotion 
and kicking 

 

Camera, touch 
sensors, 

accelerometers, 
orientation 

sensors, 
wheel/joint 
encoders 

Internet 
book-shopping 

agent 
 

Obtain 
requested/ 
Interesting 

books, 
minimize 

expenditure 

Internet 
 

Follow link, 
enter/submit 
data in fields, 
display to user 

Web pages, 
user requests 

 

PEAS

Task 
Environment 

Observable Deterministic Episodic Static Discrete Agents 

Robot 
soccer 

Partially Stochastic Sequential Dynamic Continuous Multi 

Internet 
book-

shopping 

Partially Deterministic Sequential Static 
 

Discrete Single 
 

 

Environment
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Today’s Class

• Goal-based agents

• Representing states and operators

• Example problems

• Generic state-space search algorithm

Everything in AI comes down to search.

Goal: understand search, and understand why.
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Why Search?

• Traditional (non-AI) problems are likely tractable.
• Either they can be solved by listing all possible states…

• Tic-tac-toe: 39 = 19,683 states (3 values for each cell, nine cells)*
• Still big, but a computer can explore all possible choices during play

• Or there’s a mechanical approach to finding a solution

• Can’t memorize the space of  answers, but you don’t need to
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X

O

X
…

X

O O

X

X O O O

O O O

O O O

* Of course, there are fewer valid states

345,781,000  ✕ 234,567,431,000
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Why Search? (2)

• “Intelligent” problems are usually intractable.
• Either the state space is too large to enumerate…

• We don’t know what a good 
solution is until we find it…
• Or, somehow, we have more

states than we can explore.
examples.gurobi.com/traveling-salesman-problem,  en.wikipedia.org/wiki/Free_Internet_Chess_Server, www.smbc-comics.com/comic/recommendations
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Why Search? (2)

• “Intelligent” problems are usually intractable.
• Either the state space is too large to enumerate…

• We don’t know what a good 
solution is until we try it…
• Or, somehow, we have more

states than we can examine.
examples.gurobi.com/traveling-salesman-problem,  en.wikipedia.org/wiki/Free_Internet_Chess_Server, www.smbc-comics.com/comic/recommendations
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Why Search? (3)

• We can’t search intractable problems exhaustively,
so we must consider them cleverly.

• Understanding the problem space is the first step.

needpix.com, machinelearnings.co/understanding-alphago-948607845bb1
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Search: The Core Idea

• For any problem:
• World is (always) in some state
• Agents take actions, which 

change the state

• We need a sequence of 
actions that gets the world 
into a particular goal state.

• To find it, we search the 
space of  actions and states.
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some 

action

some other 

actionA1 A2A4

A3 A6 A7A5
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Building Goal-Based Agents

• To build a goal-based agent we need to decide:
• What is the goal to be achieved?
• What are the possible actions?
• What relevant information must be encoded…
• To describe the state of  the world?

• To describe the available transitions?

• To solve the problem?

Initial
state

Goal
stateActions
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What is the Goal?

• A situation we want to achieve

• A set of properties that we want to hold

• Must define a  “goal test”
• What does it mean to achieve it?
• Have we done so?

• This is a hard question that is rarely tackled in AI!
• Often, we assume the system designer or user will specify the goal 

• For people, we stress the importance of establishing clear 
goals for as the first step towards solving a problem. 
• What are your goals?
• What problem(s) are you trying to solve?
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What Are Actions?

• Primitive actions or events:
• Make changes in the world
• In order to achieve a (sub)goal
• Actions are also known as operators or moves

• Examples:
Low-level:
• Chess:	“advance	a	pawn”
• Navigation:	“take	a	step”
• Finance:	“sell	10%	of	stock	X”
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High-level	:
• Chess:	“clear a	path	for	a	queen”
• Navigation:	“go	home”
• Finance:	“sell	best-return	shares”
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Actions and Determinism

• In a deterministic world there is no uncertainty in 
an action’s effects

• Current world state + chosen action fully specifies:

1. Whether that action can be done in current world
• Is it applicable? (E.g.: Do I own any of stock X to sell?)
• Is it legal? (E.g.: Can’t just move a pawn sideways.)

2. World state after action is performed
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After last pt:
•No need for 
“history” 
information
•Everything is 
encapsulated 
by state

Wha?
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Representing Actions

• Actions here are:
• Discrete events
• That occur at an instant of time

• For example:
• State: “Mary is in class”

• Action “Go home”

• New state: “Mary is at home”

• There is no representation of a state where she is in 
between (i.e., in the state of “going home”).
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A1 A2A4
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Sliding Tile Puzzles

• 15-puzzles, 8-puzzles

• How do we represent states?

• How do we represent actions?
• Tile-1 moves north
• Tile-1 moves west
• Tile-1 moves east
• Tile-1 moves south
• Tile-2 moves north
• Tile-2 moves west
• …

commons.wikimedia.org/wiki/File:15-puzzle-shuffled.svg,	 commons.wikimedia.org/wiki/File:15-puzzle-loyd-bis2.svg
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• Number of  actions / operators depends on 
representation used in describing a state

• 8-puzzle:
• Could specify 4 possible 

moves (actions) for each 
of  the 8 tiles: 

4*8=32 operators.

• Or, could specify four moves for the “blank” square:

4 operators!

• Careful representation can simplify a problem!

Representing Actions
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…
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Representing States

• What information about the world sufficiently describes all 
aspects relevant to solving the goal?

• That is: what knowledge must be in a state description to 
adequately describe the current state of the world?

• The size of a problem is usually described in terms of the 
number of states that are possible
• Tic-Tac-Toe has about 39 states. 

• Checkers has about 1040 states. 

• Rubik’s Cube has about 1019 states. 

• Chess has about 10120 states in a typical game.
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Closed World Assumption

• We generally use the Closed World Assumption:

“All necessary information about a problem
domain is available in each percept so that each 
state is a complete description of  the world.”

• No incomplete information at any point in time.
• A statement that is true is always known to be true.
∴ If we do not know something is true, it is false.

en.wikipedia.org/wiki/Closed-world_assumption20
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Some Example Problems

• Toy problems and micro-worlds
• 8-Puzzle
• Boat Problems

• Cryptarithmetic

• Remove 5 Sticks
• Water Jug Problem

• Real-world problems
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8-Puzzle

Given an initial configuration of 8 numbered tiles 
on a 3 x 3 board, move the tiles in such a way so as 
to produce a desired goal configuration of the tiles.
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8-Puzzle

• State: 3 x 3 array describing where tiles 
are

• Operators: Move blank square Left, 
Right, Up or Down
• This is a more efficient encoding of  the 

operators! 

• Initial State: Starting configuration of 
the board

• Goal: Some configuration of the board
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The 8-Queens Problem 

Place eight (or 
N) queens on a 
chessboard such 

that no queen 
can reach any 

other
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Boat Problems

1 sheep, 1 wolf, 1 cabbage, 1 boat

• Goal: Move everything across the river. 

• Constraints:
• The boat can hold you plus one thing.

• Wolf  can never be alone with sheep.

• Sheep can never be alone with cabbage.

• State: location of sheep, wolf, cabbage on shores and boat. 

• Operators: Move ferry containing some set of occupants 
across the river (in either direction) to the other side.
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Remove 5 Sticks

• Given the following 
configuration of  sticks, 
remove exactly 5 sticks 
in such a way that the 
remaining 
configuration forms 
exactly 3 squares. 
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Some Real-World Problems

• Route finding

• Touring (traveling salesman)

• Logistics

• VLSI layout

• Robot navigation

• Learning
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Knowledge Representation Issues

• What’s in a state?
• Is the color of the tiles relevant to solving an 8-puzzle?
• Is sunspot activity relevant to predicting the stock market? 

• What to represent is a very hard problem!
• Usually left to the system designer to specify. 

• What level of abstraction to describe the world?
• Too fine-grained and we “miss the forest for the trees”
• Too coarse-grained and we miss critical information
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Knowledge Representation Issues

• Number of  states depends on:
• Representation choices
• Level of abstraction

• In the Remove-5-Sticks problem:
• If we represent individual sticks, then there are 17-choose-

5 possible ways of removing 5 sticks (6188)
• If we represent the “squares” defined by 4 sticks, there are 

6 squares initially and we must remove 3
• So, 6-choose-3 ways of removing 3 squares (20)
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Formalizing Search in a State Space

• A state space is a 
graph (V, E):
• V is a set of nodes
• E is a set of arcs
• Each arc is directed 

from a node to 
another node

• How does that 
work for 8-puzzle?
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Formalizing Search in a State Space

• V: A node is a data structure that contains:
• State description 
• Bookeeping information: parent(s) of the node, name of 

operator that generated the node from that parent, etc.

• E: Each arc is an instance (single occurrence) of  
one operator. 
• When operator is applied to the arc’s source node (state), 

then

• Resulting state is associated with the arc’s destination node
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Formalizing Search 

• Each arc has a fixed, positive cost
• Corresponding to the cost of the operator
• What is “cost” of doing that action?

• Each node has a set of  successor nodes
• Corresponding to all operators (actions) that can apply at 

source node’s state
• Expanding a node is generating successor nodes, and 

adding them (and associated arcs) to the state-space graph
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Formalizing Search II

• One or more nodes are 
designated as start 
nodes

• A goal test predicate is 
applied to a state to 
determine if  its 
associated node is a goal 
node
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Water Jug Problem

Name Cond. Transition Effect

Empty5 – (x,y)→(0,y) Empty 5-gal. 
jug

Empty2 – (x,y)→(x,0) Empty 2-gal. 
jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2-gal. into 
5-gal.

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5-gal. into 
2-gal.

5to2part y < 2 (1,y)→(0,y+1) Pour partial 5-
gal. into 2-gal.

Given a full 5-gallon jug 
and an empty 2-gallon 
jug, the goal is to fill the 
2-gallon jug with exactly 
one gallon of water.

State = (x,y), where x is 

the number of  gallons of  
water in the 5-gallon jug 
and y is # of  gallons in 
the 2-gallon jug 

Initial State = (5,0) 

Goal State = (*,1)
(* means any amount)

Operator table
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CLASS EXERCISE

• Representing a Sudoku puzzle as a search space
• What are the states?
• What are the operators?
• What are the constraints 

(on operator application)?

• What is the description 
of the goal state?

• Let's try it!

3

1

3

2
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Formalizing Search III

• A solution is a sequence of  operators that is 
associated with a path in a state space from a start 
node to a goal node.

• The cost of a solution is the sum of the arc costs on 
the solution path.
• If all arcs have the same (unit) cost, then the solution cost 

is just the length of the solution (number of steps / state 
transitions)
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Formalizing Search IV

• State-space search: searching through a state space 
for a solution by making explicit a sufficient 
portion of  an implicit state-space graph to find a 
goal node 
• Initially V={S}, where S is the start node
• When S is expanded, its successors are generated; those 

nodes are added to V and the arcs are added to E
• This process continues until a goal node is found

• It isn’t usually practical to represent entire space
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Formalizing Search V

• Each node implicitly or explicitly represents a 
partial solution path (and its cost) from start node 
to given node. 
• In general, from a node there are many possible paths (and 

therefore solutions) that have this partial path as a prefix
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State-Space Search Algorithm
function general-search (problem, QUEUEING-FUNCTION)
;; problem describes start state, operators, goal test,
;;    and operator costs
;; queueing-function is a comparator function that 
;; ranks two states
;; returns either a goal node or failure

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop

if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds

then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))
end

;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops
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A1 A
2

A
3

A
6

A
7
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Generation vs. Expansion

• Selecting a state means making that node current

• Expanding the current state means applying every 
legal action to the current state

• Which generates a new set of  nodes

43 R&N pg. 68, 80
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Key Procedures

• EXPAND
• Generate all successor 

nodes of  a given node
• “What nodes can I reach from here 

(by taking what actions)?”

• GOAL-TEST
• Test if  state satisfies 

goal conditions

• QUEUEING-FUNCTION
• Used to maintain a ranked list of  nodes that are candidates

for expansion
• “What should I explore next?”
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Algorithm Bookkeeping

• Typical node data structure includes:
• State at this node
• Parent node
• Operator applied to get to this node
• Depth of this node 
• That is, number of  operator applications since initial state

• Cost of the path
• Sum of  each operator application so far
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Some Issues

• Search process constructs a search tree, where:
• Root is the initial state and 
• Leaf nodes are nodes that are either:
• Not yet expanded (i.e., they are in the list “nodes”) or 

• Have no successors (i.e., they're “dead ends”, because no operators 
can be applied, but they are not goals)

• Search tree may be infinite
• Even for small search space
• How?
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Some Issues

• Return a path or a node depending on problem
• In 8-queens return a node
• 8-puzzle return a path
• What about Sheep & Wolves?

• Changing definition of  Queueing-Functionà
different search strategies
• How do you choose what to expand next?
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Evaluating Search Strategies

• Completeness:
• Guarantees finding a solution if  one exists

• Time complexity:
• How long (worst or average case) does it take to find a solution?
• Usually measured in number of  states visited/nodes expanded

• Space complexity:
• How much space is used by the algorithm?
• Usually measured in maximum size of  the “nodes” list during search

• Optimality / Admissibility
• If  a solution is found, is it guaranteed to be optimal (the solution with 

minimum cost)?
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Summary

• Search is at the heart of  AI.

• Formalizing states, actions, &c. makes them 
searchable.
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