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Bayesian Learning

• Bayesian probability: the view of  probability as a 
measure of  belief, as opposed to being a frequency
• Does not mean that past statistics are ignored

• Statistics of  what has happened in the past are the knowledge 
that is conditioned on and used to update belief.

• Models are mathematical formulations of  observed 
events

• Parameters are factors in the models 
• Specifically, those affecting observations

Mackworth & Poole Ch. 6
www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english
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Naïve Bayes

First, make the simplest possible independence assumption:

• Each attribute is independent of  the values of  the other attributes, 
given the class variable (the label)
• In restaurants:  Cuisine is independent of  Patrons, given a decision to stay

• Embodied in a belief  network where:
• Features are nodes
• Target variable (the classification) has no parents
• The classification is the only parent of  each input feature

• This requires:
• Probability distributions P(C) for target variable C (the classes, e.g., + or -)
• P(Fi|C) for each input feature Fi
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Formulation Terms

• C: a class
• What we’re trying to classify into – e.g., positive (spam) or 

negative (not spam), cat or dog, yellow or not, …

• Example, data point, training datum, etc: a single 
example from which to learn, e.g., 

• F: a feature vector
• F1 .. Fn hold the values of each feature for some specific 

data point (so F1 might be R, F2 = G, F3 = G, …)
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Bayesian Formulation

For each example (training datum), predict C (the class) by conditioning 
on observed input features and by querying the classification

• The probability of class C given F1, ..., Fn :
p(C | F1, ..., Fn) = p(C) p(F1, ..., Fn | C) / P(F1, ..., Fn)

• Denominator: normalizing constant to make probabilities 
sum to 1, which we call α

p(C | F1, ..., Fn) = α p(C) p(F1, ..., Fn | C)

• Denominator does not depend on class

• Therefore, not needed to determine the most likely class 
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Bayesian Formulation

• The probability of  class C given F1, ..., Fn is:
p(C | F1, ..., Fn) = p(C) p(F1, ..., Fn | C) / P(F1, ..., Fn)

= α p(C) p(F1, ..., Fn | C)

• Assumption: each feature is conditionally independent 
of  the other features given C.  Then:

p(C | F1, ..., Fn)  = α p(C) Πi p(Fi | C) 

• We can estimate each of  these conditional probabilities 
from the observed counts in the training data:

p(Fi | C)  = N(Fi , C) / N(C)
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Bayesian Formulation

• Given a data point with inputs F1=v1,...,Fk=vk:

• Use Bayes’ rule to compute posterior probability 
distribution of the example’s classification, C: 

• P(C | F1=v1,...,Fk=vk)      (P(F1=v1,...,Fk=vk| C) ×P(C))
(P(F1=v1, ..., Fk=vk)) 

(P(F1=v1|C)× ··· ×P(Fk=vk| C)×P(C))
( ∑CP(F1=v1|C)× ··· ×P(Fk=vk| C) ×P(C)) 

=

=
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Bayesian Formulation

• Given a data point with inputs F1=v1,...,Fk=vk:

• Use Bayes’ rule to compute posterior probability 
distribution of the example’s classification, C: 

• P(C | F1=v1,...,Fk=vk)      (P(F1=v1,...,Fk=vk| C) ×P(C))
(P(F1=v1, ..., Fk=vk)) 

(P(F1=v1|C)× ··· ×P(Fk=vk| C)×P(C))
( ∑CP(F1=v1|C)× ··· ×P(Fk=vk| C) ×P(C)) 

=

=So for each possible class, you can 
calculate the probability of a new datum 

belonging to that class. The highest 
probability is the classification output.
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Naive Bayes: Example

• p(Wait | Cuisine, Patrons, Rainy?) 

= α p(Wait) p(Cuisine | Wait) p(Patrons | Wait) 

p(Rainy? | Wait)

naive Bayes assumption:  is it reasonable?
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Naive Bayes: Analysis

• Easy to implement

• Outperforms many more complex algorithms
• Should almost always be used for baseline comparisons

• Works well when the independence assumption is appropriate
• Often appropriate for natural kinds: classes that exist because they are 

useful in distinguishing the objects that humans care about

But…

• Can’t capture interdependencies between variables (obviously)

• For that, we need Bayes nets!
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• Binary Features: long, sweet, yellow (or not)

• What we know:
• 50% are bananas

• 30% are oranges

• 20% are other fruits

• And:
• 500 bananas: Long=400 (0.8), Sweet=350 (0.7), Yellow=450 (0.9)

• 300 oranges: Long=0, Sweet= 150 (0.5),Yellow=300 (1.0)

• 200 other: Long=100 (0.5), Sweet=150 (0.75), Yellow=50 (0.25)

• We are given a new fruit that is Long, Sweet, and Yellow.

• Set this up as a Bayes’ reasoning problem. 
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• Binary Features: long, sweet, yellow (or not)

• What we know:
• 50% are bananas

• 30% are oranges

• 20% are other fruits

• And:
• 500 bananas: Long=400 (0.8), Sweet=350 (0.7), Yellow=450 (0.9)

• 300 oranges: Long=0, Sweet= 150 (0.5),Yellow=300 (1.0)

• 200 other: Long=100 (0.5), Sweet=150 (0.75), Yellow=50 (0.25)

• We are given a new fruit that is Long, Sweet, and Yellow.

• Set this up as a Bayes’ reasoning problem. What are the odds 
of this new thing being a banana? An orange? An other?

Example from: https://towardsdatascience.com/all-about-naive-bayes-8e13cef044cf
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Learning in Bayesian 
Networks
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Naive Bayes: Analysis

• Easy to implement

• Outperforms many more complex algorithms
• Should almost always be used for baseline comparisons

• Works well when the independence assumption is appropriate
• Often appropriate for natural kinds: classes that exist because they are 

useful in distinguishing the objects that humans care about

But…

• Can’t capture interdependencies between variables (obviously)

• For that, we need Bayes nets!
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Quick Review: Bayes Nets

Qualitative part:

• Statistical independence 
statements (causality!)

• Directed acyclic graphs 
(DAG)

• Nodes - random 
variables of interest 
(exhaustive, mutually 
exclusive states)

• Edges - direct (causal-
ish) influence

Slide © 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SRI International. All rights reserved.

Quantitative part: 
Local probability 
models: set of 
conditional 
probability 
distributions.
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Bayesian Learning: Bayes’ Rule

• “Model” = learned belief  about how the universe works
• E.g., a fully trained classifier

• New idea: Instead of  choosing the single most likely 
model or finding the set of  all models consistent with 
training data, compute the posterior probability of 
every model given the training examples

• Bayesian learning: Compute posterior probability 
distribution of  the class of  a new example, conditioned 
on its input features and all training examples
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Bayesian Learning: Bayes’ Rule

• Given some model space (set of  hypotheses hi) and 
evidence (data D):
• P(hi|D) = a P(D|hi) P(hi)

• We assume observations are independent of  each other, 
given a model (hypothesis), so:
• P(hi|D) = a Õj P(dj|hi) P(hi)

• To predict the value of  some unknown quantity C
(e.g., the class label for a future observation):
• P(C|D) = åi P(C|D, hi) P(hi|D) = åi P(C|hi) P(hi|D)

These are equal by our
independence assumption
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Example

• New example has inputs and target features (class variables)
• Inputs: X=x
• Target features:Y
• e: set of  training examples

• Goal: compute P(Y|X=x, e)
• The probability distribution of  target variables given the inputs and the examples

• A model is assumed to have generated the examples; M is set of  models

• Then: P(Y|x, e) = ∑m∈M P(Y , m |x, e)
= ∑m∈M P(Y | m , x, e) ×P(m|x, e) 
= ∑m∈M P(Y | m , x) ×P(m|e)

• Bayes’ rule: P(m|e) = (P(e|m)×P(m))/(P(e))

• Weight of each model depends on how well it predicts the data, plus its 
prior probability

23Details: http://artint.info/html/ArtInt_196.html
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Bayesian Learning, 3 Ways

• BMA (Bayesian Model Averaging)
• Don’t just choose one hypothesis; instead, make predictions based on 

the weighted average of  all hypotheses (or some set of  best hypotheses)

• MAP (Maximum A Posteriori) hypothesis
• Choose hypothesis with highest a posteriori* probability, given data 
• Maximize p(hi | D)
• Generally easier than Bayesian learning
• Closer to Bayesian prediction as more data arrives

• MLE (Maximum Likelihood Estimate)
• Assume all hypotheses are equally likely a priori**; best hypothesis 

maximizes the likelihood (i.e., probability of  data given hypothesis)
• Maximize p(D | hi)

2424

* afterwards
** beforehand
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Bayesian Learning

• BMA (Bayesian Model Averaging) –
average predictions of  hypotheses

• MAP (Maximum A Posteriori) hypothesis –
Maximize p(hi | D)

• MLE (Maximum Likelihood Estimate) –
Maximize p(D | hi)

• MDL (Minimum Description Length) principle: Use 
some encoding to model the complexity of  the 
hypothesis, and the fit of  the data to the hypothesis, 
then minimize the overall description of  hi + D
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Example: Coin Toss

• Models mathematically formulate observed events

• Parameters are factors in the models affecting 
outcomes

• Toin Coss Example
• Fairness of coin is the parameter, θ; 

• Outcome of the events is data, D
• E.g. 100 flips, heads = 72, tails = 28

• Given (D), what is the probability this coin is fair (θ=0.5)?
• Bayes’ rule: P(θ|D) = (P(D|θ) × P(θ))/P(D)

www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english
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Example: Coin Toss

• Bayes : P(θ|D) = (P(D|θ) × P(θ))/P(D)

• P(θ) is the prior: the strength of  our belief  in the fairness of  coin 
before the toss
• Can have any degree of  fairness between 0 and 1

• P(D|θ) is the likelihood of observing this result given 
distribution for θ
• Probability of  observing that number of  heads in a particular number of  

flips, given a fair coin

• P(D) is evidence: the probability of  observed data
• Determined by summing (or integrating) across all possible values of  θ, 

weighted by how strongly we believe in those particular values of  θ
• P(θ|D) is the posterior: belief  of  our parameters after observing 

the evidence

www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english
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Example: Coin Toss

• Bayes : P(θ|D) = (P(D|θ) × P(θ))/P(D)

• P(θ) is the prior: the strength of  our belief  in the fairness of  coin 
before the toss
• Can have any degree of  fairness between 0 and 1

• P(D|θ) is the likelihood of observing this result given 
distribution for θ
• Probability of  observing that number of  heads in a particular number of  

flips, given a fair coin

• P(D) is evidence: the probability of  observed data
• Determined by summing (or integrating) across all possible values of  θ, 

weighted by how strongly we believe in those particular values of  θ
• P(θ|D) is the posterior: belief  of  our parameters after observing 

the evidence

www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english

The point: If we had multiple hypotheses
about the fairness of the coin, then this tells 

us the probability of seeing a certain 
sequence of flips for each possible 

fairness (hypothesis).
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Learning in Bayes Nets

• Parameter 
Learning/Estimation: 
infer Θ from data, 
given G

• Structure Learning: 
inferring G and Θ from 
data

•

29
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Project Break

• Approach?

• Functions, inputs and outputs?

• NOT pseudocode

• Questions?
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Learning Bayesian Networks 

• Given training set

• Find B that best matches D
• model selection 
• parameter estimation
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Parameter Estimation

• Assume known structure

• Goal: estimate BN parameters θ
• entries in local probability models, P(X | Parents(X))

• A good parameterization θ is likely to generate 
observed data:

• Maximum Likelihood Estimation (MLE) Principle: 
Choose θ* to maximize L

Õ==
m

mxPDPDL )|][()|():( qqq
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i.i.d. samples
independent and identically distributed 
(i.i.d.) if each random variable has the 
same probability distribution as the 

others and all are mutually independent
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Sufficient Statistics

• Sufficient statistic: a function s(D) of  data that 
summarizes relevant information computing the 
likelihood

s(D) = s(D′) ⇒ L(θ|D) = L(θ|D′) 

• Sufficient statistics tell us all there is to know about 
data. 
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Parameter Estimation II

• Likelihood decomposes per the structure of  the network
→ we get a separate estimation task for each parameter

• The MLE (maximum likelihood estimate) solution:
• For each value x of a node X
• And each instantiation u of Parents(X)
• Just need to collect the counts for every combination of  

parents and children observed in the data

• MLE: equivalent to assuming uniform prior over parameter 
values

)(
),(*

| uN
uxN

ux =q sufficient statistics
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Sufficient Statistics: Example

)(
),(*

| uN
uxN

ux =q

• Why are the counts sufficient?

Earthquake Burglary

Alarm

Moon-phase

Light-level

θ*A | E, B = N(A, E, B) / N(E, B)
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Examples

• Thumbtack tossing:
• (mh, mt) = (3,7). MLE: θ = 0.3.
• Reasonable. Data suggest that the thumbtack is biased toward tail.

• Coin tossing:
• Case 1: (mh, mt) = (3,7). MLE: θ = 0.3. Not reasonable.
• Our experience (prior) suggests strongly that coins are fair, hence θ=1/2.
• The size of  the data set is too small to convince us this particular coin is 

biased.
• The fact that we get (3, 7) instead of  (5, 5) is probably due to randomness.

• Case 2: (mh, mt) = (30,000,70,000). MLE: θ = 0.3. Reasonable.
• Data suggest that the coin is after all biased, overshadowing our prior.
• MLE does not differentiate these cases – does not take prior information 

into account.
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Model Selection

Goal: Select the best network structure, given the data

Input:
• Training data
• Scoring function

Output:
• A network that maximizes the score

• This is NP-hard!
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Structure Selection: Scoring

• Bayesian: prior over parameters and structure

• Find balance between model complexity and fit to data

• Score (G:D) = log P(G|D) a log [P(D|G) P(G)]

• Marginal likelihood just comes from our parameter 
estimates

• Prior on structure can be any measure we want; 
typically a function of the network complexity

Marginal likelihood
Prior
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Heuristic Search
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Variations on a Theme

• Known structure, fully observable: only need to do 
parameter estimation

• Unknown structure, fully observable: do heuristic search 
through structure space, then parameter estimation

• Known structure, missing values: use expectation 
maximization (EM) to estimate parameters

• Known structure, hidden variables: apply adaptive 
probabilistic network (APN) techniques

• Unknown structure, hidden variables: too hard to solve!
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Handling Missing Data

• Suppose that in some cases, we observe 
earthquake, alarm, light-level, and 
moon-phase, but not burglary

• Should we throw that data away??

• Idea: Guess the missing values
based on the other data

Earthquake Burglary

Alarm

Moon-phase

Light-level
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EM (Expectation Maximization)

• Guess probabilities for nodes with missing values
(e.g., based on other observations)

• Compute the probability distribution over the 
missing values, given our guess

• Update the probabilities based on the guessed 
values

• Repeat until convergence
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EM Example

• Suppose we have observed Earthquake and Alarm but 
not Burglary for an observation on November 27

• We estimate the CPTs based on the rest of  the data

• We then estimate P(Burglary) for November 27 from 
those CPTs

• Now we recompute the 
CPTs as if  that estimated 
value had been observed

• Repeat until convergence!

Earthquake Burglary

Alarm

45
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