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o g

Cynthia Matuszek — CMSC 671 Material from Dr. Marie desJardin,

Naive Bayes

I TN PR J
P P

First, make the simp

e ption:

Each attribute is independent of the values of the other attributes,
given the class variable (the label)
« Inrestaurants: Cuisine is independent of Patrons, given a decision to stay

Embodied in a belief network where:

- Features are nodes

« Target variable (the classification) has no parents

 The classification is the only parent of each input feature

This requires:

- Probability distributions P(C) for target variable C (the classes, e.g., + or -)
« P(Fi|C) for each input feature Fi

Bayesian Formulation

For each example (training datum), predict C (the class) by conditioning
on observed input features and by querying the classification

* The probability of class C given Fi, ..., F, :
p(CIFy, ..., F,) =p(C) p(Fy, ..., F, | C) / P(Fy, ..., F,)

* Denominator: normalizing constant to make probabilities
sum to 1, which we call «

p(C I F19 ooy Fn) =a P(C) p(Fb ooy Fn | C)

- Denominator does not depend on class
- Therefore, not needed to determine the most likely class
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Bayesian Learning

» Bayesian probability: the view of probability as a

measure of belief, as opposed to being a frequency
+ Does not mean that past statistics are ignored

« Statistics of what has happened in the past are the knowledge
that is conditioned on and used to update belief.

Models are mathematical formulations of observed
events

Parameters are factors in the models
« Specifically, those affecting observations
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Formulation Terms

C: a class

+ What we’re trying to classify into — e.g., positive (spam) or
negative (not spam), cat or dog, yellow or not, ...

Example, data point, training datum, etc: a single

example from which to learn, e.g., *

F a feature vector

* Fj.. F, hold the values of each feature for some specific
data point (so F; mightbe R, F;, =G, F;=G, ...)

Bayesian Formulation

The probability of class C given Fy, ..., F, is:
p(C I Fy, ..., Fo) = p(C) p(Fy, ... Fu 1 C) / P(Fy, ..., Fy)
=« p(C) p(Fyy ..., Fn 1 C)

» Assumption: each feature is conditionally independent

of the other features given C. Then:
p(CIFy,....,F) =apC) II; p(F; | C)

We can estimate each of these conditional probabilities
from the observed counts in the training data:
p(Fi1C) =N(F;, C)/N()
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Bayesian Formulation

* Given a data point with inputs F;=v;,..., Fp=v:

» Use Bayes’ rule to compute posterior probability
distribution of the example’s classification, C:

* PC | Fr=vy...Fe=vy) _ (PE=vy.. =y | O XP(C)
(P(Fr=vy, ..., Fy=vy)
= (PEFE=p QX - XPF=y.| QIXP(C))
(ZPF=v1O)x - xP(Fp=ve| C) XP(C))

Naive Bayes: Example

* p(Wait | Cuisine, Patrons, Rainy?)
= o p(Wait) p(Cuisine | Wait) p(Patrons | Wait)
p(Rainy? | Wait)

naive Bayes assumption: is it reasonable?

Binary Features: long, sweet, yellow (or not)

Bayesian Formulation

» Given a data point with inputs F;=v;,..., Fp=w:

» Use Bayes’ rule to compute posterior probability
distribution of the example’s classification, C:

So for each possible class, you can
calculate the probability of a new datum
belonging to that class.The highest

probability is the classification output.

‘What we know: Fruit Long

400
50% are bananas

0

30% are oranges 100

20% are other fruits 500

And:

500 bananas: Long=400 (0.8), Sweet=350 (0.7), Yellow=450 (0.9)

300 oranges: Long=0, Sweet= 150 (0.5), Yellow=300 (1.0)

200 other: Long=100 (0.5), Sweet=150 (0.75), Yellow=50 (0.25)

‘We are given a new fruit that is Long, Sweet, and Yellow.

Set this up as a Bayes’ reasoning problem.

Naive Bayes: Analysis

Easy to implement

Outperforms many more complex algorithms
Should almost always be used for baseline comparisons

Works well when the independence assumption is appropriate
Often appropriate for natural kinds: classes that exist because they are
useful in distinguishing the objects that humans care about

But...
Can'’t capture interdependencies between variables (obviously)

For that, we need Bayes nets!

Binary Features: long, sweet, yellow (or not)

‘What we know: Fruit Long

B: 400
50% are bananas anena

Orange [

30% are oranges Other 100

20% are other fruits |[Total 500

And:

500 bananas: Long=400 (0.8), Sweet=350 (0.7), Yellow=450 (0.9)

300 oranges: Long=0, Sweet= 150 (0.5), Yellow=300 (1.0)
200 other: Long=100 (0.5), Sweet=150 (0.75), Yellow=>50 (0.25)

‘We are given a new fruit that is Long, Sweet, and Yellow.

Set this up as a Bayes’ reasoning problem. What are the odds
of this new thing being a banana? An orange? An other?




Learning in Bayesian
Networks

Quick Review: Bayes Nets

Qualitative part:

« Statistical independence P4 | EB)
statements (causality!) 09 01

Directed acyclic graphs
(D AG) 0.9 0.1

.01 0.99

© Nodes - random

variables of interest

. Quantitative part;
(exhaustive, mutually Local probability

exclusive states) models: set of
- Edges - direct (causal- conditional
ish) influence probability
distributions.

Slide © 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmids, SR International, All rights reserved.

Bayesian Learning: Bayes’ Rule

» Given some model space (set of hypotheses h;) and
evidence (data D):
* P(hi| D) = o P(D | hy) P(hy)

‘We assume observations are independent of each other,
given a model (hypothesis), so:

* P(hi| D) = o I P(dj| hy) P(hy)

To predict the value of some unknown quantity C
(e.g., the class label for a future observation):

- P(CID) = ZiP(CID,wIID):}@mOP(hiID)

These are equal by our
independence assumption
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Naive Bayes: Analysis

Easy to implement

Outperforms many more complex algorithms
* Should almost always be used for baseline comparisons

Works well when the independence assumption is appropriate

- Often appropriate for natural kinds: classes that exist because they are
useful in distinguishing the objects that humans care about

But...
Can’t capture interdependencies between variables (obviously)

For that, we need Bayes nets!

Bayesian Learning: Bayes’ Rule

“Model” = learned belief about how the universe works
- E.g., a fully trained classifier

New idea: Instead of choosing the single most likely
model or finding the set of all models consistent with
training data, compute the posterior probability of
every model given the training examples

Bayesian learning: Compute posterior probability
distribution of the class of a new example, conditioned
on its input features and all training examples
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Example

New example has inputs and target features (class variables)
- Inputs: X=x

« Target features: ¥’

e set of training examples

Goal: compute P(Y| X=x, ¢)
« The probability distribution of target variables given the inputs and the examples

A model is assumed to have generated the examples; M is set of models
Then: P(Ylxv,e) =ZneuP(Y,m |x €

=Xnem P(Y | m, x, e) XP(m|x, e)

=Zneu P(Y | m, x) xP(m|e)
Bayes’ rule: P(m|e) = (P(e|m)xP(m))/ (P(e)

‘Weight of each model depends on how well it predicts the data, plus its
prior probability

| Details: http://artint.infolhtml/ArtInt_I 96.html |




Bayesian Learning

Bayesian Learning, 3 Ways

BMA (Bayesian Model Averaging) —

* BMA (Bayesian Model Averaging)
average predictions of hypotheses

Don’t just choose one hypothesis; instead, make predictions based on
the weighted average of all hypotheses (or some set of best hypotheses)

. X . MAP (Maximum A Posteriori) hypothesis —
* MAP (Maximum A Posteriori) hypothesis Maxin(ﬁze p(hi | D) ) hyp
Choose hypothesis with highest a posteriori* probability, given data
Maximize p(hi | D) MLE (Maximum Likelihood Estimate) —
Maximize p(D | h;)

MDL (Minimum Description Length) principle: Use
some encoding to model the complexity of the
hypothesis, and the fit of the data to the hypothesis,
then minimize the overall description of h; + D

Generally easier than Bayesian learning
Closer to Bayesian prediction as more data arrives

* MLE (Maximum Likelihood Estimate)

Assume all hypotheses are equally likely a priori**; best hypothesis
maximizes the likelihood (i.e., probability of data given hypothesis)

Maximize p(D | h;) * afterward
arterwards

** beforehand 25

Example: Coin Toss Example: Coin Toss

Bayes : P(6|D) = (P(D|6) x P(8))/P(D)
P(0) is the prior: the strength of our belief in the fairness of coin

* Parameters are factors in the models affecting before the toss
outcomes Can have any degree of fairness between 0 and 1
P(D| 0) is the likelihood of observing this result given

* Toin Coss Example distribution for 6
Probability of observing that number of heads in a particular number of

* Models mathematically formulate observed events

Fairness of coin is the parameter, 6;

QOutcome of the events is data, D

* E.g. 100 flips, heads = 72, tails = 28

Given (D), what is the probability this coin is fair (6=0.5)?

flips, given a fair coin

P(D) is evidence: the probability of observed data

Determined by summing (or integrating) across all possible values of 6,
weighted by how strongly we believe in those particular values of 6

P(0| D) is the posterior: belief of our parameters after observing

Bayes’ rule: P(8]D) = (P(D|6) x P(8))/P(D) the evidence

wwwanalyticsvidhya.com/blog/2016/06/baye:
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Example: Coin Toss Learning in Bayes Nets

Bayes : P(8] D) = (P(D|6) x P())/P(D) Parameter o
P® Learning/Estimation: 2 Fwire
1

. . in i .
befd The point: If we had multiple hypotheses gl-lf,eern%mm data, Y : H=a
c{ about the fairness of the coin, then this tells
gi(D us the probability of seeing a certain

t N A

;1 sequence of flips for each possible —

fli fairness (hypothesis). Structure Learning: Lo
inferring G and © from /\7\

P(DY P 2 data (Ughtrieg) ’ ( Rain )

Determined by summing (or integrating) across all possible values of 0, T

weighted by how strongly we believe in those particular values of 6 ? i
P(0|D) is the posterior: belief of our parameters after observing Q}.u.,;,)
the evidence o

winw.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english




Project Break

Approach?
Functions, inputs and outputs?
NOT pseudocode

Questions?

Parameter Estimation

i.i.d. samples
independent and identically distributed
(i.i.d.) if each random variable has the
same probability distribution as the
others and all are mutually independent

Assume known structure|

Goal: estimate BN para
entries in local probability

A good parameterization 0 is likely to ge
observed data:

L®:D)=P(D|0)=] [ P(x{m]|0)

Maximum Likelihood Estimation (MLE) Principle:
Choose 0" to maximize L
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Parameter Estimation 11

» Likelihood decomposes per the structure of the network
— we get a separate estimation task for each parameter

* The MLE (maximum likelihood estimate) solution:
For each value x of a node X
And each instantiation # of Parents(X)

Just need to collect the counts for every combination of
parents and children observed in the data

’;‘u = N, 4) Nyyicient statistics
N(u) <
MLE: equivalent to assuming uniform prior over parameter
values
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Learning Bayesian Networks

* Given training set D = {x[1],...,x[M]}

* Find B that best matches D
model selection
parameter estimation

"-’Y
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Sufficient Statistics

« Sufficient statistic: a function s(D) of data that
summarizes relevant information computing the
likelihood

s(D) = s(D") = L(6]| D) = L(6|D")

 Sufficient statistics tell us all there is to know about
data.

Sufficient Statistics: Example

Why are the counts sufficient?
Light-level

Earthquake
o _ N(x,u)

NG

@ e*AlE, B =N(A, E, B)/N(E, B)




Examples

« Thumbtack tossing:

(mn, m)) = (3,7). MLE: 8 = 0.3.

Reasonable. Data suggest that the thumbtack is biased toward tail.
« Coin tossing:

Case 1: (mn, mi) = (3,7). MLE: 8 = 0.3. Not reasonable.
Our experience (prior) suggests strongly that coins are fair, hence 6=1/2.

The size of the data set is too small to convince us this particular coin is
biased.
The fact that we get (3, 7) instead of (5, 5) is probably due to randomness.

« Case 2: (my, my) = (30,000,70,000). MLE: 6 = 0.3. Reasonable.
Data suggest that the coin is after all biased, overshadowing our prior.

MLE does not differentiate these cases — does not take prior information
into account.
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Structure Selection: Scoring

 Bayesian: prior over parameters and structure
* Find balance between model complexity and fit to data

Marginal likelih
arginal likelihood Prior

* Score (G:D) =1log P(GD) a log [P(D|G) P(G)]

» Marginal likelihood just comes from our parameter
estimates

Prior on structure can be any measure we want;
typically a function of the network complexity

Variations on a Theme

Known structure, fully observable: only need to do
parameter estimation

Unknown structure, fully observable: do heuristic search
through structure space, then parameter estimation

Known structure, missing values: use expectation
maximization (EM) to estimate parameters

Known structure, hidden variables: apply adaptive
probabilistic network (APN) techniques

Unknown structure, hidden variables: too hard to solve!
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Model Selection

Goal: Select the best network structure, given the data

Input:
Training data
Scoring function

Output:

A network that maximizes the score

* This is NP-hard!

Heuristic Search

Handling Missing Data

* Suppose that in some cases, we observe
earthquake, alarm, light-level, and

moon-phase, but not burglary

* Should we throw that data away??

(&
iy
* Idea: Guess the missing values
based on the other data




EM (Expectation Maximization)

Guess probabilities for nodes with missing values
(e.g., based on other observations)

Compute the probability distribution over the
missing values, given our guess

Update the probabilities based on the guessed
values

Repeat until convergence

EM Example

Suppose we have observed Earthquake and Alarm but
not Burglary for an observation on November 27

We estimate the CPTs based on the rest of the data

We then estimate P(Burglary) for November 27 from

those CPTs

Now we recompute the
CPTs as if that estimated
value had been observed

Repeat until convergence!
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