

- The probability of class C given $F_1, ..., F_n$ is: $p(C | F_1, ..., F_n) = p(C) p(F_1, ..., F_n | C) / P(F_1, ..., F_n)$ $= \alpha p(C) p(F_1, ..., F_n | C)$
- Assumption: each feature is conditionally independent of the other features given C. Then: p(C | F₁, ..., F_n) = α p(C) Π_i p(F_i | C)
- We can estimate each of these conditional probabilities from the observed **counts** in the training data: $p(F_i \mid C) = N(F_i, C) / N(C)$

Bayesian Formulation Given a data point with inputs F_I=v_I,...,F_k=v_k: Use Bayes' rule to compute posterior probability distribution of the example's classification, C: So for each possible class, you can calculate the probability of a new datum belonging to that class. The highest probability is the classification output.

Binary Features: long, sweet, yellow (or not)					
What we know:	Fruit	Long	Sweet	Yellow	Total
• 50% are bananas	Banana	400	350	450	500
	Orange	0	150	300	300
 30% are oranges 	Other	100	150	50	200
 20% are other fruits 	Total	500	650	800	1000
 State: 500 bananas: Long=400 (0.8), Sweet=350 (0.7), Yellow=450 (0.9) 300 oranges: Long=0, Sweet= 150 (0.5), Yellow=300 (1.0) 200 other: Long=100 (0.5), Sweet=150 (0.75), Yellow=50 (0.25) We are given a new fruit that is <i>Long, Sweet</i>, and <i>Yellow</i>. Set this up as a Bayes' reasoning problem. What are the odds of this new thing being a banana? An orange? An other? 					

Structure Selection: Scoring

- · Bayesian: prior over parameters and structure
- · Find balance between model complexity and fit to data

Marginal likelihood • Score (G:D) = log P(G|D) α log [P(D|G) P(G)]

- Marginal likelihood just comes from our parameter estimates
- Prior on structure can be any measure we want; typically a function of the network complexity

39

- Known structure, fully observable: only need to do parameter estimation
- **Unknown structure, fully observable:** do heuristic search through structure space, then parameter estimation
- Known structure, missing values: use expectation maximization (EM) to estimate parameters
- Known structure, hidden variables: apply adaptive probabilistic network (APN) techniques
- Unknown structure, hidden variables: too hard to solve!

38

EM (Expectation Maximization)

- **Guess** probabilities for nodes with **missing values** (e.g., based on other observations)
- **Compute the probability distribution** over the missing values, given our guess
- **Update the probabilities** based on the guessed values
- Repeat until convergence

44

