

1

Naïve Bayes

First, make the simplest possible independence assumption:

- Each attribute is independent of the values of the other attributes, given the class variable (the label)
- In restaurants: Cuisine is independent of Patrons, given a decision to stay
- Embodied in a belief network where:
- Features are nodes
- Target variable (the classification) has no parents
- The classification is the only parent of each input feature
- This requires:
- Probability distributions $P(C)$ for target variable C (the classes, e.g., + or -) - $\mathrm{P}\left(F_{i} \mid C\right)$ for each input feature F_{i}

3

Bayesian Formulation

For each example (training datum), predict C (the class) by conditioning on observed input features and by querying the classification

- The probability of class C given $\mathrm{F}_{1}, \ldots, \mathrm{~F}_{\mathrm{n}}$: $\mathbf{p}\left(C \mid F_{1}, \ldots, F_{n}\right)=p(C) p\left(F_{1}, \ldots, F_{n} \mid C\right) / P\left(F_{1}, \ldots, F_{n}\right)$
- Denominator: normalizing constant to make probabilities sum to 1 , which we call α

$$
p\left(C \mid F_{1}, \ldots, F_{n}\right)=\alpha p(C) p\left(F_{1}, \ldots, F_{n} \mid C\right)
$$

- Denominator does not depend on class
- Therefore, not needed to determine the most likely class

Bayesian Learning

- Bayesian probability: the view of probability as a measure of belief, as opposed to being a frequency
Does not mean that past statistics are ignored
- Statistics of what has happened in the past are the knowledge that is conditioned on and used to update belief.
- Models are mathematical formulations of observed events
- Parameters are factors in the models

Specifically, those affecting observations

2

Formulation Terms

- C : a class
- What we're trying to classify into - e.g., positive (spam) or negative (not spam), cat or dog, yellow or not, ...
- Example, data point, training datum, etc: a single example from which to learn, e.g.,
- F : a feature vector
- $F_{1} . . F_{n}$ hold the values of each feature for some specific data point (so F_{1} might be $\mathrm{R}, F_{2}=\mathrm{G}, F_{3}=\mathrm{G}, \ldots$)

4

Bayesian Formulation

- The probability of class C given F_{1}, \ldots, F_{n} is:

$$
\begin{aligned}
\mathbf{p}\left(\mathbf{C} \mid \mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}}\right) & =\mathbf{p}(\mathbf{C}) \mathbf{p}\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}} \mid \mathbf{C}\right) / \mathbf{P}\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}}\right) \\
& =\alpha \mathbf{p}(\mathbf{C}) \mathbf{p}\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}} \mid \mathbf{C}\right)
\end{aligned}
$$

- Assumption: each feature is conditionally independent of the other features given C . Then:
$p\left(C \mid F_{1}, \ldots, F_{n}\right)=\alpha p(C) \Pi_{i} p\left(F_{i} \mid C\right)$
- We can estimate each of these conditional probabilities from the observed counts in the training data: $\mathrm{p}\left(\mathrm{F}_{\mathrm{i}} \mid \mathrm{C}\right)=\mathrm{N}\left(\mathrm{F}_{\mathrm{i}}, \mathrm{C}\right) / \mathrm{N}(\mathrm{C})$

Bayesian Formulation

- Given a data point with inputs $F_{1}=v_{l}, \ldots, F_{k}=v_{k}$:
- Use Bayes' rule to compute posterior probability distribution of the example's classification, C :

$$
\text { - } \begin{aligned}
P\left(C \mid F_{l}=v_{l}, \ldots, F_{k}=v_{k}\right) & =\frac{\left(P\left(F_{1}=v_{l}, \ldots, F_{k}=v_{k} \mid C\right) \times P(C)\right)}{\left(P\left(F_{l}=v_{l}, \ldots, F_{k}=v_{k}\right)\right)} \\
& =\frac{\left(P\left(F_{l}=v_{1} \mid C\right) \times \cdots \times P\left(F_{b}=v_{b} \mid C\right) \times P(C)\right)}{\left(\sum_{C} P\left(F_{l}=v_{l} \mid C\right) \times \cdots \times P\left(F_{k}=v_{k} \mid C\right) \times P(C)\right)}
\end{aligned}
$$

7

Naive Bayes: Example

- p (Wait I Cuisine, Patrons, Rainy?)
$=\alpha p($ Wait $) p$ (Cuisine I Wait) p (Patrons I Wait)
p (Rainy? I Wait)

naive Bayes assumption: is it reasonable?

9

- Binary Features: long, sweet, yellow (or not)
- What we know:
- 50% are bananas
- 30% are oranges
- 20% are other fruits

Fruit	Long	Sweet	Yellow	Total
Banana	400	350	450	500
Orange	0	150	300	300
Other	100	150	50	200
Total	500	650	800	1000

- And:
- 500 bananas: Long=400 (0.8), Sweet=350 (0.7), Yellow=450 (0.9)
- 300 oranges: Long=0, Sweet= 150 (0.5),Yellow=300 (1.0)

200 other: Long=100 (0.5), Sweet=150 (0.75), Yellow=50 (0.25)

- We are given a new fruit that is Long, Sweet, and Yellow.
- Set this up as a Bayes' reasoning problem

Bayesian Formulation

- Given a data point with inputs $F_{1}=v_{l}, \ldots, F_{k}=v_{k}$:
- Use Bayes' rule to compute posterior probability distribution of the example's classification, C :

> So for each possible class, you can calculate the probability of a new datum belonging to that class. The highest probability is the classification output.

8

Naive Bayes: Analysis

- Easy to implement
- Outperforms many more complex algorithms - Should almost always be used for baseline comparisons
- Works well when the independence assumption is appropriate Often appropriate for natural kinds: classes that exist because they are useful in distinguishing the objects that humans care about

But...

- Can't capture interdependencies between variables (obviously)
- For that, we need Bayes nets!
- Binary Features: long, sweet, yellow (or not)
- What we know:
- 50% are bananas
- 30% are oranges
- 20% are other fruits

Fruit	Long	Sweet	Yellow	Total
Banana	400	350	450	500
Orange	0	150	300	300
Other	100	150	50	200
Total	500	650	800	1000

- And:
- 500 bananas: Long=400 (0.8), Sweet=350 (0.7), Yellow=450 (0.9)
- 300 oranges: Long=0, Sweet= 150 (0.5),Yellow=300 (1.0)
- 200 other: Long=100 (0.5), Sweet=150 (0.75), Yellow=50 (0.25)
- We are given a new fruit that is Long, Sweet, and Yellow.
- Set this up as a Bayes' reasoning problem. What are the odds of this new thing being a banana? An orange? An other?
Example from: hitpos:/Itowardsdatascience.com/all-about-naive-baves-8e (3cefoluct

Learning in Bayesian Networks

Quick Review: Bayes Nets

Qualitative part

- Statistical independence statements (causality!)

Directed acyclic graphs (DAG)

- Nodes - random variables of interes (exhaustive, mutually exclusive states)
Edges - direct (causalish) influence

15

Bayesian Learning: Bayes’ Rule

- Given some model space (set of hypotheses h_{i}) and evidence (data D):
- $\mathrm{P}\left(\mathrm{h}_{\mathrm{i}} \mid \mathrm{D}\right)=\alpha \mathrm{P}\left(\mathrm{D} \mid \mathrm{h}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{h}_{\mathrm{i}}\right)$
- We assume observations are independent of each other, given a model (hypothesis), so:
- $\mathrm{P}\left(\mathrm{h}_{\mathrm{i}} \mid \mathrm{D}\right)=\alpha \prod_{\mathrm{j}} \mathrm{P}\left(\mathrm{d}_{\mathrm{j}} \mid \mathrm{h}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{h}_{\mathrm{i}}\right)$
- To predict the value of some unknown quantity C (e.g., the class label for a future observation):
- $P(C \mid D)=\sum_{i} P\left(C \mid D, h_{i j} P\left(h_{i} \mid D\right)=\sum_{i} P\left(C \mid h_{i j}\right) P\left(h_{i} \mid D\right)\right.$

Naive Bayes: Analysis

- Easy to implement
- Outperforms many more complex algorithms Should almost always be used for baseline comparisons
- Works well when the independence assumption is appropriate Often appropriate for natural kinds: classes that exist because they are useful in distinguishing the objects that humans care about

But...

- Can't capture interdependencies between variables (obviously)
- For that, we need Bayes nets!

Bayesian Learning: Bayes' Rule

- "Model" = learned belief about how the universe works
- E.g., a fully trained classifier
- New idea: Instead of choosing the single most likely model or finding the set of all models consistent with training data, compute the posterior probability of every model given the training examples
- Bayesian learning: Compute posterior probability distribution of the class of a new example, conditioned on its input features and all training examples

21

Example

- New example has inputs and target features (class variables)

Inputs: $X=x$
Target features: Y
e : set of training examples

- Goal: compute $\mathbf{P}(Y \mid X=x, e)$

The probability distribution of target variables given the inputs and the examples

- A model is assumed to have generated the examples; M is set of models
- Then: $P(Y \mid x, \boldsymbol{e})=\sum_{m \in M} P(Y, m \mid x, \boldsymbol{e})$
$(P(e \mid m) \times P(m)) /(P(e))$
Bayes' rule: $P(m \mid \rho)=(P(\rho \mid m) \times P(m)) /(P(\rho))$
- Weight of each model depends on how well it predicts the data, plus its prior probability

Bayesian Learning, 3 Ways

- BMA (Bayesian Model Averaging)

- Don't just choose one hypothesis; instead, make predictions based on the weighted average of all hypotheses (or some set of best hypotheses)
- MAP (Maximum A Posteriori) hypothesis
- Choose hypothesis with highest a posteriori* probability, given data
- Maximize p(hi | D)
- Generally easier than Bayesian learning
- Closer to Bayesian prediction as more data arrives
- MLE (Maximum Likelihood Estimate)
- Assume all hypotheses are equally likely a priori**; best hypothesis maximizes the likelihood (i.e., probability of data given hypothesis)
Maximize $p\left(D \mid h_{i}\right)$
* afterwards
** beforehand
24

Example: Coin Toss

- Models mathematically formulate observed events
- Parameters are factors in the models affecting outcomes
- Toin Coss Example
- Fairness of coin is the parameter, θ;
- Outcome of the events is data, D
- E.g. 100 flips, heads $=72$, tails $=28$
- Given (D), what is the probability this coin is fair $(\theta=0.5)$?
- Bayes' rule: $\mathrm{P}(\theta \mid \mathrm{D})=(\mathrm{P}(\mathrm{D} \mid \theta) \times \mathrm{P}(\theta)) / \mathrm{P}(\mathrm{D})$

26

Example: Coin Toss

- Bayes : $\mathrm{P}(\theta \mid \mathrm{D})=(\mathrm{P}(\mathrm{D} \mid \theta) \times \mathrm{P}(\theta)) / \mathrm{P}(\mathrm{D})$

- $\underset{\text { befd }}{\mathbf{P}(\boldsymbol{\theta}}$ The point: If we had multiple hypotheses
 about the fairness of the coin, then this tells
- P (D us the probability of seeing a certain dist sequence of flips for each possible fairness (hypothesis).
 weighted by how strongly we believe in those particular values of θ
- $\mathrm{P}(\theta \mid \mathrm{D})$ is the posterior: belief of our parameters after observing the evidence

Example: Coin Toss

- Bayes : $\mathrm{P}(\theta \mid \mathrm{D})=(\mathrm{P}(\mathrm{D} \mid \theta) \times \mathrm{P}(\theta)) / \mathrm{P}(\mathrm{D})$
- $\mathbf{P}(\theta)$ is the prior: the strength of our belief in the fairness of coin before the toss
Can have any degree of fairness between 0 and 1
- $\mathrm{P}(\mathrm{D} \mid \theta)$ is the likelihood of observing this result given distribution for θ
Probability of observing that number of heads in a particular number of flips, given a fair coin
- $\mathbf{P}(\mathbf{D})$ is evidence: the probability of observed data

Determined by summing (or integrating) across all possible values of θ, weighted by how strongly we believe in those particular values of θ

- $\mathbf{P}(\boldsymbol{\theta} \mid \mathbf{D})$ is the posterior: belief of our parameters after observing the evidence

27

Learning in Bayes Nets

Project Break

- Approach?
- Functions, inputs and outputs?
- NOT pseudocode
- Questions?

- Maximum Likelihood Estimation (MLE) Principle: Choose $\boldsymbol{\theta}^{*}$ to maximize L

32

Parameter Estimation II

- Likelihood decomposes per the structure of the network
\rightarrow we get a separate estimation task for each parameter
- The MLE (maximum likelihood estimate) solution:
- For each value x of a node X
- And each instantiation \boldsymbol{u} of $\operatorname{Parents}(X)$
- Just need to collect the counts for every combination of parents and children observed in the data

$$
\theta_{x \mid u}^{*}=\frac{\boldsymbol{N}(\boldsymbol{x}, \boldsymbol{u})}{\boldsymbol{N}(\boldsymbol{u})} \text { Sufficient statistics }
$$

- MLE: equivalent to assuming uniform prior over parameter values

Learning Bayesian Networks

- Given training set $\boldsymbol{D}=\{\boldsymbol{x}[1], \ldots, \boldsymbol{x}[\boldsymbol{M}]\}$
- Find B that best matches \boldsymbol{D}
- model selection
- parameter estimation

Data D

31

Sufficient Statistics

- Sufficient statistic: a function $\mathrm{s}(\mathrm{D})$ of data that summarizes relevant information computing the likelihood

$$
s(\mathbf{D})=s\left(\mathbf{D}^{\prime}\right) \Rightarrow \mathrm{L}(\theta \mid \mathbf{D})=\mathrm{L}\left(\theta \mid \mathbf{D}^{\prime}\right)
$$

- Sufficient statistics tell us all there is to know about data.

33

35

Examples

- Thumbtack tossing:
- $(m h, m t)=(3,7)$. MLE: $\theta=0.3$.
- Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
- Case 1: $(m h, m t)=(3,7)$. MLE: $\theta=0.3$. Not reasonable.
- Our experience (prior) suggests strongly that coins are fair, hence $\theta=1 / 2$.
- The size of the data set is too small to convince us this particular coin is biased.
- The fact that we get $(3,7)$ instead of $(5,5)$ is probably due to randomness.
- Case 2: $\left(m_{h}, m_{t}\right)=(30,000,70,000)$. MLE: $\theta=0.3$. Reasonable.

Data suggest that the coin is after all biased, overshadowing our prior.

- MLE does not differentiate these cases - does not take prior information into account.

37

Structure Selection: Scoring

- Bayesian: prior over parameters and structure
- Find balance between model complexity and fit to data
- Score $(\mathrm{G}: \mathrm{D})=\log \mathrm{P}(\mathrm{G} \mid \mathrm{D}) \propto \log [\mathrm{P}(\mathrm{D} \mid \mathrm{G}) \mathrm{P}(\mathrm{G})]$
- Marginal likelihood just comes from our parameter estimates
- Prior on structure can be any measure we want; typically a function of the network complexity

39

Variations on a Theme

Known structure, fully observable: only need to do parameter estimation

- Unknown structure, fully observable: do heuristic search through structure space, then parameter estimation
- Known structure, missing values: use expectation maximization (EM) to estimate parameters
- Known structure, hidden variables: apply adaptive probabilistic network (APN) techniques
- Unknown structure, hidden variables: too hard to solve!

Handling Missing Data

- Suppose that in some cases, we observe earthquake, alarm, light-level, and moon-phase, but not burglary
- Should we throw that data away??
- Idea: Guess the missing values based on the other data

EM (Expectation Maximization)

- Guess probabilities for nodes with missing values (e.g., based on other observations)
- Compute the probability distribution over the missing values, given our guess
- Update the probabilities based on the guessed values
- Repeat until convergence

EM Example

- Suppose we have observed Earthquake and Alarm but not Burglary for an observation on November 27
- We estimate the CPTs based on the rest of the data
- We then estimate P(Burglary) for November 27 from those CPTs
- Now we recompute the CPTs as if that estimated value had been observed
- Repeat until convergence!

