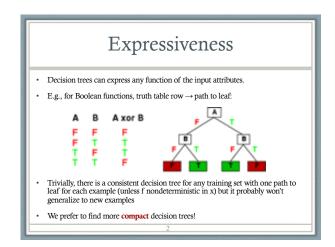
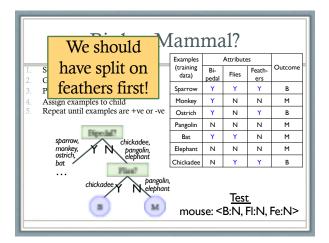
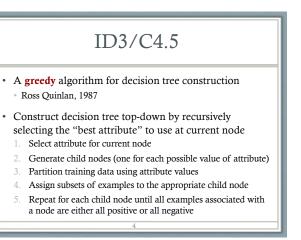
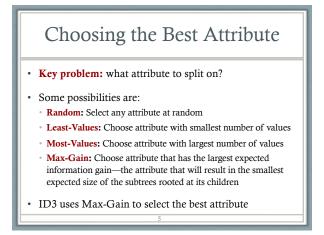
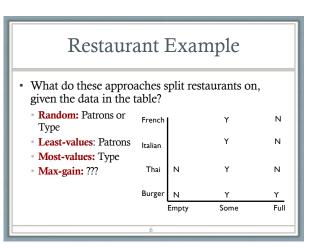
	ML 2: Information	
	Theory	
Cvnthia	Matruszek – CMSC 671 1 Material from Dr. Marie desJardin, Dr. Manfred 1	Kerber.

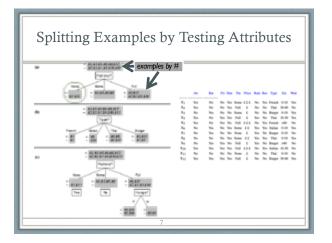




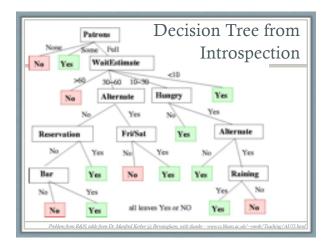


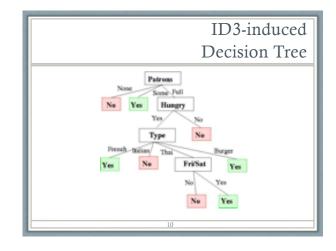


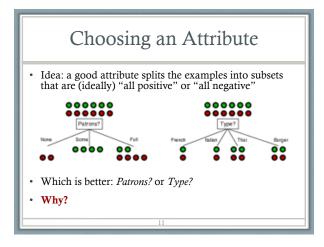


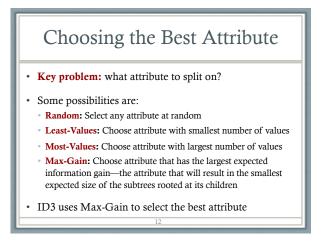


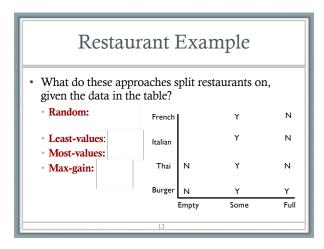
	A Training Set										
Datum	Attributes										
	altern- atives	bar	Friday	hungry	people	\$	rain	reser- vation	type	wait time	Wait?
X1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes
X2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
X4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Yes
X5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No
X8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
X9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X10	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	0-30	No
X11	No	No	No	No	None	\$	No	No	Thai	0-10	No
X12	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

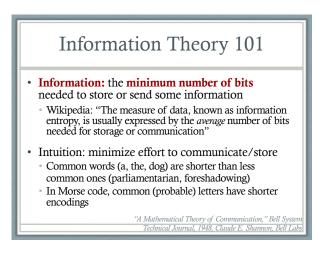


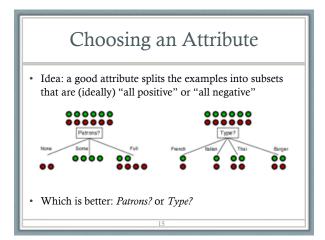


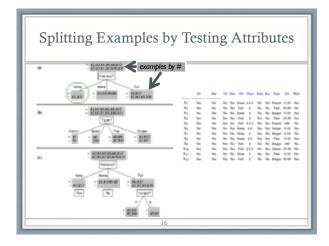


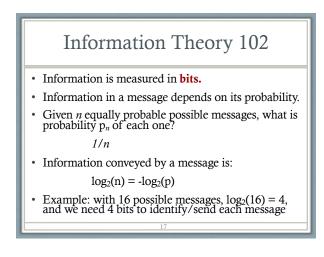


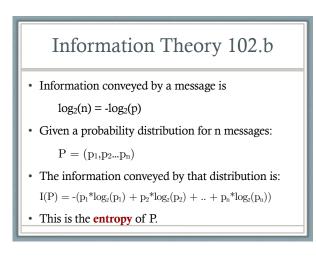


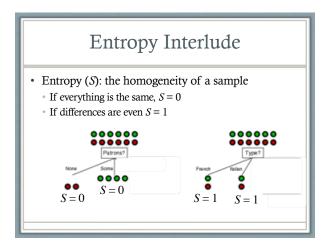


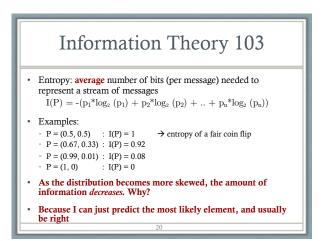


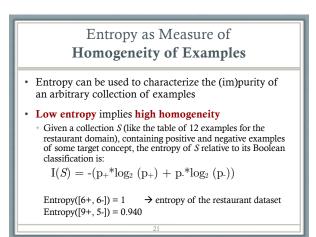


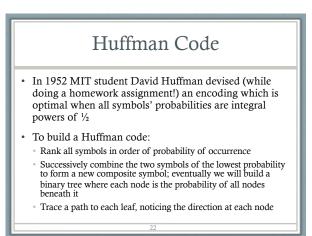


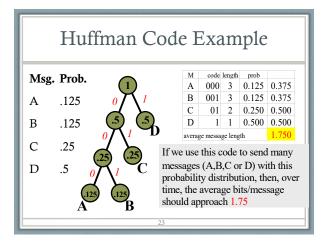


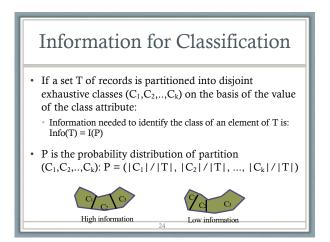


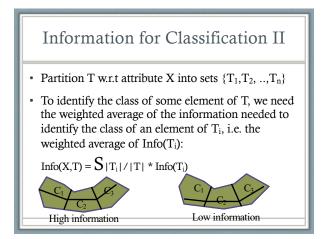


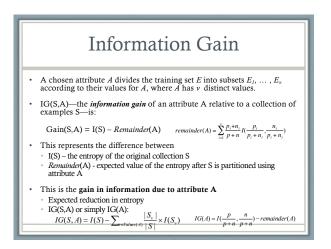












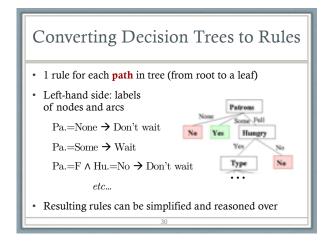
Information Gain: how much entropy decreases (homogeneity increases) when a dataset is split on an attribute. High homogeneity → high likelihood samples will have the same class Constructing a decision tree is all about finding

• Constructing a decision tree is all about finding attribute that returns the highest information gain (i.e., the most homogeneous branches)

- Choose nodes using attribute with greatest gain
 → means least information remaining after split
 I.e., subsets are all as skewed as possible
 - I.e., subsets are all as skewed as po
- Why?
 - Create small decision trees: predictions can be made with few attribute tests
 - Try to find a minimal process that still captures the data (Occam's Razor)

How Well Does it Work?

- At least as accurate as human experts (sometimes)
- Diagnosing breast cancer: humans correct 65% of the time; decision tree classified 72% correct
- BP designed a decision tree for gas-oil separation for offshore oil platforms; replaced an earlier rule-based expert system
- Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example
- SKICAT (Sky Image Cataloging and Analysis Tool) used a DT to classify sky objects an order of magnitude fainter than was previously possible, with an accuracy of over 90%.



Extensions of the Decision Tree Learning Algorithm

- Using gain ratios
- Real-valued data
- Noisy data and overfitting
- Generation of rules
- Setting parameters
- · Cross-validation for experimental validation of performance

C4.5 is a (more applicable) extension of ID3 that accounts for real-world problems: unavailable values, continuous attributes, pruning decision trees, rule derivation, ...

Real-Valued Data

- Select thresholds defining intervals so each becomes a discrete value of attribute
- Use heuristics, e.g. always divide into quartiles
- Use domain knowledge, e.g. divide age into infant (0-2), toddler (3-5), school-aged (5-8)
- Or treat this as another learning problem
 Try different ways to discretize continuous variable; see which yield better results w.r.t. some metric
- E.g., try midpoint between every pair of values

			A	Tr	am	11	g	361	-		
Datum	Attributes										
	altern- atives	bar	Friday	hungry	people	\$	rain	reser- vation	type	wait time	Wait?
X1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes
X2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
X_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Yes
X5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X 7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No
X8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
X9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X10	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	0-30	No
X11	No	No	No	No	None	\$	No	No	Thai	0-10	No
X12	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

Summary: Decision Tree Learning

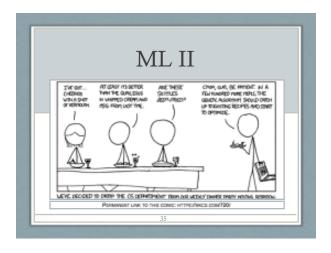
- One of the most widely used learning methods in practice
- · Can out-perform human experts in many problems

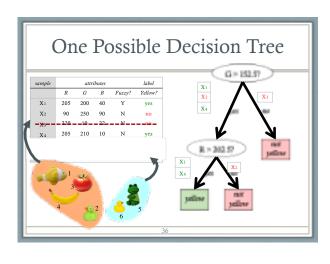
34

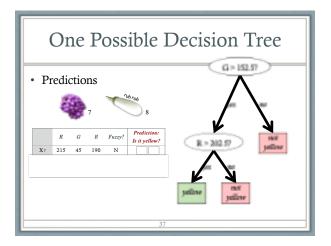
• Weaknesses:

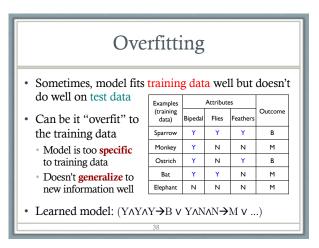
• Strengths:

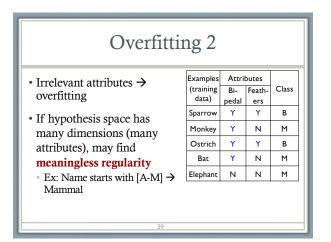
- FastSimple to implement
- Can convert to a set of
- easily interpretable rules • Empirically valid in many
- commercial products • Handles noisy data
- Univariate splits/Partitioning using only one attribute at a time (limits types of possible trees)
- Large trees hard to understand
- Requires fixed-length feature vectors
 Non-incremental (i.e., batch method)

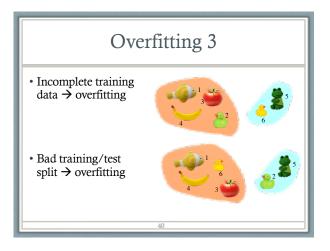










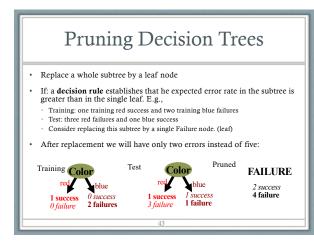


Overfitting

- Fix by...
 - Removing irrelevant features (e.g., remove 'first letter' from bird/mammal feature vector)
 - · Getting more training data
- Pruning low nodes in the decision tree (e.g., if improvement from best attribute at a node is below a threshold, stop and make this node a leaf rather than generating child nodes)
- Regularization
- Lots of other choices...

Noisy Data

- Many kinds of "noise" can occur in the examples:
 Two examples have same attribute/value pairs, but different classifications
 - Some values of attributes are incorrect
 - Errors in the data acquisition process, the preprocessing phase, //
 - Classification is wrong (e.g., + instead of -) because of some error
 - Some attributes are irrelevant to the decision-making process, e.g., color of a die is irrelevant to its outcome
 - Some attributes are missing (are pangolins bipedal?)



Summary: Decision Tree Learning

- One of the most widely used learning methods in practice
- Can out-perform human experts in many problems
 - Strengths include

 - Fast Simple to implement Can convert result to a set of easily interpretable rules Empirically valid in many commercial products
 - Handles noisy data

Weaknesses:

- Valuations of the splits/partitioning using only one attribute at a time (limits types of possible trees) Large decision trees may be hard to understand Requires fixed-length feature vectors Non-incremental (i.e., batch method)