Decision Making Under Uncertainty
 AI Class 10 (Сн. 15.1-15.2.1, 16.1-16.3)

Today's Class

1

Introduction

- The world is not a well-defined place.
- Sources of uncertainty
- Uncertain inputs: What's the temperature?
- Uncertain (imprecise) definitions: Is Trump a good president?
Uncertain (unobserved) states: What's the top card?
- There is uncertainty in inferences

If I have a blistery, itchy rash and was gardening all weekend I probably have poison ivy

3

Reasoning Under Uncertainty

- People constantly make decisions anyhow.
- Very successfully!
- How?
- More formally: how do we reason under uncertainty with inexact knowledge?
- Step one: understanding what we know

Sources of Uncertainty

- Uncertain inputs
- Missing data
- Noisy data
- Uncertain knowledge
>1 cause $\rightarrow>1$ effect
- Incomplete knowledge of causality
Probabilistic effects

Probabilistic reasoning only gives probabilistic result (summarizes uncertainty from various sources)

4

6

States and Observations

- Agents don't have a continuous view of world

People don't either!

- We see things as a series of snapshots:
- Observations, associated with time slices $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots$
- Each snapshot contains all variables, observed or not - $\mathbf{X}_{\mathrm{t}}=$ (unobserved) state variables at time t ; observation at t is \mathbf{E}_{t}
- This is world state at time t

7

Uncertainty and Time

- The world changes
- Examples: diabetes management, traffic monitoring
- Tasks: track changes; predict changes
- Basic idea:

For each time step, copy state and evidence variables
Model uncertainty in change over time (the Δ)

- Incorporate new observations as they arrive

9

States (more formally)

- Change is viewed as series of snapshots
- Time slices/timesteps
- Each describing the state of the world at a particular time
- So we also refer to these as states
- Each time slice/timestep/state is represented as a set of random variables indexed by t :

1. the set of unobservable state variables \mathbf{X}_{t}
2. the set of observable evidence variables \mathbf{E}_{t}

Observations (more formally)

- Time slice (a set of random variables indexed by t):

1. the set of unobservable state variables \mathbf{X}_{t}
2. the set of observable evidence variables \mathbf{E}_{t}

- An observation is a set of observed variable instantiations at some timestep
- Observation at time $t: \mathbf{E}_{\mathrm{t}}=\mathrm{e}_{\mathrm{t}}$
- (for some values e_{t})
- $\mathbf{X}_{\mathrm{a}: \mathrm{b}}$ denotes the set of variables from \mathbf{X}_{a} to \mathbf{X}_{b}

Transition and Sensor Models

- So how do we model change over time?
- Transition model
- Models how the world changes over time
- Specifies a probability distribution...

- Given values at previous times $\left(\mathbf{X}_{i} \mid X_{0.1-1}\right)$
- Sensor model
- Models how evidence (sensor data) gets its values
E.g.: BloodSugar ${ }^{\boldsymbol{T}}$ MeasuredBloodSugar ${ }_{t}$

Stationary Process

- Infinitely many possible values of t

Does each timestep need a distribution?

- That is, do we need a distribution of what the world looks like at t_{3}, given t_{2} AND a distribution for t_{16} given t_{15} AND ..
- Assume stationary process:
- Changes in the world state are governed by laws that do not themselves change over time
- Transition model $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$ and sensor model $\mathrm{P}\left(\mathbf{E}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}}\right)$ are time-invariant, i.e., they are the same for all t

15

Inference Tasks

- Filtering or monitoring: $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{t}}\right)$:
- Compute the current belief state, given all evidence to date
- Prediction: $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+\mathrm{k}} \mid \mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{t}}\right)$:

Compute the probability of a future state

- Smoothing: $\mathrm{P}\left(\mathbf{X}_{k} \mid \mathrm{e}_{1}, \ldots, \mathrm{etet}\right)$:
- Compute the probability of a past state (hindsight)
- Most likely explanation: arg $\max _{\mathrm{x} 1, ., \mathrm{xt}} \mathrm{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{t}} \mid \mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{t}}\right)$

Given a sequence of observations, find the sequence of states that is most likely to have generated those observations

Examples

- Filtering: What is the probability that it is raining today, given all of the umbrella observations up through today?
- Prediction: What is the probability that it will rain the day after tomorrow, given all of the umbrella observations up through today?
- Smoothing: What is the probability that it rained yesterday, given all of the umbrella observations through today?
- Most likely explanation: If the umbrella appeared the first three days but not on the fourth, what is the most likely weather sequence to produce these umbrella sightings?

19

Recursive Estimation

1. Project current state forward $(t \rightarrow t+1)$
2. Update state using new evidence $\mathbf{e}_{\mathrm{t}+1}$
$\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: t+1}\right)$ as function of $\mathbf{e}_{\mathrm{t}+1}$ and $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$:
$\mathrm{P}\left(\mathbf{X}_{\mathrm{t}}+1 \mid \mathbf{e}_{1: \mathrm{t}+1}\right)=\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}}, \mathbf{e}_{\mathrm{t}+1}\right)$

21

Recursive Estimation

- One-step prediction by conditioning on current state X :

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} \underbrace{P\left(X_{t+1} \mid x_{t}\right)}_{\begin{array}{c}
\text { transition } \\
\text { model }
\end{array}} \underbrace{P\left(x_{t} \mid e_{1: t}\right)}_{\begin{array}{c}
\text { current } \\
\text { state }
\end{array}}
$$

- ...which is what we wanted!
- So, think of $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$ as a "message" $f_{1: t+1}$

Carried forward along the time steps
Modified at every transition, updated at every new observation

- This leads to a recursive definition:

$$
f_{1: t+1}=\alpha \operatorname{FORWARD}\left(f_{1: t}, e_{t+1}\right)
$$

Filtering

- Maintain a current state estimate and update it - Instead of looking at all observed values in history - Also called state estimation
- Given result of filtering up to time t, agent must compute result at $t+1$ from new evidence \mathbf{e}_{t+1} :

$$
\mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}+1}\right)=f\left(\mathbf{e}_{\mathrm{t}+1}, \mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: t}\right)\right)
$$

... for some function f.

Recursive Estimation

- $P\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)$ as a function of \mathbf{e}_{t+1} and $P\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$:
$P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$ dividing up evidence
$=\alpha P\left(e_{t+1} \mid X_{t+1}, \underline{e_{1: t}}\right) P\left(X_{t+1} \mid e_{1: t}\right)$ Bayes rule
$=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \quad$ sensor Markov assumption
- $\mathrm{P}\left(\mathbf{e}_{\mathrm{t}+1} \mid \mathbf{X}_{1: t+1}\right)$ updates with new evidence (from sensor)
- One-step prediction by conditioning on current state X :

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
$$

Group Exercise: Filtering

$P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{X_{t}} P\left(X_{t+1} \mid X_{t}\right) P\left(X_{t} \mid e_{1: t}\right)$
 on Day $0, \mathrm{U}_{1}=$ true, and $\mathrm{U}_{2}=$ true?

26

Reasoning Under Uncertainty

- How do we reason under uncertainty and with inexact knowledge?
- Heuristics
- Mimic heuristic knowledge processing methods used by experts
- Empirical associations
- Experiential reasoning based on limited observations

Probabilities

- Objective (frequency counting)
- Subjective (human experience)

What is Decision Theory?

- Mathematical study of strategies for optimal decision-making
- Options involve different risks
- Expectations of gain or loss
- The study of identifying:
- The values, uncertainties and other issues relevant to a decision
- The resulting optimal decision for a rational agent

Decision-Making Tools

- Decision Theory
- Normative: how should agents make decisions?
- Descriptive: how do agents make decisions?
- Utility and utility functions
- Something's perceived ability to satisfy needs or wants
- A mathematical function that ranks alternatives by utility

29

Decision Theory

- Combines probability and utility \rightarrow Agent that makes rational decisions (takes rational actions)
- On average, lead to desired outcome
- First-pass simplifications:
- Want most desirable immediate outcome (episodic)
- Nondeterministic, partially observable world
- Definition of action:
- An action a in state s leads to outcome s^{\prime}, RESULT:
- RESULT (a) is a random variable; domain is possible outcomes
- $\left.\mathrm{P}\left(\operatorname{RESULT}(a)=s^{\prime} \mid a, e\right)\right)$

Expected Value

- Expected Value
- The predicted future value of a variable, calculated as:
- The sum of all possible values
- Each multiplied by the probability of its occurrence

A $\$ 1000$ bet for a 20% chance to win $\$ 10,000$
$[20 \%(\$ 10,000)+80 \%(\$ 0)]=\$ 2000$

32

34

Rational Agents

- Rationality (an overloaded word).
- A rational agent...
- Behaves according to a ranking over possible outcomes
- Which is:
- Complete (covers all situations)
- Consistent
- Optimizes over strategies to best serve a desired interest
- Humans are none of these.

Satisficing

- Satisficing: achieving a goal sufficiently
- Achieving the goal "more" does not increase utility of resulting state
- Portmanteau of "satisfy" and "suffice"

Win a baseball game by I point now, or 2 points in another inning?
Full credit for a search is $\leq \mathbf{3} \mathbf{K}$ nodes visited. You're at $\mathbf{2 K}$. Spend an hour making it IK?
Do you stop the coin flipping game at $1-0$, or continue playing, hoping for 2-0? At the end of semester, you can stop with a B. Do you take the exam?
You're thirsty. Water is good. Is more water better?

33

Value Function

- Provides a ranking of alternatives, but not a meaningful metric scale
- Also known as an "ordinal utility function"
- Sometimes, only relative judgments (value functions) are necessary
- At other times, absolute judgments (utility functions) are required

35

Preferences

- An agent chooses among:
- Prizes (A, B, etc.)
- Lotteries (situations with uncertain prizes and probabilities)

- Notation:
- $\mathrm{A} \succ \mathrm{B}$

A preferred to B

- A ~ B Indifference between A and B
- $\mathrm{A} \succ \sim \mathrm{B} \quad$ B not preferred to A

Expected Utility

- Goal: find best of expected outcomes
- Random variable X with:
n values $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$
Distribution ($\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$)
- X is the state reached after doing an action A under uncertainty
state $=$ some state of the world at some timestep
- Utility function $\mathrm{U}(\mathrm{s})$ is the utility of a state, i.e., desirability

One State/One Action Example

- We start out in state 0 . What's the utility of taking

40

42

Expected Utility

- X is state reached after doing an action A under uncertainty
- $\mathrm{U}(\mathrm{s})$ is the utility of a state \leftarrow desirability
- $\mathrm{EU}(a \mid \mathrm{e})$: The expected utility of action A, given evidence, is the average utility of outcomes (states in S), weighted by probability an action occurs:

$$
\mathrm{EU}[\mathrm{~A}]=\mathrm{S}_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}} \mid \mathrm{A}\right) \mathrm{U}\left(\mathrm{x}_{\mathrm{i}}\right)
$$

41

MEU Principle

- A rational agent should choose the action that maximizes agent's expected utility
- This is the basis of the field of decision theory
- The MEU principle provides a normative criterion for rational choice of action
- ...AI is solved!

Rational Preferences

- Preferences of a rational agent must obey constraints

Transitivity $\quad(\mathrm{A}>\mathrm{B}) \wedge(\mathrm{B}>\mathrm{C}) \Rightarrow(\mathrm{A}>\mathrm{C})$

- Monotonicity $(A>B) \Rightarrow[p>q \Leftrightarrow[p, A ; 1-p, B]>[q, A ; 1-q, B])$
- Orderability $\quad(A>B) \vee(B>A) \vee(A \sim B)$
- Substitutability $(A \sim B) \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C])$

Continuity $\quad(A>B>C \Rightarrow \exists p[p, A ; 1 \quad \mathrm{p}, \mathrm{C}] \sim \mathrm{B})$

- Rational preferences give behavior that maximizes expected utility
- Violating these constraints leads to irrationality

For example: an agent with intransitive preferences can be induced to give away all its money

44

Money

- Money does not behave as a utility function
- That is, people don't maximize expected value of dollars.
- People are risk-averse:

Given a lottery L with expected monetary value $\operatorname{EMV}(\mathrm{L})$, usually $\mathrm{U}(\mathrm{L})<\mathrm{U}(\mathrm{EMV}(\mathrm{L}))$

Want to bet $\$ 1000$ for a 20% chance to win $\$ 10,000$?
$[20 \%(\$ 10,000)+80 \%(\$ 0)]=\$ 2000>[100 \%(\$ 1000)]$

- Expected Utility Hypothesis
rational behavior maximizes the expectation of some function $u \ldots$ which need not be monetary

47

Maximizing Expected Utility

- Utilities map states to real numbers.

Which numbers?

- People are terrible at mapping their preferences

Give each of these things a utility between 1 and 10 :

- Winning the lottery
- Getting an A on an exam
- Failing a class (you won't though)
- Getting hit by a truck

Not Quite...

- Must have a complete model of: Actions Utilities States
- Even if you have a complete model, decision making is computationally intractable
- In fact, a truly rational agent takes into account the utility of reasoning as well (bounded rationality)
- Nevertheless, great progress has been made in this area We are able to solve much more complex decision-theoretic problems than ever before

Money Versus Utility

- Money Utility
- More money is better, but not always in a linear relationship to the amount of money
- Expected Monetary Value
- Risk-averse: $\left.\mathrm{U}(\mathrm{L})<\mathrm{U}\left(\mathrm{S}_{\mathrm{Emv}} \mathrm{L}\right)\right)$
- Risk-seeking: U(L) > U(Semv(L))
- Risk-neutral: $\mathrm{U}(\mathrm{L})=\mathrm{U}\left(\mathrm{S}_{\mathrm{EMV}(\mathrm{L})}\right)$

48

Maximizing Expected Utility

- Standard approach to assessment of human utilities:
- Compare a state A to a standard lottery L_{p} that has
"best possible prize" u T with probability p
"worst possible catastrophe" u^{\perp} with probability ($1 p$)
- adjust lottery probability p until $A \sim L_{p}$

50

On a Less Grim Note

- You are designing a cool new robot-themed attraction for Disneyworld!
- You could add a part that takes the project from \$500M to $\$ 750 \mathrm{M}$
- What piece of information do you need to decide whether this is the best action to take?

51

