Bayes Nets

AI Class 10 (Ch. 14.1-14.4.2; skim 14.3)

1

Probability

- Worlds, random variables, events, sample space
- Joint probabilities of multiple connected variables
- Conditional probabilities of a variable, given another variable(s)
- Marginalizing out unwanted variables
- Inference from the joint probability

The big idea: figuring out the probability of variable(s) taking certain value(s)

3

Bayes’ Rule

- $P(Y \mid X)=P(X \mid Y) P(Y) / P(X)$
- Often useful for diagnosis.
- If we have:
- $X=$ (observable) effects, e.g., symptoms
- $Y=$ (hidden) causes, e.g., illnesses
- A model for how causes lead to effects: $P(X \mid Y)$
- Prior beliefs about frequency of occurrence of effects: $P(Y)$
- We can reason from effects to causes: $P(Y \mid X)$

Bookkeeping

- HW3 out at HW4 time
- We have to sort out problems with 1 and 2.
- Can you see your Hwk1 annotations?
- There will only be 5 homeworks
- This lecture: Bayes, Bayes, Bayes
- Next lecture: Games 2, Uncertain Reasoning
- Presented by Pat

2

Bayes' Rule

- Derive the probability of some event, given another event
- Assumption of attribute independency (AKA the Naïve assumption)
Naïve Bayes assumes that all attributes are independent.
- Also the basis of modern machine learning
- Bayes' rule is derived from the product rule

4

Naïve Bayes Algorithm

- Estimate the probability of each class:
- Compute the posterior probability (Bayes rule)

$$
P\left(c_{i} \mid D\right)=\frac{P\left(c_{i}\right) P\left(D \mid c_{i}\right)}{P(D)}
$$

- Choose the class with the highest probability
- Assumption of attribute independency (Naïve assumption): Naïve Bayes assumes that all of the attributes are independent.

6

Bayesian Inference

- In the setting of diagnostic/evidential reasoning

hypotheses
evidence/manifestations
- Know: prior probability of hypothesis conditional probability
$P\left(H_{i}\right)$
$P\left(E_{j} \mid H_{i}\right)$
$P\left(\boldsymbol{H}_{\boldsymbol{i}} \mid \boldsymbol{E}_{\boldsymbol{j}}\right)$
- Bayes' theorem (formula 1):

$$
P\left(H_{i} \mid E_{j}\right)=P\left(H_{i}\right) P\left(E_{j} \mid H_{i}\right) / P\left(E_{j}\right)
$$

7

Priors

- Four values total here:

- $\mathrm{P}(\mathrm{H} \mid \mathrm{E})=(\mathrm{P}(\mathrm{E} \mid \mathrm{H}) * \mathrm{P}(\mathrm{H})) / \mathrm{P}(\mathrm{E})$
- $\mathrm{P}(\mathrm{H} \mid \mathrm{E})$ - what we want to compute
- Three we already know, called the priors
- P(E|H)
- P(H)
- P(E)
(In ML we use the training set to estimate the priors)

9

Bayes Example: Diagnosing Meningitis

$$
P\left(H_{i} \mid E_{j}\right)=P\left(H_{i}\right) P\left(E_{j} \mid H_{i}\right) / P\left(E_{j}\right)
$$

- Your patient comes in with a stiff neck.
- Is it meningitis?
- Suppose we know that
- Stiff neck is a symptom in 50% of meningitis cases
- Meningitis (m) occurs in 1/50,000 patients
- Stiff neck (s) occurs in 1/20 patients
- So probably not. But specifically?

Simple Bayesian Diagnostic Reasoning

- We know:
- Evidence / manifestations: $\mathrm{E}_{1}, \ldots \mathrm{E}_{\mathrm{m}}$
- Hypotheses / disorders: $\mathrm{H}_{1}, \ldots \mathrm{H}_{\mathrm{n}}$
- E_{j} and Hi_{i} are binary; hypotheses are mutually exclusive (nonoverlapping) and exhaustive (cover all possible cases)
- Conditional probabilities: $P\left(E_{j} \mid H_{i}\right), i=1, \ldots n ; j=1, \ldots m$
- Cases (evidence for a particular instance): $\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}$
- Goal: Find the hypothesis H_{i} with the highest posterior
- $\operatorname{Max}_{\mathrm{i}} \mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right)$

8

Bayesian Diagnostic Reasoning II

- Bayes' rule says that
$\cdot P\left(H_{i} \mid E_{1}, \ldots, E_{m}\right)=P\left(E_{1}, \ldots, E_{m} \mid H_{i}\right) P\left(H_{i}\right) / P\left(E_{1}, \ldots, E_{m}\right)$
- Assume each piece of evidence E_{i} is conditionally independent of the others, given a hypothesis H_{i}, then: - $\mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}} \mid \mathrm{H}_{\mathrm{i}}\right)=\prod_{\mathrm{j}=1} \mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{\mathrm{i}}\right)$
- If we only care about relative probabilities for the H_{i}, then we have:
$\cdot \mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right)=\alpha \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right) \prod_{\mathrm{j}=1}^{\mathrm{l}} \mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{\mathrm{i}}\right)$

12

Analysis of Naïve Bayes Algorithm

- Advantages:
- Sound theoretical basis
- Works well on numeric and textual data
- Easy implementation and computation
- Has been effective in practice (e.g., typical spam filter)

13

Limitations of Naïve Bayes

- Consider a composite hypothesis $\mathrm{H}_{1} \wedge \mathrm{H}_{2}$, where H_{1} and H_{2} are independent. What is the relative posterior?
$\mathrm{P}\left(\mathrm{H}_{1} \wedge \mathrm{H}_{2} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right)=\alpha \mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}} \mid \mathrm{H}_{1} \wedge \mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{H}_{1} \wedge\right.$ H_{2})

$$
\begin{aligned}
& =\alpha \mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}} \mid \mathrm{H}_{1} \wedge \mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{H}_{1}\right) \mathrm{P}\left(\mathrm{H}_{2}\right) \\
& =\alpha \prod_{\mathrm{m}=1}^{\mathrm{l}} \mathrm{P}\left(\mathrm{E}_{\mathrm{m}} \mid \mathrm{H}_{1} \wedge \mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{H}_{1}\right) \mathrm{P}\left(\mathrm{H}_{2}\right)
\end{aligned}
$$

- How do we compute $\mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{1} \wedge \mathrm{H}_{2}\right)$??

15

Beyond Simple Bayes

- Need a richer representation to model:
- Interacting hypotheses
- Conditional independence
- Causal chaining
- So: conditional independence and Bayesian networks!

Limitations of Naïve Bayes

- Cannot easily handle:
- Multi-fault situations
- Cases where intermediate (hidden) causes exist:
- Disease D causes syndrome S, which causes correlated manifestations M_{1} and M_{2}

14

Limitations of Simple Bayesian Inference II

- Assume H_{1} and H_{2} are independent, given $\mathrm{E}_{1}, \ldots, \mathrm{E}_{j}$?
- $P\left(H_{1} \wedge H_{2} \mid E_{1}, \ldots, E_{j}\right)=P\left(H_{1} \mid E_{1}, \ldots, E_{j}\right) P\left(H_{2} \mid E_{1}, \ldots, E_{j}\right)$
- This is a very unreasonable assumption
- Earthquake and Burglar are independent, but not given Alarm: - P(burglar | alarm, earthquake) << P(burglar | alarm)
- Simple application of Bayes' rule doesn't handle causal chaining:
- A: this year's weather, B: cotton production; C: next year's cotton price
- A influences C indirectly: $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$
- $\mathrm{P}(\mathrm{C} \mid \mathrm{B}, \mathrm{A})=\mathrm{P}(\mathrm{C} \mid \mathrm{B})$

OCynthia Matuszek - UMBC CMSC 671 16
16

Next Up

- Bayesian networks
- Network structure
- Conditional probability tables
- Conditional independence
- Inference in Bayesian networks
- Exact inference
- Approximate inference

	18

18

Review: Independence

What does it mean for A and B to be independent?

- $\mathrm{P}(\mathrm{A}) \boldsymbol{\Perp} \mathrm{P}(\mathrm{B})$
- A and B do not affect each other's probability
- $P(A \wedge B)=P(A) P(B)$

Review: Bayes' Rule

What is Bayes' Rule?

$$
P\left(H_{i} \mid E_{j}\right)=\frac{P\left(E_{j} \mid H_{i}\right) P\left(H_{i}\right)}{P\left(E_{j}\right)}
$$

What's it useful for?

- Diagnosis
- Effect is perceived, want to know (probability of) cause

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

Review: Joint Probability

- What is the joint probability of A and B ? - $P(\mathrm{~A}, \mathrm{~B})$
- The probability of any pair of legal assignments. - Generalizing to >2, of course
- Booleans: expressed as a matrix/table

	alarm	\neg alarm				
burglary	0.09	0.01				
\neg burglary	0.1	0.8	\equiv	\mathbf{A}	\mathbf{B}	
:---:	:---:	:---				
T	T	0.09				
T	F	0.1				
F	T	0.01				
F	F	0.8				

- Continuous domains: probability functions

Review: Conditioning

What does it mean for A and B to be conditionally independent given C ?

- A and B don't affect each other if C is known
- $P(\mathrm{~A} \wedge \mathrm{~B} \mid \mathrm{C})=P(\mathrm{~A} \mid \mathrm{C}) P(\mathrm{~B} \mid \mathrm{C})$

Review: Bayes' Rule

What is Bayes' Rule?

$$
P\left(H_{i} \mid E_{j}\right)=\frac{P\left(E_{j} \mid H_{i}\right) P\left(H_{i}\right)}{P\left(E_{j}\right)}
$$

What's it useful for?

- Diagnosis
- Effect is perceived, want to know (probability of) cause
$P($ hidden \mid observed $)=\frac{P(\text { observed } \mid \text { hidden }) P(\text { hidden })}{P(\text { observed })}$

22

Bayes' Nets: Big Picture

- Problems with full joint distribution tables as our probabilistic models:
- Joint gets way too big to represent explicitly
- Unless there are only a few variables

Hard to learn (estimate) anything empirically about more than a few variables at a time

- Why?

	\mathbf{A}		$\neg \mathbf{A}$	
	\mathbf{E}	$\neg \mathbf{E}$	\mathbf{E}	$\neg \mathbf{E}$
\mathbf{B}	0.01	0.08	0.001	0.009
$\neg \mathbf{B}$	0.01	0.09	0.01	0.79
Slides derived from Matt E. Tavlor, WSU				

Bayes' Nets: Big Picture

- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- A type of graphical models
- We describe how variables interact locally
- Local interactions chain together to give global, indirect interactions

28

30

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (hidden)
- Arcs: interactions
- Indicate "direct influence" between
- Formally: encode conditional independence
- Toothache and Catch are conditionally independent, given Cavity
- For now: imagine that arrows mean causation
- (in general, they don't!)

Example: Toothache

- Random variables:
- How's the weather?
- Do you have a toothache?
- Does the dentist's probe catch when she pokes your tooth?
- Do you have a cavity?

31

Bayesian Belief Networks (BNs)

- Let's formalize the semantics of a BN
- A set of nodes, one per variable X
- A directed arc between each co-influential node
- $X \rightarrow Y$ means X has an influence on Y
- A directed, acyclic graph

$P\left(X \mid \pi_{1} \ldots \pi_{\mathrm{n}}\right)$

Cynhthia Matuszek-UMBC CMSC 671 Slides derived from Matt E. Tavlor. WSU
33

Bayesian Belief Networks (BNs)

- Each node X has a conditional probability distribution:
$P\left(X_{i} \mid\right.$ Parents $\left.\left(X_{i}\right)\right)$
- A collection of distributions over X

- One for each combination of parents' values
- Quantifies the effects of the parents on a node
- CPT: conditional probability table
- Description of a noisy "causal" process

OCynthia Matuzzek-UMBC CMSC 671 Slides derived from Matt E. Taylor, WSU
34

CPTs cont'd

- Conditional Probability Distribution for C given B
- If you have a Boolean variable with k Boolean parents, this table has 2^{k+1} probabilities

For a given combination of values of the parents (B in this example), the entries for $\mathrm{P}(\mathrm{C}=$ true | B$)$ and $\mathrm{P}(\mathrm{C}=$ false | B) must sum to 1 Example:
$P(C=$ true | $B=$ false $)+$
$P(C=$ false $\mid B=$ false $)=1$

36

Bayesian Belief Networks (BNs)

- Making a BN: BN = (DAG, CPD)

DAG: directed acyclic graph (BN's structure)

- Nodes: random variables
- Typically binary or discrete
- Methods exist for continuous variables
- Arcs: indicate probabilistic dependencies between nodes - Lack of link signifies conditional independence

CPD: conditional probability distribution (BN's parameters)

- Conditional probabilities at each node, usually stored as a table (conditional probability table, or CPT)

Conditional Probability Tables

For $X_{i}, \operatorname{CPD} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ quantifies effect of parents on X_{i}

- Parameters are probabilities in conditional probability tables (CPTs):

35

Bayesian Belief Networks (BNs)

37

Bayesian Belief Networks (BNs)

- Making a BN: BN = (DAG, CPD)

DAG: directed acyclic graph (BN's structure)
CPD: conditional probability distribution (BN's parameters)

- Conditional probabilities at each node, usually stored as a table (conditional probability table, or CPT)
$P\left(x_{i} \mid \pi_{i}\right)$ where π_{i} is the set of all parent nodes of x_{i}
- Root nodes are a special case
- No parents, so use priors in CPD:

$$
\pi_{i}=\varnothing, \text { so } P\left(x_{i} \mid \pi_{i}\right)=P\left(x_{i}\right)
$$

Example BN

We only specify $\mathrm{P}(\mathrm{A})$ etc., not $\mathrm{P}(\neg \mathrm{A})$, since they have to sum to one

40

Conditional Independence and Chaining

- Conditional independence assumption: $P\left(x_{i} \mid \pi_{i}, q\right)=P\left(x_{i} \mid \pi_{i}\right)$ - \boldsymbol{q} is any set of variables (nodes) other than \boldsymbol{x}_{i} and its successors
π_{i} blocks influence of other nodes on x_{i} and its successors
- That is, \boldsymbol{q} influences x_{i} only through
 q variables in π_{i})
- Then, complete joint probability distribution of all variables can be represented by local CPDs by chaining:

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \pi_{i}\right)
$$

42

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions as a product of local conditional distributions.
- To see probability of a full assignment, multiply all the relevant conditionals together:

- This lets us reconstruct any entry of the full joint

41

The Chain Rule

$P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \pi_{i}\right)$
e.g, $P\left(x_{1}, \ldots, x_{n}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x 2\right) \ldots$

- Decomposition:
$P($ Traffic, Rain, Umbrella $)=$
P (Rain) P (Traffic | Rain) P (Umbrella | Rain, Traffic)
- With assumption of conditional independence:
$P($ Traffic, Rain, Umbrella $)=$
P (Rain) P (Traffic | Rain) P (Umbrella | Rain)
- Bayes' nets express conditional independences - (Assumptions)

0 Cynthia Matuzzek - UMBC CMSC $671 \quad 44 \quad$ Slides derived from Matt E. Taylor, WSU
44

Topological Semantics

- A node is conditionally independent of its nondescendants given its parents
- A node is conditionally independent of all other nodes in the network given its parents, children, and children's parents (also known as its Markov blanket)
- (For much later: a method called d-separation can be applied to decide whether a set of nodes X is independent of a set Y , given a third set Z)

Independence and Causal Chains

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, we can it prove using algebra (tedious)
- If no, can prove it with a counter-example
- Question: are X and Z necessarily independent?
- No.
- Ex: Clouds (X) cause rain (Y), which causes traffic (Z)
- X can influence Z, Z can influence X (via Y)
- This configuration is a "causal chain"

Conditionality Example

- Hidden: A, B, E. You don't know:
- If there's a burglar.
- If there was an earthquake.
- If the alarm is going off.
- Observed: J and M.
- John and/or Mary have some chance of calling if the alarm rings.
- You know who called you.

- At first:
- Is the probability of John calling affected by whether there's an earthquake?
- Is the probability of Mary calling affected by John calling?
- Your alarm is going off!
- Is the probability of Mary calling affected by John calling?

OCynthia Matusek - UMBC CMSC 671	50	Slides derived from Matt E. Taylor, WSU

50

Representational Extensions

- CPTs for large networks can require a large number of parameters
- $\mathrm{O}\left(2^{k}\right)$ where k is the branching factor of the network
- There are ways of compactly representing CPTs

Deterministic relationships

- Noisy-OR
- Noisy-MAX
- What about continuous variables?

Discretization

- Use density functions (usually mixtures of Gaussians) to build hybrid Bayesian networks (with discrete and continuous variables) happening depend on whether there's an earthquake?

Conditionality Example 3

- At first:
- Is whether there's an earthquake affected by whether there's a burglary in progress (and vice versa)?
- Your alarm is going off!
- Does the probability a burglary is

53

Inference Tasks

- Simple queries: Compute posterior marginal $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{E}=\right.$ value $)$
- E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)
- Conjunctive queries:

P($\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}} \mid \mathrm{E}=$ value $)=\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{E}=\right.$ value $) \mathrm{P}\left(\mathrm{X}_{\mathrm{j}} \mid \mathrm{X}, \mathrm{E}=\right.$ value $)$

- Optimal decisions:
- Decision networks include utility information
- Probabilistic inference gives P (outcome \| action, evidence)
- Value of information: Which evidence should we seek next?
- Sensitivity analysis: Which probability values are most critical?
- Explanation: Why do I need a new starter motor?

55

Inference by Enumeration

- Add all of the terms (atomic event probabilities) from the full joint distribution
- If \mathbf{E} are the evidence (observed) variables and \mathbf{Y} are the other (unobserved) variables, then:

$$
P(\mathrm{X} \mid \mathbf{E})=\alpha P(\mathbf{X}, \mathbf{E})=\alpha \sum P(\mathbf{X}, \mathbf{E}, \mathbf{Y})
$$

- Each P(X, E, Y) term can be computed using the chain rule
- Computationally expensive!

Today's Class

- Bayes' nets inference
- Inference by enumeration; by variable elimination
- Multi-agent systems
- Midterm study guide posted
- HW4 moved to after midterm
- Remember, Erfan is lecturing Thursday

Direct Inference with BNs

- Instead of computing the joint, suppose we just want the probability for one variable.
- Exact methods of computation:
- Enumeration
- Variable elimination
- Join trees: get the probabilities associated with every query variable

[^0]57

Example 1: Enumeration

- Recipe:
- State the marginal probabilities you need
- Figure out ALL the atomic probabilities you need
- Calculate and combine them
- Example:
- $P(+b \mid+j,+m)=\frac{P(+b,+j,+m)}{P(+j,+m)}$

0 Cynthia Matuszek - UMBC CMSC $671 \quad 60$ Slides derived from Matt E. Taylor, WSU; Russell \& Norvig

Example 1 cont'd

$$
\begin{aligned}
& P(+b,+j,+m)= \\
& \quad P(+b) P(+e) P(+a \mid+b,+e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(+e) P(-a \mid+b,+e) P(+j \mid-a) P(+m \mid-a)+ \\
& P(+b) P(-e) P(+a \mid+b,-e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(-e) P(-a \mid+b,-e) P(+j \mid-a) P(+m \mid-a)
\end{aligned}
$$

$$
\mathrm{P}(+\mathrm{m} \mid+\mathrm{b},+\mathrm{e}) ?
$$

61

Variable Elimination

- Basically just enumeration with caching of local calculations
- Linear for polytrees (singly connected BNs)
- Potentially exponential for multiply connected BNs

Exact inference in Bayesian networks is NP-hard!

- Join tree algorithms are an extension of variable elimination methods that compute posterior probabilities for all nodes in a BN simultaneously

63

Variable Elimination: Example

$=\sum_{\mathrm{r}, \mathrm{s}}^{\mathrm{r}, \mathrm{s}, \mathrm{c}} \mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{s}) \sum_{\mathrm{c}} \mathrm{P}(\mathrm{r} \mid \mathrm{c}) \mathrm{P}(\mathrm{s} \mid \mathrm{c}) \mathrm{P}(\mathrm{c})$
$=\sum_{\mathrm{r}, \mathrm{s}} \mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{s}) \mathrm{f}_{1}(\mathrm{r}, \mathrm{s})$

Example 2: Enumeration

- $P\left(\mathrm{x}_{\mathrm{i}}\right)=\Sigma_{\pi} P\left(\mathrm{x}_{\mathrm{i}} \mid \pi_{\mathrm{i}}\right) P\left(\pi_{\mathrm{i}}\right)$
- Say we want to know $P(\mathrm{D}=t)$
- Only E is given as true
- $\mathrm{P}(\mathrm{d} \mid \mathrm{e})=\alpha \Sigma_{\mathrm{ABC}} \mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}) \quad$ (where $\left.\alpha=1 / P(e)\right)$
$=\alpha \Sigma_{\mathrm{ABC}} \mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{b} \mid \mathrm{a}) \mathrm{P}(\mathrm{c} \mid \mathrm{a}) \mathrm{P}(\mathrm{d} \mid \mathrm{b}, \mathrm{c}) \mathrm{P}(\mathrm{e} \mid \mathrm{c})$
- With simple iteration, that's a lot of repetition!

P(e|c) has to be recomputed every time we iterate over $\mathrm{C}=$ true

Variable Elimination Approach

General idea:

- Write query in the form

$$
P\left(X_{n}, e\right)=\sum_{x_{k}} \cdots \sum_{x_{3}} \sum_{x_{2}} \prod_{i} P\left(x_{i} \mid p a_{i}\right)
$$

- Note that there is no α term here

It's a conjunctive probability, not a conditional probability..

- Iteratively
- Move all irrelevant terms outside of innermost sum
- Perform innermost sum, getting a new term

Insert the new term into the product

66

67

69

Initial factors:
$\underline{P(v) P(s) \underline{P(t \mid v)} P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b), ~}$
Eliminate: v
Compute: $\quad f_{v}(t)=\sum P(v) P(t \mid v)$
$\Rightarrow \underline{f_{v}(t)} P(s)^{\nu} P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$

- Note: $f_{v}(t)=P(t)$
- Result of elimination is not necessarily a probability term

68

73

Dealing with Evidence
 - How do we deal with evidence?
 - And what is "evidence?"

- Variables whose value has been observed
- Suppose we are given evidence: $V=t, S=f, D=t$
- We want to compute $P(L, V=t, S=f, D=t)$

Dealing with Evidence
 - So now...

- Given evidence $V=t, S=f, D=t$
- Compute $P(L, V=t, S=f, D=t)$
- Initial factors, after setting evidence:

Dealing with Evidence
 - We start by writing the factors:

$P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$

- Since we know that $V=t$, we don't need to eliminate V
- Instead, we can replace the factors $P(V)$ and $P(T \mid V)$ with

$$
f_{P(V)}=P(V=t) \quad f_{p(T V)}(T)=P(T \mid V=t)
$$

- These "select" appropriate parts of original factors given evidence
- Note that $f_{P(V)}$ is a constant, so does not appear in elimination of other variables

Dealing with Evidence

- Given evidence $V=t, S=f, D=t$, we want to compute $P(L, V=t, S=f, D=t)$
- Initial factors, after setting evidence:
$f_{P(v)} f_{P(s)} f_{P(t \mid v)}(t) f_{P(l \mid s)}(l) f_{P(b l s)}(b) P(a \mid t, l) P(x \mid a) f_{P(d l a, b)}(a, b)$
- Eliminating x, we get
$f_{x}(a) f_{P(d l a, b)}(a, b)$
$f_{P(v)} f_{P(s)} f_{P(t \mid v)}(t) f_{P(l \mid s)}(l) f_{P(b s)}$
(b) $P(a \mid t, l) f$
- Elimin
$f_{P(v)} f_{P(s)} f_{P(l l s)}(l) f_{P(b l s)}(b) \underline{f_{t}(a, l) f_{x}(a) f_{P(d l a, b)}(a, b)}$
- Eliminating a, we get
$f_{P(v)} f_{P(s)} f_{P(l l s)}(l) f_{P(b \mid s)}(b) f_{a}(b, l)$
- Eliminating b, we get
$f_{P(v)} f_{P(s)} f_{P(l \mid s)}(l) f_{b}(l)$

79

81

82

[^0]: Cynthia Matuszek - UMBC CMSC 671

