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Bayes Nets
AI Class 10 (Ch. 14.1–14.4.2; skim 14.3)

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Matt E. Taylor @ WSU, Lise
Getoor @ UCSC, Dr. P. Matuszek @ Villanova University, and Weng-Keen Wong at OSU. Based in part on 

www.csc.calpoly.edu/~fkurfess/Courses/CSC-481/W02/Slides/Uncertainty.ppt . 

Weather Cavity

Toothache Catch
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Bookkeeping

• HW3 out at HW4 time
• We have to sort out problems with 1 and 2.
• Can you see your Hwk1 annotations?
• There will only be 5 homeworks

• This lecture: Bayes, Bayes, Bayes

• Next lecture: Games 2, Uncertain Reasoning
• Presented by Pat
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Probability

• Worlds, random variables, events, sample space

• Joint probabilities of  multiple connected variables

• Conditional probabilities of  a variable, given another 
variable(s)

• Marginalizing out unwanted variables

• Inference from the joint probability 

The big idea: figuring out the probability
of  variable(s) taking certain value(s)

3
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Bayes’ Rule

• Derive the probability of  some event, given another 
event
• Assumption of attribute independency 

(AKA the Naïve assumption)
• Naïve Bayes assumes that all attributes are independent. 

• Also the basis of  modern machine learning

• Bayes’ rule is derived from the product rule

4

R&N 495
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Bayes’ Rule

• P(Y | X) = P(X | Y) P(Y) / P(X)

• Often useful for diagnosis. 

• If  we have:
• X = (observable) effects, e.g., symptoms
• Y = (hidden) causes, e.g., illnesses
• A model for how causes lead to effects: P(X | Y)
• Prior beliefs about frequency of occurrence of effects: P(Y)

• We can reason from effects to causes: P(Y | X)
5
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Naïve Bayes Algorithm

• Estimate the probability of  each class:
• Compute the posterior probability (Bayes rule)

• Choose the class with the highest probability

• Assumption of  attribute independency (Naïve 
assumption): Naïve Bayes assumes that all of  the 
attributes are independent.  

6
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Bayesian Inference

• In the setting of  diagnostic/evidential reasoning

• Know: prior probability of  hypothesis
conditional probability 

• Want to compute the posterior probability

• Bayes’ theorem (formula 1):

onsanifestatievidence/m                                      

hypotheses                                             
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Simple Bayesian Diagnostic Reasoning

• We know:
• Evidence / manifestations:  E1, … Em

• Hypotheses / disorders:       H1, … Hn

• Ej and Hi are binary; hypotheses are mutually exclusive (non-
overlapping) and exhaustive (cover all possible cases)

• Conditional probabilities: P(Ej | Hi), i = 1, … n; j = 1, … m

• Cases (evidence for a particular instance): E1, …, Em

• Goal: Find the hypothesis Hi with the highest posterior
• Maxi P(Hi | E1, …, Em)

8
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Priors

• Four values total here:
• P(H|E) = (P(E|H) * P(H)) / P(E)

• P(H|E)  — what we want to compute

• Three we already know, called the priors
• P(E|H)

• P(H)

• P(E)

9

(In ML we use the training 
set to estimate the priors)
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Bayesian Diagnostic Reasoning II

• Bayes’ rule says that
• P(Hi | E1, …, Em) = P(E1, …, Em | Hi) P(Hi) / P(E1, …, Em)

• Assume each piece of  evidence Ei is conditionally 
independent of  the others, given a hypothesis Hi, then:
• P(E1, …, Em | Hi) = Õl

j=1 P(Ej | Hi)

• If  we only care about relative probabilities for the Hi, 
then we have:
• P(Hi | E1, …, Em) = α P(Hi) Õl

j=1 P(Ej | Hi)

10
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Bayes Example: Diagnosing Meningitis

• Your patient comes in with a stiff  neck. 

• Is it meningitis?

• Suppose we know that
• Stiff  neck is a symptom in 50% of meningitis cases
• Meningitis (m) occurs in 1/50,000 patients
• Stiff  neck (s) occurs in 1/20 patients

• So probably not. But specifically?

11
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Bayes Exercise: Diagnosing Meningitis

• Stiff  neck is a symptom in 50% of meningitis cases
• Meningitis (m) occurs in 1/50,000 patients
• Stiff  neck (s) occurs in 1/20 patients

• Then:
• P(s|m) = 0.5, P(m) = 1/50000, P(s) = 1/20
• P(m|s) = (P(s|m) P(m))/P(s)

= (0.5 x 1/50000) / 1/20  = .0002

• So we expect that one in 5000 patients with a stiff  
neck to have meningitis.
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Analysis of  Naïve Bayes Algorithm

• Advantages:

• Sound theoretical basis
• Works well on numeric and textual data

• Easy implementation and computation
• Has been effective in practice (e.g., typical spam filter)

13
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Limitations of  Naïve Bayes

• Cannot easily handle:
• Multi-fault situations
• Cases where intermediate (hidden) causes exist:
• Disease D causes syndrome S, which causes correlated 

manifestations M1 and M2

14
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Limitations of  Naïve Bayes

• Consider a composite hypothesis H1 Ù H2, where H1

and H2 are independent. What is the relative 
posterior?
• P(H1 ÙH2 | E1, …, Em) = α P(E1, …, Em | H1 ÙH2) P(H1 Ù

H2)
= α P(E1, …, Em | H1 ÙH2) P(H1) P(H2)
= αÕl

m=1 P(Em | H1 ÙH2) P(H1) P(H2)

• How do we compute P(Ej | H1 Ù H2) ??

15
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Limitations of Simple Bayesian Inference II

• Assume H1 and H2 are independent, given E1, …, Ej?
• P(H1 Ù H2 | E1, …, Ej) = P(H1 | E1, …, Ej) P(H2 | E1, …, Ej)

• This is a very unreasonable assumption
• Earthquake and Burglar are independent, but not given Alarm:

• P(burglar | alarm, earthquake) << P(burglar | alarm)

• Simple application of Bayes’ rule doesn’t handle causal 
chaining:
• A: this year’s weather; B: cotton production; C: next year’s cotton price

• A influences C indirectly:  A→ B → C

• P(C | B, A) = P(C | B)

16
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Beyond Simple Bayes

• Need a richer representation to model:
• Interacting hypotheses
• Conditional independence
• Causal chaining

• So: conditional independence and Bayesian 
networks!

17
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Next Up

• Bayesian networks
• Network structure
• Conditional probability tables
• Conditional independence

• Inference in Bayesian networks
• Exact inference

• Approximate inference

18
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Review: Independence

What does it mean for A and B to be independent?

• P(A) ⫫ P(B)

• A and B do not affect each other’s probability

• P(A Ù B) = P(A) P(B)

19
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Review: Conditioning

What does it mean for A and B to be conditionally 
independent given C?

• A and B don’t affect each other if C is known

• P(A Ù B | C) = P(A | C) P(B | C)

20
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Review: Bayes’ Rule

What is Bayes’ Rule?

What’s it useful for?
• Diagnosis
• Effect is perceived, want to know (probability of) cause

21

P(Hi | Ej ) =
P(Ej |Hi )P(Hi )

P(Ej )

P(cause | effect) = P(effect | cause)P(cause)
P(effect)

R&N, 495–496
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Review: Bayes’ Rule

What is Bayes’ Rule?

What’s it useful for?
• Diagnosis
• Effect is perceived, want to know (probability of) cause

22

P(Hi | Ej ) =
P(Ej |Hi )P(Hi )

P(Ej )

P(hidden | observed) = P(observed | hidden)P(hidden)
P(observed)

R&N, 495–496
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Review: Joint Probability

• What is the joint probability of A and B?
• P(A,B)

• The probability of any pair of legal assignments.
• Generalizing to > 2, of  course

• Booleans: expressed as a matrix/table

• Continuous domains: probability functions

A B

T T 0.09

T F 0.1

F T 0.01

F F 0.8

alarm ¬ alarm
burglary 0.09 0.01

¬ burglary 0.1 0.8
≡

23
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Bayes’ Nets: Big Picture

• Problems with full joint distribution tables as our 
probabilistic models:
• Joint gets way too big to represent explicitly
• Unless there are only a few variables

• Hard to learn (estimate) anything empirically about more 
than a few variables at a time
• Why?

27

A ¬A

E ¬E E ¬E

B 0.01 0.08 0.001 0.009
¬B 0.01 0.09 0.01 0.79

Slides derived from Matt E. Taylor, WSU

27
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Bayes’ Nets: Big Picture

• Bayes’ nets: a technique for describing complex 
joint distributions (models) using simple, local 
distributions (conditional probabilities)
• A type of graphical models

• We describe how variables interact locally 
• Local interactions chain together to give global, indirect 

interactions
Weather Cavity

Toothache Catch

Slides derived from Matt E. Taylor, WSU28
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Example: Car Won’t Start

Slides derived from Matt E. Taylor, WSU29
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Example: Insurance

Slides derived from Matt E. Taylor, WSU30
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Example: Toothache

• Random variables:
• How’s the weather?
• Do you have a toothache?
• Does the dentist’s probe catch when she pokes your tooth?
• Do you have a cavity?

31 Slides derived from Matt E. Taylor, WSU

Weather Cavity

Toothache Catch

31
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Graphical Model Notation 

• Nodes: variables (with domains) 

• Can be assigned (observed) or unassigned (hidden) 

• Arcs: interactions 
• Indicate “direct influence” between 
• Formally: encode conditional independence
• Toothache and Catch are conditionally independent, given Cavity

• For now: imagine that 
arrows mean causation
• (in general, they don’t!) 

Slides derived from Matt E. Taylor, WSU

Weather Cavity

Toothache Catch

32
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Bayesian Belief  Networks (BNs)

• Let’s formalize the semantics of  a BN 
• A set of nodes, one per variable X

• A directed arc between each co-influential node
• X àY means X has an influence on Y

• A directed, acyclic graph 

Slides derived from Matt E. Taylor, WSU33

π1 … πn

33
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Bayesian Belief  Networks (BNs)

• Each node X has a conditional 
probability distribution:

• A collection of distributions over X

• One for each combination of parents’ values
• Quantifies the effects of the parents on a node

• CPT: conditional probability table
• Description of a noisy “causal” process

Slides derived from Matt E. Taylor, WSU34

P(Xi | Parents(Xi))

π1 … πn

34

Conditional Probability Tables
• For Xi, CPD P(Xi | Parents(Xi)) quantifies effect of  parents on Xi

• Parameters are probabilities in conditional probability tables (CPTs):

A P(A)

false 0.6
true 0.4

A B P(B|A)
false false 0.01

false true 0.99
true false 0.7
true true 0.3

B C P(C|B)
false false 0.4

false true 0.6
true false 0.9
true true 0.1

B D P(D|B)
false false 0.02
false true 0.98

true false 0.05
true true 0.95

A

B

C D

Example from web.engr.oregonstate.edu/~wong/slides/BayesianNetworksTutorial.ppt

35
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For a given combination of  
values of  the parents (B in 
this example), the entries for 
P(C=true | B) and 
P(C=false | B) must sum to 1

Example:
P(C=true | B=false) + 
P(C=false |B=false ) = 1

Example from web.engr.oregonstate.edu/~wong/slides/BayesianNetworksTutorial.ppt

CPTs cont’d

• Conditional Probability Distribution for C given B

• If  you have a Boolean variable with k Boolean 
parents, this table has 2k+1 probabilities

B C P(C|B)
false false 0.4

false true 0.6
true false 0.9
true true 0.1

A

B

C D

36
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Bayesian Belief  Networks (BNs)

37
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Bayesian Belief  Networks (BNs)

• Making a BN: BN = (DAG, CPD)
• DAG: directed acyclic graph (BN’s structure)

• Nodes: random variables 
• Typically binary or discrete

• Methods exist for continuous variables

• Arcs: indicate probabilistic dependencies between nodes
• Lack of link signifies conditional independence

• CPD: conditional probability distribution (BN’s parameters)
• Conditional probabilities at each node, usually stored as a table 

(conditional probability table, or CPT)

38
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Bayesian Belief  Networks (BNs)

• Making a BN: BN = (DAG, CPD)
• DAG: directed acyclic graph (BN’s structure)
• CPD: conditional probability distribution (BN’s parameters)
• Conditional probabilities at each node, usually stored as a table 

(conditional probability table, or CPT)

• Root nodes are a special case
• No parents, so use priors in CPD:

P(xi |π i )  where π i  is the set of all parent nodes of xi

π i =∅,  so P(xi |π i ) = P(xi )

39
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Example BN

P(C|A) = 0.2
P(C|¬A) = 0.005P(B|A) = 0.3

P(B|¬A) = 0.001

P(A) = 0.001

P(D|B,C) = 0.1
P(D|B,¬C) = 0.01
P(D|¬B,C) = 0.01     
P(D|¬B,¬C) = 0.00001

P(E|C) = 0.4
P(E|¬C) = 0.002

We only specify P(A) etc., not P(¬A), since they have to sum to one

40

P(¬B|A) = 0.7
P(¬B|¬A) = 0.999

40

© Cynthia Matuszek – UMBC CMSC 671

Probabilities in BNs

• Bayes’ nets implicitly encode joint distributions as a 
product of local conditional distributions.

• To see probability of a full assignment, multiply all the 
relevant conditionals together: 

• Example:

P(+cavity, +catch, ¬toothache) = ?

• This lets us reconstruct any entry of the full joint 

41

P(x1, x2,...xn ) = P(xi | parents(Xi )
i=1
∏ )

n

Cavity

Toothache Catch

Slides derived from Matt E. Taylor, WSU
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Conditional Independence
and Chaining

• Conditional independence assumption: 
• q is any set of variables (nodes) 

other than xi and its successors
• πi blocks influence of other nodes 

on xi and its successors 
• That is, q influences xi only through

variables in πi)
• Then, complete joint probability distribution of all variables 

can be represented by local CPDs by chaining:
P(x1,..., xn ) =Πi=1

n P(xi |π i )

P(xi |π i,q) = P(xi |π i )

ix 

iπ 
q

42
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The Chain Rule

e.g, 

• Decomposition: 

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

• With assumption of  conditional independence: 

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

• Bayes’ nets express conditional independences
• (Assumptions) 

44

P(x1,..., xn ) =Πi=1
n P(xi |π i )

P(x1,..., xn ) = P(x1)P(x2 | x1)P(x3 | x1, x2)...

Slides derived from Matt E. Taylor, WSU
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Chaining: Example

Computing the joint probability for all variables is easy:

P(a, b, c, d, e)   = P(e | a, b, c, d) P(a, b, c, d)
= P(e | c) P(a, b, c, d)
= P(e | c) P(d | a, b, c) P(a, b, c) 
= P(e | c) P(d | b, c) P(c | a, b) P(a, b)
= P(e | c) P(d | b, c) P(c | a) P(b | a) P(a)

We’re reducing distributions–P(x,y)–to single values.

By product rule
By conditional 
independence 
assumption

45
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Topological Semantics

• A node is conditionally independent of its non-
descendants given its parents

• A node is conditionally independent of all other 
nodes in the network given its parents, children, and 
children’s parents (also known as its Markov 
blanket)
• (For much later: a method called d-separation can be 

applied to decide whether a set of nodes X is independent 
of a set Y, given a third set Z)

46

Make a 

46
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Independence and Causal Chains

• Important question about a BN:
• Are two nodes independent given certain evidence?

• If  yes, we can it prove using algebra (tedious)

• If  no, can prove it with a counter-example

• Question: are X and Z necessarily independent? 
• No. 

• Ex: Clouds (X) cause rain (Y), which causes traffic (Z)

• X can influence Z, Z can influence X (via Y)

• This configuration is a “causal chain” 

47 Slides derived from Matt E. Taylor, WSU
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Two More Main Patterns

• Common Cause:
• Y causes X and Y causes Z
• Are X and Z independent?

• Are X and Z independent given Y?

• Common Effect:
• Two causes of  one effect
• Are X and Z independent?

• Are X and Z independent given Y?
→No!

• Observing an effect “activates” influence 
between possible causes.

48 Slides derived from Matt E. Taylor, WSU

No

Yes

Yes

48
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Conditionality Example

• Hidden: A, B, E. You don’t know:
• If there’s a burglar.
• If there was an earthquake.
• If the alarm is going off.

• Observed: J and M.
• John and/or Mary have some chance 

of calling if the alarm rings. 
• You know who called you.

49 Slides derived from Matt E. Taylor, WSU
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Conditionality Example 2

• At first:
• Is the probability of John calling 

affected by whether there’s an
earthquake?

• Is the probability of Mary calling 
affected by John calling?

• Your alarm is going off!
• Is the probability of Mary calling affected by 

John calling?

50 Slides derived from Matt E. Taylor, WSU
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Conditionality Example 3

• At first:
• Is whether there’s an earthquake 

affected by whether there’s a burglary 
in progress (and vice versa)?

• Your alarm is going off!
• Does the probability a burglary is 

happening depend on whether there’s 
an earthquake?

51 Slides derived from Matt E. Taylor, WSU
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Representational Extensions

• CPTs for large networks can require a large number of  parameters

• O(2k) where k is the branching factor of the network

• There are ways of  compactly representing CPTs

• Deterministic relationships

• Noisy-OR 

• Noisy-MAX

• What about continuous variables?
• Discretization

• Use density functions (usually mixtures of Gaussians) to build hybrid Bayesian 
networks (with discrete and continuous variables)

52

52
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Bayes’ Net Inference
Multi-Agent Systems

Some material borrowed from Lise Getoor53

53
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Today’s Class

• Bayes’ nets inference
• Inference by enumeration; by variable elimination

• Multi-agent systems

• Midterm study guide posted

• HW4 moved to after midterm

• Remember, Erfan is lecturing Thursday

54

54
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Inference Tasks

• Simple queries: Compute posterior marginal P(Xi | E=value)
• E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)

• Conjunctive queries:
• P(Xi, Xj | E=value) = P(Xi | E=value) P(Xj | Xi, E=value)

• Optimal decisions:
• Decision networks include utility information
• Probabilistic inference gives P(outcome | action, evidence)

• Value of information: Which evidence should we seek next?

• Sensitivity analysis: Which probability values are most critical?

• Explanation: Why do I need a new starter motor?

55
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Direct Inference with BNs

• Instead of  computing the joint, suppose we just 
want the probability for one variable.

• Exact methods of  computation:
• Enumeration
• Variable elimination
• Join trees: get the probabilities associated with every 

query variable

57
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Inference by Enumeration

• Add all of  the terms (atomic event probabilities) 
from the full joint distribution

• If  E are the evidence (observed) variables and Y are 
the other (unobserved) variables, then:

P(X | E) = α P(X, E) = α∑ P(X, E, Y)

• Each P(X, E, Y) term can be computed using the 
chain rule

• Computationally expensive!

59
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Example 1: Enumeration

• Recipe:
• State the marginal probabilities you need
• Figure out ALL the atomic probabilities you need
• Calculate and combine them 

• Example:

• P(+b | +j, +m) =

Slides derived from Matt E. Taylor, WSU; Russell&Norvig60

P(+b, +j, +m)
P(+j, +m)

60
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Example 1 cont’d

61 Slides derived from Matt E. Taylor, WSU; Russell&Norvig
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Example 2: Enumeration

• P(xi) = Σπ P(xi | πi) P(πi)

• Say we want to know P(D=t)

• Only E is given as true

• P (d | e) = a ΣABCP(a, b, c, d, e)         (where a = 1/P(e))
= a ΣABCP(a) P(b | a) P(c | a) P(d | b,c) P(e | c)

• With simple iteration, that’s a lot of  repetition! 

• P(e|c) has to be recomputed every time we iterate over C=true

62

i
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Variable Elimination

• Basically just enumeration with caching of  local 
calculations

• Linear for polytrees (singly connected BNs)

• Potentially exponential for multiply connected BNs
ÞExact inference in Bayesian networks is NP-hard!

• Join tree algorithms are an extension of  variable 
elimination methods that compute posterior 
probabilities for all nodes in a BN simultaneously

63
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Variable Elimination Approach

General idea:

• Write query in the form

• Note that there is no a term here
• It’s a conjunctive probability, not a conditional probability…

• Iteratively
• Move all irrelevant terms outside of  innermost sum

• Perform innermost sum, getting a new term

• Insert the new term into the product

P(Xn,e) = ! P(xi | pai )
i
∏

x2

∑
x3

∑
xk

∑

64
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Variable Elimination: Example

RainSprinkler

Cloudy

WetGrass

∑=
c,s,r

)c(P)c|s(P)c|r(P)s,r|w(P)w(P

∑ ∑=
s,r c

)c(P)c|s(P)c|r(P)s,r|w(P

∑=
s,r

1 )s,r(f)s,r|w(P )s,r(f1

“factors”

65
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A More Complex Example

• “Lungs”
network:

Visit to 
Asia Smoking

Lung CancerTuberculosis

Abnormality
in Chest Bronchitis

X-Ray 
performed

Dyspnea

66
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Lungs 1
• We want to compute P(d)

• Need to eliminate: v,s,x,t,l,a,b

Initial factors:

V S

LT

A B

X D

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

67
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Lungs 2
• We want to compute P(d)

• Need to eliminate: v,s,x,t,l,a,b

Initial factors:

Eliminate: v

Compute:

• Note: fv(t) = P(t)
• Result of  elimination is not necessarily a probability term

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

fv (t) = P(v)P(t | v)
v
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

V S

LT

A B

X D
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Lungs 3
• We want to compute P(d)

• Need to eliminate: s,x,t,l,a,b

Initial factors:

Eliminate: s

Compute:

• Summing on s results in a factor with two arguments fs(b,l)

• In general, result of  elimination may be a function of  several variables

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

fs (b, l) = P(s)P(b | s)P(l | s)
s
∑

⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)

V S

LT

A B

X D
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Lungs 4
• We want to compute P(d)

• Need to eliminate: x,t,l,a,b

Initial factors

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

Eliminate: x

Note: fx(a) = 1 for all values of a !! ß--WHYYY

Compute: fx (a) = P(x | a)
x
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)

⇒ fv (t) fs (b, l) fx (a)P(a | t, l)P(d | a,b)

V S

LT

A B

X D
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Lungs 5
• We want to compute P(d)

• Need to eliminate: t,l,a,b

Initial factors P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

Eliminate: t
Compute: ft (a, l) = fv (t)P(a | t, l)

t
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)

⇒ fv (t) fs (b, l) fx (a)P(a | t, l)P(d | a,b)

⇒ fs (b, l) fx (a) ft (a, l)P(d | a,b)

V S

LT

A B

X D

71

71

© Cynthia Matuszek – UMBC CMSC 671

Lungs 6
• We want to compute P(d)

• Need to eliminate: l,a,b

Initial factors P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

Eliminate: l
Compute: fl (a,b) = fs (b, l) ft (a, l)

l
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l) fx (a)P(a | t, l)P(d | a,b)
⇒ fs (b, l) fx (a) ft (a, l)P(d | a,b)

⇒ fl (a,b) fx (a)P(d | a,b)

V S

LT

A B

X D

72
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Lungs Finale
• We want to compute P(d)

• Need to eliminate: b

Initial factors P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

Eliminate: a,b

Compute: fa (b,d) = fl (a,b) fx (a)p(d | a,b)
a
∑ fb(d) = fa (b,d)

b
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l) fx (a)P(a | t, l)P(d | a,b)

⇒ fl (a,b) fx (a)P(d | a,b)
⇒ fs (b, l) fx (a) ft (a, l)P(d | a,b)

⇒ fa (b,d)⇒ fb(d)

V S

LT

A B

X D
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Computing Factors

R S C P(R|C) P(S|C) P(C) P(R|C) P(S|C) P(C)

T T T
T T F
T F T

T F F
F T T
F T F

F F T
F F F

R S f1(R,S) = ∑c P(R|S) P(S|C) P(C)

T T
T F
F T
F F
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Dealing with Evidence

• How do we deal with evidence?
• And what is “evidence?”
• Variables whose value has been observed

• Suppose we are given evidence: V = t, S = f, D = t

• We want to compute P(L, V = t, S = f, D = t)

V S

LT

A B

X D

75
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Dealing with Evidence 

• We start by writing the factors:

• Since we know that V = t, we don’t need to eliminate V

• Instead, we can replace the factors P(V) and P(T |V) with

• These “select” appropriate parts of original factors given 
evidence

• Note that fP(V) is a constant, so does not appear in 
elimination of  other variables

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

fP(V ) = P(V = t) fp(T |V ) (T ) = P(T |V = t)

V S

LT

A B

X D
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Dealing with Evidence 

• So now…
• Given evidence V = t, S = f, D = t
• Compute P(L, V = t, S = f, D = t )
• Initial factors, after setting evidence:
fP(v) fP(s) fP(t|v) (t) fP(l|s) (l) fP(b|s) (b)P(a | t, l)P(x | a) fP(d|a,b) (a,b)

V S

LT

A B

X D
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• Given evidence V = t, S = f, D = t, we want to compute P(L, V = t, S = f, D = t )

• Initial factors, after setting evidence:

• Eliminating x, we get

• Eliminating t, we get

• Eliminating a, we get

• Eliminating b, we get

V S

LT

A B

X D

Dealing with Evidence 

fP(v) fP(s) fP(l|s) (l) fP(b|s) (b) fa (b, l)

fP(v) fP(s) fP(l|s) (l) fP(b|s) (b) ft (a, l) fx (a) fP(d|a,b) (a,b)

fP(v) fP(s) fP(t|v) (t) fP(l|s) (l) fP(b|s) (b)P(a | t, l) fx (a) fP(d|a,b) (a,b)

fP(v) fP(s) fP(t|v) (t) fP(l|s) (l) fP(b|s) (b)P(a | t, l)P(x | a) fP(d|a,b) (a,b)

fP(v) fP(s) fP(l|s) (l) fb(l)
78
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Variable Elimination Algorithm

• Let X1,…, Xm be an ordering on the non-query variables

• For i = m, …, 1

• In the summation for Xi, leave only factors mentioning Xi

• Multiply the factors, getting a factor that contains a number for each 
value of  the variables mentioned, including Xi

• Sum out Xi, getting a factor f  that contains a number for each value 
of  the variables mentioned, not including Xi

• Replace the multiplied factor in the summation

...
X2

∑
Xm

∑
X1

∑ P(Xj | Parents(Xj ))
j
∏
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Exercise: Enumeration

smart study

prepared fair

pass

p(smart)=.8 p(study)=.6

p(fair)=.9

p(prep|…) smart ¬smart
study .9 .7

¬study .5 .1

p(pass|…)
smart ¬smart

prep ¬prep prep ¬prep

fair .9 .7 .7 .2

¬fair .1 .1 .1 .1

Query: What is the 
probability that a student 
studied, given that they 
pass the exam?
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Exercise: Variable Elimination

smart study

prepared fair

pass

p(smart)=.8 p(study)=.6

p(fair)=.9

p(prep|…) smart ¬smart
study .9 .7

¬study .5 .1

p(pass|…)
smart ¬smart

prep ¬prep prep ¬prep

fair .9 .7 .7 .2

¬fair .1 .1 .1 .1

Query: What is the 
probability that a student 
is smart, given that they 
pass the exam?
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