Bayes Nets

Al Class 10 (Ch. 14.1-14.4.2; skim 14.3)

CONCD,
G e

Probability

‘Worlds, random variables, events, sample space
Joint probabilities of multiple connected variables

Conditional probabilities of a variable, given another
variable(s)

Marginalizing out unwanted variables
Inference from the joint probability

The big idea: figuring out the probability
of variable(s) taking certain value(s)
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Bayes’ Rule

P(Y1X)=PX|Y)P(Y)/P(X)
Often useful for diagnosis.

If we have:

* X = (observable) effects, e.g., symptoms

© Y= (hidden) causes, e.g., illnesses

« A model for how causes lead to effects: P(X|Y)

« Prior beliefs about frequency of occurrence of effects: P(Y)

‘We can reason from effects to causes: P(Y | X)
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Bookkeeping

HW?3 out at HW4 time

+ 'We have to sort out problems with 1 and 2.
* Can you see your Hwk1 annotations?

* There will only be 5 homeworks

This lecture: Bayes, Bayes, Bayes

Next lecture: Games 2, Uncertain Reasoning
* Presented by Pat

Bayes’ Rule

Derive the probability of some event, given another
event

+ Assumption of attribute independency
(AKA the Naive assumption)

* Naive Bayes assumes that all atributes are independent.
Also the basis of modern machine learning

Bayes’ rule is derived from the product rule

R&N 495

Naive Bayes Algorithm

Estimate the probability of each class:
+ Compute the posterior probability (Bayes rule)

P(e)P(D] <)

Ple,| D)= =200

* Choose the class with the highest probability

» Assumption of attribute independency (Naive
assumption): Naive Bayes assumes that all of the
attributes are independent.
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Bayesian Inference Simple Bayesian Diagnostic Reasoning

* In the setting of diagnostic/evidential reasoning * We know:

H, pa) hypotheses - Evidence / manifestations: Ej, ... Ep

E,|H, - Hypotheses / disorders:  Hy, ... Hy
« Ejand Hi are binary; hypotheses are mutually exclusive (non-
E i E . evidence/manifestations overlapping) and exhaustive (cover all possible cases)
* Conditional probabilities: P(E; | Hj),i=1,...n;j=1,...m

P(
E,

+ Know: prior probability of hypothesis ~ P(H;) . ) .
conditional probability P(E,|H,) » Cases (evidence for a particular instance): E4, ..., En,

* Want to compute the posterior probability P(H,|E;)
* Bayes’ theorem (formula 1):
P(H,|E,)= P(H)P(E, | H,)/ P(E))
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* Goal: Find the hypothesis H; with the highest posterior
* Max; P(H; | Ey, ..., En)

Priors Bayesian Diagnostic Reasoning II

e Four values total here: Bayes’ rule says that
* P(HI|E) = (P(E|H) * P(H)) / P(E) * P(H; | By, ..., Em) = P(Ey, ..., Em | H) P(H)) / P(Ey, ..., Enm)

Assume each piece of evidence E; is conditionally
independent of the others, given a hypothesis H;, then:

* Three we already know, called the priors * PEy, ..., B | H) =TT PE | H)

- P(E|H) If we only care about relative probabilities for the H;,
- P(H) then we have:

(In ML we use the training . . _ N O
- P(E) set to estimate the priors) PO B - B = PO) Tyt PCBy 1)

* P(H|E) — what we want to compute

ek — UMBC CMSC 671

Bayes Example: Diagnosing Meningitis Bayes Exercise: Diagnosing Meningitis

|P(H, | E) - P(H))P(E,| H,)/ P(E,)| |P(H, | E) = P(H)P(E, | H,)/ P(E,)|

* Your patient comes in with a stiff neck. - Stiff neck is a symptom in 50% of meningitis cases
. o * Meningitis (m) occurs in 1/50,000 patients
* Is it meningitis? « Stiff neck (s) occurs in 1/20 patients
* Suppose we know that
« Stiff neck is a symptom in 50% of meningitis cases
+ Meningitis (m) occurs in 1/50,000 patients
« Stiff neck (s) occurs in 1/20 patients

So probably not. But specifically?

%~ UMBC CMSC 671




Analysis of Naive Bayes Algorithm Limitations of Naive Bayes

* Advantages: * Cannot easily handle:
* Sound theoretical basis * Multi-fault situations
* Works well on numeric and textual data « Cases where intermediate (hidden) causes exist:

* Easy implementation and computation * Disease D causes syndrome S, which causes correlated
- Has been effective in practice (e.g., typical spam filter) manifestations M; and M,

UMBC CMSC 671 ek — UMBC CMSC 671

Limitations of Naive Bayes Limitations of Simple Bayesian Inference II

« Consider a composite hypothesis H; A H,, where H; * Assume H; and H, are independent, given Ey, ..., E?
and H; are independent. What is the relative * P(H,AH, | By, ., E) =P(H, | Ey, ..., E) P(H, | By, ..., E)
posterior? * This is a very unreasonable assumption
. _ - Earthquake and Burglar are independent, but not given Alarm:

EI(ZI)_II N H2 | El, ceny Em) = P(El, ey Em | H1 A Hz) P(H1 N . P(bl?rglar | alarm, earthquake) <<pP(burglar | alarm)
=aP(E, ..., En | Hy AH,) P(H)) P(Hy) . Sim.pl.e application of Bayes’ rule doesn’t handle causal
= &[Tt P(Enm | Hi A Hy) P(H,) P(HD) chaining:

< A: this year’s weather; B: cotton production; C: next year’s cotton price
* How do we Compute P(EJ | H1 A H2) ” < A influences C indirectly: A— B — C

- P(C | B,A)=P(C | B)
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Beyond Simple Bayes Next Up

Need a richer representation to model: » Bayesian networks

- Interacting hypotheses * Network structure

* Conditional independence + Conditional probability tables
* Causal chaining + Conditional independence

So: conditional independence and Bayesian

* Inference in Bayesian networks
networks!

+ Exact inference
- Approximate inference

UMBC CMSC 671 © Cynthia Matuszek — UMBC CMSC 671




Review: Independence

‘What does it mean for A and B to be independent?
- P(A) LP(B)

* A and B do not affect each other’s probability
* P(AAB)=P(A) P(B)

Review: Bayes’ Rule

‘What is Bayes’ Rule?
PO E) = P(E,|H)P(H,)
P(E))

‘What’s it useful for?

= Diagnosis

- Effect is perceived, want to know (probability of) cause
P(effect | cause)P(cause)

P(cause | effect) = Pleffect)
effec

R&N, 495-496

Review: Joint Probability

‘What is the joint probability of A and B?
- P(AB)

The probability of any pair of legal assignments.

+ Generalizing to > 2, of course

Booleans: expressed as a matrix/table

alarm | ~alarm
burglary | 0.09 0.01

= burglary 0.1 0.8

Continuous domains: probability functions

%~ UMBC CMSC 671 23

Review: Conditioning

‘What does it mean for A and B to be conditionally
independent given C?

* A and B don’t affect each other if C is known
* PBAABIC)=P(AIC)P(BIC)

Review: Bayes’ Rule

What is Bayes’ Rule?
P(E,|H)P(H,)

P(H,|E)) = S

‘What’s it useful for?

* Diagnosis

« Effect is perceived, want to know (probability of) cause
P(observed | hidden)P(hidden)

P(hidden | observed) =
P(observed)

R&EN, 495-496

Bayes’ Nets: Big Picture

* Problems with full joint distribution tables as our
probabilistic models:
- Joint gets way too big to represent explicitly
* Unless there are only a few variables
* Hard to learn (estimate) anything empirically about more
than a few variables at a time
+ Why? A -A

E -E E —E
0.01 | 0.08 | 0.001 | 0.009
0.01 | 0.09 | 0.01 | 0.79

Slides derived from Matt E. Taylor, WSU




Bayes’ Nets: Big Picture Example: Car Won'’t Start

* Bayes’ nets: a technique for describing complex
joint distributions (models) using simple, local
distributions (conditional probabilities)

A type of graphical models

* ‘We describe how variables interact locally

* Local interactions chain together to give global, indirect

interactions @
e
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Example: Insurance Example: Toothache

* Random variables:
+ How’s the weather?
* Do you have a toothache?
* Does the dentist’s probe catch when she pokes your tooth?
* Do you have a cavity?

G >

Slides derived from Matt E. Taylor, WSU

Graphical Model Notation Bayesian Belief Networks (BNs)

Nodes: variables (with domains) Let’s formalize the semantics of a BN
Can be assigned (observed) or unassigned (hidden) " A set of nodes, one per variable X

Arcs: interactions A directed arc between each co-influential node
- Indicate “direct influence” between * X Y means X has an influence on Y
 Formally: encode conditional independence

» Toothache and Catch are conditionally independent, given Cavity

For now: imagine that @

arrows mean causation
* (in general, they don’t!) @

k - UMBC CMSC 671 32 Slides derived from Matt E, Taylor, WSU

A directed, acyclic graph




Bayesian Belief Networks (BNs) Conditional Probability Tables

For X;, CPD P(X; | Parents(X;)) quantifies effect of parents on X;

* Each node X has a conditional o Parameters are probabilities in conditional probability tables (CPTs):
probability distribution: BN
P(X; | Parents(X;)) ) o0
0.6 099

A collection of distributions over X P(X|m...m ) 0.4 0.7
0.3

One for each combination of parents’ values
Quantifies the effects of the parents on a node :;lse OP (f‘B ) PO

0.02

+ CPT: conditional probability table e 06 098

false | 0.9
Description of a noisy “causal” process e |01 0.05
0.95
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CPTs cont’d Bayesian Belief Networks (BNs)

» Conditional Probability Distribution for C given B P(E)
Burglary )™ 002

* If you have a Boolean variable with k Boolean

parents, this table has 25*! probabilities L [ PAIB.E)
95
For a given combination of > 94
values of the parents (B in F 29
this example), the entries for 3 3 001
P(C=true | B) and
P(C=false | B) must sum to 1

Example: — l'(;:)'“ POMIA)

- - ! .70

P(C=true | B=false) + . 08 0l

P(C=false |B=false ) =1

ek — UMBC CMSC 671 37

Bayesian Belief Networks (BNs) Bayesian Belief Networks (BNs)

+ Making a BN: BN = (DAG, CPD) + Making a BN: BN = (DAG, CPD)
DAG: directed acyclic graph (BN’s structure) DAG: directed acyclic graph (BN’s structure)
« Nodes: random variables CPD: conditional probability distribution (BN’s parameters)
Typically binary or discrete « Conditional probabilities at each node, usually stored as a table

Methods exist for continuous variables (conditional probability table, or CPT)
* Arcs: indicate probabilistic dependencies between nodes P(x;17;) where 7, is the set of all parent nodes of x,
Lack of link signifies conditional independence
CPD: conditional probability distribution (BN’s parameters)
« Conditional probabilities at each node, usually stored as a table
(conditional probability table, or CPT) T, = J, so P(x, |”i) =P(x,)

Root nodes are a special case
« No parents, so use priors in CPD:

UMBC CMSC 671 © Cynthia Matuszek — UMBC CMSC 671




Example BN
P(A) = 0.001

A
P(BJA) =03 K\ . gﬁgtl) 2005
P(B|-A) = 0.001 = )
P(_BJA) = 0.7 N £\
P(BI-A) = 0.999 5
P(DB,C) = 0.1 P(EIC)= 0.4
P(DIB.~C) = 0.01 P(E[~C) = 0.002
P(D|-B.C) = 0.01
P(D}-B.~C) = 0.00001

‘We only specify P(A) etc., not P(mA), since they have to sum to one

MBC CMSC 671 40

Conditional Independence
and Chaining

* Conditional independence assumption: P(x; |7,,q) = P(x; | 7,)
¢ is any set of variables (nodes)
other than x; and its successors

m; blocks influence of other nodes

on x; and its successors

That is, ¢ influences x; only through

variables in 7;)

Then, complete joint probability distribution of all variables
can be represented by local CPDs by chaining:

P(x,,...,x,)=1I_ P(x, | ;)

%~ UMBC CMSC 671 42

Chaining: Example

. By product rule
£\ By conditional

a ¢
N KN i
D K jon
Computing the joint probability for all variables is easy:

P(a, b, c,d, e) P(e | a,b, ¢, d)P(a, b, c, d)
Ple | ¢)P(a, b, ¢, d)
Ple | c)P(d | a, b, ¢) P(a, b, c)
Ple | c)P(d | b,c)P(c | a,b)P(a, b)
Pe | c)P(d | b,c)P(c | 2) P(b | a) P(a)

‘We’re reducing distributions—P(x,y)-to single values.

O C UMBC CMSC 671

Probabilities in BNs

Bayes’ nets implicitly encode joint distributions as a
product of local conditional distributions.

To see probability of a full assignment, multiply all the
relevant conditionals together:

n
P(x,,x,,..x,)= ]__[P(x,. | parents(X,))

Example: Y
P(+cavity, +catch, -toothache) = ? @ @

This lets us reconstruct any entry of the full joint

41 Slides derived from Matt E. Taylor, WSU

The Chain Rule

x,) =T P(x; 1)
€8 P(x,,...,x,)=P(x)P(x, | x)P(x;1x,x2)...

Decomposition:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

Bayes’ nets express conditional independences
(Assumptions)
ia Matuszek — UMBC CMSC 671 44 Slides derived from Matt E, Taylor, WSU

Topological Semantics

A node is conditionally independent of its non-
descendants given its parents

A node is conditionally independent of all other
nodes in the network given its parents, children, and
children’s parents (also known as its Markov
blanket)

(For much later: a method called d-separation can be
applied to decide whether a set of nodes X is independent
of a set Y, given a third set Z)
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Independence and Causal Chains

» Important question about a BN:
« Are two nodes independent given certain evidence?
- If yes, we can it prove using algebra (tedious)
« If no, can prove it with a counter-example

* Question: are X and Z necessarily independent?
* No.
« Ex: Clouds (X) cause rain (Y), which causes traffic (Z)
+ X can influence Z, Z can influence X (via Y)

* This configuration is a “causal chain”

© Cynthia Matuszek — UMBC CMSC 671 47 Slides derived from Matt E, Taylor, WSU

Conditionality Example

* Hidden: A, B, E. You don’t know:
- If there’s a burglar.
« If there was an earthquake.
« If the alarm is going off.

* Observed: J and M.

« John and/or Mary have some chance
of calling if the alarm rings.
* You know who called you.

UMBC CMSC 671 Slides derived from Matt E, Taylor, WSU

Conditionality Example 3

o At first:

« Is whether there’s an earthquake B E
affected by whether there’s a burglary N
in progress (and vice versa)? A

"

J M

* Your alarm is going off!

* Does the probability a burglary is
happening depend on whether there’s
an earthquake?

UMBC CMSC 671 5 Slides derived from Matt E, Taylor, WSU

Two More Main Patterns

Common Cause:

© Y causes X and Y causes Z

+ Are X and Z independent? No

+ Are X and Z independent given Y? Yes

Common Effect:

« Two causes of one effect

« Are X and Z independent? Yes

« Are X and Z independent given Y?
—No!

- Observing an effect “activates” influence
between possible causes.

thia Matuszek — UMBC CMSC 671 48 Slides derived from Matt E. Taylor, WSU

Conditionality Example 2

o At first:

« Is the probability of John calling B
affected by whether there’s an ~
earthquake?

« Is the probability of Mary calling /
affected by John calling? J

A

e
N\
M

* Your alarm s going off!

« Is the probability of Mary calling affected by
John calling?

ek — UMBC CMSC 671 5 Slides derived from Matt E, Taylor, WSU

Representational Extensions

» CPTs for large networks can require a large number of parameters
 O(2%) where k is the branching factor of the network

* There are ways of compactly representing CPTs
* Deterministic relationships
 Noisy-OR
 Noisy-MAX
*  What about continuous variables?
* Discretization
« Use density functions (usually mixtures of Gaussians) to build hybrid Bayesian
networks (with discrete and continuous variables)

ek — UMBC CMSC 671




Bayes’ Net Inference
Multi-Agent Systems

Ul o sy yha

Cynthia Matuszek - UMBC CMSC 671 53 Some material borrowed from Lise Getoor.

Inference Tasks

Simple queries: Compute posterior marginal P(X; | E=value)
« E.g.,, P(NoGas | Gauge=empty, Lights=on, Starts=false)

Conjunctive queries:
« P(Xi, Xj | E=value) = P(Xi | E=value) P(X | Xi, E=value)

Optimal decisions:
* Decision networks include utility information
- Probabilistic inference gives P(outcome | action, evidence)

Value of information: Which evidence should we seek next?
Sensitivity analysis: Which probability values are most critical?
Explanation: Why do I need a new starter motor?

2 Matuszek — UMBC CMSC 671 55

Inference by Enumeration

Add all of the terms (atomic event probabilities)
from the full joint distribution

If E are the evidence (observed) variables and Y are
the other (unobserved) variables, then:
PXIE)y=0PX,E)=0% PX,E,Y)

Each P(X, E, Y) term can be computed using the
chain rule

Computationally expensive!

uszek — UMBC CMSC 671

Today’s Class

» Bayes’ nets inference
« Inference by enumeration; by variable elimination

» Multi-agent systems
» Midterm study guide posted
* HW4 moved to after midterm

* Remember, Erfan is lecturing Thursday

© Cynthia Matuszek — UMBC CMSC 671

Direct Inference with BNs

* Instead of computing the joint, suppose we just
want the probability for one variable.

» Exact methods of computation:
* Enumeration
* Variable elimination
- Join trees: get the probabilities associated with every
query variable

ia Matuszek — UMBC CMSC 671

Example 1: Enumeration

* Recipe:
« State the marginal probabilities you need
« Figure out ALL the atomic probabilities you need
+ Calculate and combine them

» Example: <
P(+b, H, +m) / A

* P(+b | 4j, +m) = P(+j, +m)

e
N\
M

ia Matuszek — UMBC CMSC 671 6() _ Slides derived from Matt E. Taylor, WSU; Russell&Norvid




Example 1 cont’d

P(+b,+j,+m) =
P(+b)P(+e)P(+al+b, +e) P(+j|+a) P(+m|+a)+
P(+b) P(+e)P(—a|+bd, +e) P(+j|—a) P(+m|—a)+
P(+b)P(—e)P(+a|+b, —e) P(+j|+a) P(4+m|+a)+
P(+b)P(—e)P(—a|+b, —e) P(+j|—a) P(+m|-a)
®) &)
P(+m | +b, +e)? 9

)

61 Slides derived from Matt E. Taylor, WSU; Russcll&Norvid

Variable Elimination

Basically just enumeration with caching of local
calculations

Linear for polytrees (singly connected BNs)

Potentially exponential for multiply connected BNs
—Exact inference in Bayesian networks is NP-hard!

Join tree algorithms are an extension of variable
elimination methods that compute posterior
probabilities for all nodes in a BN simultaneously

%~ UMBC CMSC 671 63

Variable Elimination: Example

P(w)= 2 P(w |1,s)P(r|c)P(s|c)P(c)

= §CP(W |1,s)3 P(r|c)P(s|c)P(c

= E P(w|r1,9)f, (1,5) f,(r,s)

Example 2: Enumeration

P(x;) = En_ P(x; | m) P(rm;)

IKA“L'
NN

Say we want to know P(D=r)

Only E is given as true

P(dle)=0o ZspcP(a,b,c,d,e) (where o. = 1/P(e))
=a 2ZapcP(@) P(bla)P(cla)P(dIb,ec) Plelc)

» With simple iteration, that’s a lot of repetition!

 P(e|c) has to be recomputed every time we iterate over C=true

thia Matuszek — UMBC CMSC 671 62

Variable Elimination Approach

General idea:
» Write query in the form

PX,0= 3 3 ] [Peilpa)

+ Note that there is no o term here
« It’s a conjunctive probability, not a conditional probability...

* Iteratively
© Move all irrelevant terms outside of innermost sum
© Perform innermost sum, getting a new term
+ Insert the new term into the product

© Cynthia Matuszek — UMBC CMSC 671 64

A More Complex Example

° K‘legs kRl
network:

10



Lungs 1

*  We want to compute P(d)

+ Need to eliminate: v,s,x,t,,a,b

Initial factors:

P()P(s)P(t1)P(L1)P(b1 s)P(al t,vl;P(x la)P(d | a,vb)

Lungs 3

+  We want to compute P(d)

+ Need to eliminate: s,x,t,/,a,b

Initial factors:
PW)P(s)P(t|1v)P(1s)P(bls)P(alt,l)P(xla)P(d|a,b)
= fv(t)is)P(lls)P(b |s)P(alt,l)P(x|a)P(d|a,b)

Eliminate: s

£b.D = P)P(B15)PULs)

Compute: s
= f.()f.(b,)P(alt,l)P(x1a)P(dla,b)

* Summing on s results in a factor with two arguments f,(b,l)

" oTh géneral. result of elimination may be a function of several variables

*  We want to compute P(d)
* Need to eliminate: t,/,a,b
Initial factors  P(V)P(s)P(¢t1v)P(I1s)P(b|s)P(alt,l)P(x|a)P(d|a,b)
= f.(OP(s)P(I1s)P(bls)P(alt,[)P(x|a)P(d|a,b)
= f,()f,(b,))P(alt,l)P(x|a)P(d|a,b)

= fv_(t)fs(b,l)fx(a)P(a It,1)P(d | a,b)
Eliminate: ¢

Compute: f,(a,)= Y, f.()P(alt,l)
B Lb.Df (a)f(al)P(da,b)

71

Lungs 2

+ We want to compute P(d)
* Need to eliminate: v,s,x,2,,a,b
Initial factors:

PWP()PIv)P1s)P(bls)P(alt,)P(x1a)P(d|a,b)
Eliminate: v
Compute: f0= EP(V)P(t Iv)

:MP(.\*)VP(I Is)P(bls)P(alt,[)P(x|a)P(d|a,b)

+ Note: fi(t) = P(t)

« Result of elimination is not necessarily a probability term

ek — UMBC CMSC 671 68

Lungs 4

*  We want to compute P(d)
* Need to eliminate: x,z,/,a,b
Initial factors
PW)P(s)P(t1v)P(l1s)P(bls)P(alt,l)P(x1a)P(d|a,b)
= f.()P(s)P(I1s)P(bls)P(alt,[)P(x|a)P(d|a,b)
Eliminate: x = [, f,(b,)P(alt, l)MP(d la,b)
Compute: f,(a)= EP()C la)

= f.(Of.(b,))f (a)P(alt,])P(d|a,b)

Lungs 6

*  We want to compute P(d)
+ Need to eliminate: /,a,b
Initial factors  P(V)P(s)P(t1v)P(l1s)P(b|s)P(alt,l)P(x|1a)P(d|a,b)
= f.(H)P(s)P(15)P(bls)P(alt,l)P(x|a)P(d|a,b)
= f.()f,(b,[)P(alt,l)P(x1a)P(d|a,b)
= f(Of,(b,Df (a)P(alt,)P(da,b)
= f.(b,D)f.(a)f,(a,l)P(d|a,b)
Eliminate:
Compute: fi(a,b)= Y. f.(b.D)f,(a.0)
= f(a.b)f.(a)P(da,b)
MBC ChMsCor
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Lungs Finale

*  We want to compute P(d)
« Need to eliminate: b

Initial factors P(v)P(s)P(¢ |v)P(15)P(b | 5)P(alt,))P(x1a)P(d | a,b)
= £.(OP(s)P(15)P(b|s)P(alt,))P(xa)P(d | a,b)
= £(OL(B.DP@L,)P(x1a)P(da,b)
= £.(Of.(b.Df.(@)P(alt,)P(d) a,b)
= £.(b.D)f.(a)f (a,)P(d 1 a,b)
= fi(a.b)f.(@)P(d|a,b)=> f,(b,d)= f,(d)

Eliminate: a,b

Compute: £,(b,d)= Y fi(a,b)f.(@)p(dab) f,(d)= Y f.(b,d)
a b

O Cynthia Matuszek — UMBC CMSC 6 73

Dealing with Evidence

* How do we deal with evidence?
And what is “evidence?”
Variables whose value has been observed

©

= Suppose we are given evidence: V=t S=f D=t

* We want to compute P(L, V=1,S=f,D =1)

Dealing with Evidence

* Sonow...
Given evidence V=t S=f D=t
Compute P(L,V=t,S=f,D=t)
Initial factors, after setting evidence:
ﬁz}fﬂgfmlw (t)f,,(ﬂs)(l)fL%Lb)P(a l,[)P(x| a)f,,ﬂ »(ab)

Computing Factors

=
©w
a

P(R[C) P(SIC) P(©) P(R|C) P(S|C) P(C)

mm | m | =] e e
R A R R ]
R R

fi(R,S) = Y P(R|S) P(S|C) P(C)

Dealing with Evidence

‘We start by writing the factors: D)
PW)P(s)P(t1v)P(1s)P(bls)P(alt,l)P(x1a)P(d|a,b)
Since we know that V' =t¢, we don’t need to eliminate V'

Instead, we can replace the factors P(V) and P(T'V) with
fHV) =P\V=t) fpmv)(T) =P(TIV=t)

 These “select” appropriate parts of original factors given
evidence

* Note that fpy, is a constant, so does not appear in
elimination of other variables
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Dealing with Evidence

*  Given evidence V=1, § =f D =t, we want to compute P(L, V=1, S=f D=t)

« Initial factors, after setting evidence:
fP(v)fP(s)fP(1\v)(t)fF(Ils)(l)fF(bly) (b)P(alt,l)P(xla P(d\a.b)(a’ b)
+  Eliminating x, we get
JoorSrordpag @S oy (D f pay (DIP@L 1,1 (@) fp 0.y (@, D)
» Eliminating #, we get
fP(v)fP(s)fP(l\s)(l)fP(bls)(b)f (a, l)f\' (a)fp 0 (s b)

+ Eliminating a, we get

SrcrSrirToan (DS pp (D, (B, D)
+  Eliminating b, we get

FocrFow Lo DO
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Variable Elimination Algorithm

* Let Xj,..., Xy, be an ordering on the non-query variables

« Fori=m, .., 1 EEE HP(Xj | Parents(X,))

X X X,
In the summation for X;, leave only factors mentioning X;

Multiply the factors, getting a factor that contains a number for each
value of the variables mentioned, including X;

Sum out X;, getting a factor f that contains a number for each value
of the variables mentioned, not including X;

Replace the multiplied factor in the summation

Exercise: Variable Elimination
p(smart)=.8 p(study)=.6

Exercise: Enumeration
p(smart)=.8 p(study)=.6

p(prep|...)

study

—study

Query: What is the

probability that a student
studied, given that they

pass the exam?

p(prep...)

study

—study

Query: What is the
probability that a student
is smart, given that they
pass the exam?
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