
 CMSC 671 – HW 2, Fall 2019
Homework	2:	Search	&	CSP	
Turnin:	Blackboard.	
Please	submit	Parts	I,	II,	and	IV	as	a	single	PDF	file	named	yourlastname_hw2.pdf.	
Please	submit	Part	II	as	a	.py	file,	named	yourlastname_hw2.py.	

All	files	must	start	with	your	last	name	and	have	your	full	name	in	the	file,	at/near	the	top.		

PART	I.		UNINFORMED	AND	INFORMED	SEARCH	

Description:	For	the	tree	in	Figure	1,	S	is	the	start	state,	and	any	node	
with	a	double	line	is	a	goal	state.	Actual	arc	costs	are	given	on	the	arc	
(in	blue).	Table	1	gives	the	value	of	a	heuristic	function	for	each	node.		

1) For	each	of	 the	 following	algorithms,	at	each	timestep,	please	give	
the	current	node	plus	all	nodes	on	the	frontier	(in	order),	using	the	
same	notation	as	we	used	 in	class.	Then,	give	 the	 list	of	all	nodes	
visited	by	that	search,	in	order.		12	pts	

a) Depth-first	search		

	

	

b) Breadth-first	search	

	

	

c) Uniform-cost	search	

	

	

d) A*	search	

	

	

	

	

S

A

I

D

J

B C

H F E

1

2 8 6

2 5 1 1 1 4 5

h(S)	=	2

h(A)	=	3

h(B)	=	5

h(C)	=	10

h(D)	=	4

h(E)	=	∞

h(F)	=	∞

h(H)	=	0

h(I)	=	0

h(J)	=	∞

Figure	1:	A	simple	search	tree	

Table	1:	Values	of	
some	heuristic	
function	applied	
to	the	nodes	of	
that	tree.	

PART	II.	JUMPING	PUZZLES	

Description:	We	will	consider	number-jumping	problems	(example	in	Fig.	3).1	
In	this	class	of	problems,	the	goal	is	to	get	from	a	start	space	(in	the	example,	
top	 left,	 in	 red)	 to	 a	 goal	 space	 	 (bottom	 right,	 orange).	 Each	 cell	 contains	 a	
number;	 from	 each	 cell,	 the	 agent	 can	 move	 exactly	 that	 number	 of	 spaces	
horizontally	or	vertically.	

The	problem	is	to	find	a	path	to	the	goal.	The	optimal	solution	has	the	smallest	
number	of	 jumps	(not	the	smallest	distance	traveled).	There	may	be	multiple	
solutions.		

1) What	 is	 this	 problem’s	 state	 space?	 (What	 information	 is	 needed	 to	
describe	any	given	state	an	agent	may	be	in	while	solving	one?)		8	pts	

	

	

	

2) Describe	a	good	admissible	heuristic	function	h(n)	for	this	problem.		5	pts	

	

	

3) What	is	the	(worst-case)	branching	factor	b	for	an	n	x	n	puzzle?	What	is	its	depth	d?		4	pts	

	

	

4) In	 Figure	 3,	 the	 agent	 takes	 six	 actions	 and	 moves	 through	 seven	 states	 (one	 per	 stopping	
point),	including	the	start	and	end	states.	What	value	does	your	heuristic	function	return	when	
applied	to	each	of	these	seven	states?	7	pts	

	

	

	

	

	

																																								 																					
1	Examples	from:	http://www.mazelog.com/show?7	

	

Figure	3:	A	3x3	
number-jumping	
problem	and	its	
6-jump	solution

0

1

0 1 2

2

0

1

0 1 2

2

PART	III.		A*	IMPLEMENTATION	

Description:	We	will	write	three	search-based	solvers	for	the	number-jumping	problem	described	
above.	They	will	all	take	in	an	n	x	n	matrix	of	arbitrary	size,	and	return	a	list	of	cells	visited	along	
the	path	to	the	solution.	For	each	one,	experiment	with	how	long	it	takes	to	solve	a	puzzle	and	how	
large	a	puzzle	it	can	solve	in	reasonable	time.		You	may	(and	are	encouraged	to)	use	the	algorithms	
in	the	book	as	a	starting	point.	Careful	coding	of	your	search	and	queueing	functions	will	reduce	the	
workload	substantially.	Document	any	other	sources	you	use,	and	please	don’t	import	(or	copy)	any	
search	code	from	elsewhere.		40	pts	

All	 solutions	 will	 take	 two	 tuples	 (start	 and	 goal)	 and	 a	 matrix	 containing	 the	 problem	 as	
arguments,	and	find	a	path	from	the	start	state	to	the	goal	state.	Return	(not	print)	a	list	of	tuples	
containing	the	cells	visited	on	the	path	found.		

The	example	in	Figure	3	would	be	as	follows:	

	 >>> jumpsolve_astar ((0,0), (2,2), [[2,1,0], [0,1,1], [1,2,1]]) =>

[(0,0), (2,0), (2,1), (0,1), (1,1), (1,2), (2,2)]

	

1) Write	 a	 function	 called	 jumpsolve_bfs that	 finds	 any	 solution	 using	 breadth-first	 search.	
Enqueue	 generated	 nodes	 in	 the	 following	 order:	 left	 (west),	 up	 (north),	 right	 (east),	 down	
(south).			

	

2) Write	 a	 function	 called	 jumpsolve_ids that	 finds	 any	 solution	 using	 iterative-depth	 search.	
Enqueue	 generated	 nodes	 in	 the	 following	 order:	 left	 (west),	 up	 (north),	 right	 (east),	 down	
(south).			

	

3) Write	a	 function	called	 jumpsolve_astar that	 finds	an	optimal	 solution	using	A*	 search.	Use	
the	 heuristic	 you	 gave	 in	 Part	 II.	 	 (Things	 to	 think	 about:	 if	 you	 experiment	 with	 different	
heuristics,	how	does	this	change?	Can	you	do	better?)	

	

	

You	may	assume:	

• The	puzzle	dimensions	are	nonzero.	
• The	array	is	always	0-indexed.	
• Tuples	are	always	in	(x,y)	order	(row,	column).	

Do	not	assume:	

• The	agent	is	unable	to	backtrack.	(It	can!)	Remember	this	is	different	from	search	
backtracking.	

• Start	or	goal	states	will	always	be	along	an	edge	or	in	a	corner.	(They	won’t!)	
The	start	state	will	be	different	from	the	goal	state.		

PART	IV.	CONSTRAINT	SATISFACTION	

Description:	You	are	trying	to	find	professors	to	teach	the	following	classes:	CS101	at	10am,	CS201	
at	11am,	CS301	at	12pm,	CS401	at	1pm,	and	CS501	at	2pm.	This	is	constrained	by	the	following:	

• Dr.	Jones	can	teach	101,	301	or	401.	
• Dr.	Smith	can	teach	101	or	201.	
• Dr.	Taylor	can	teach	101,	201,	or	301.	
• Anybody	can	teach	501.	
• Professors	can’t	teach	back-to-back	classes	(e.g.,	at	10	and	11,	or	1	and	2.)	
• Dr.	Smith	can	only	teach	afternoon	classes.	
• Dr.	White	can	teach	101	or	401,	but	not	both.	
• No-one	can	teach	more	than	two	classes.	

	
	

1) Give	a	CSP	formulation	for	this	problem	(NOT	the	solution).		10	pts	

a) What	are	the	random	variables?	(There	are	multiple	options;	choose	carefully.)	

	

	

b) What	is	the	domain?	

	

	

c) Express	 the	 constraints	 using	 the	 domain	 and	 variables	 (give	 statements	 of	 values	 each	
variable	can	take	or	cannot	take).	

	

	

	

	

2) Give	a	full	legal	instantiation	for	this	problem,	or	explain	why	none	exists.		4	pts		

