
CMSC 671 (Introduction to AI) – Fall 2019

Homework 1: Python, AI, Agents

Turnin:	Blackboard.	
Submit:	 •	 Parts	I	and	II	together	as	a	single	PDF	file	named	yourlastname_hw1_text.pdf.	
	 •	 Part	III	as	a	single	.py	file	named	yourlastname_hw1_program.py,	containing	
	 	 everything	specified	in	the	assignment.		
Notes:		 •		 These	are	individual	assignments,	not	group	work.				
	 •		 All	files	must	start	with	your	last	name.	
	
	
PART	I.		WHAT	IS	AI?	(15	PTS)	
Reading:	Read	John	McCarthy's	paper,	“What	is	AI?”	

http://tiny.cc/mc-what-is-ai
Reading:		Read	the	100-year	retrospective	through	section	II:

http://ai100.stanford.edu/2016-report
	
Assignment:	Answer	all	of	the	following	questions	in	a	short	essay	(500-800	words):	
• Based	on	both	papers:	

o What	did	you	think	“AI”	meant	before	the	reading?	
o Did	anything	you	read	change	your	mind?	How?	

• After	 reading	 these	 two	 papers,	 do	 you	 see	 the	 primary	 goal	 of	 AI	 as	 modeling	 human	
intelligence?	Why	or	why	not?	

• After	reading	the	Stanford	report:	
o How	much	of	AI	right	now	is	based	on	trying	to	model	human	intelligence?	

• What	do	you	think	the	primary	goal	of	AI	should	be?	Is	it	achievable?	
• What	current	research	trend	do	you	think	shows	the	most	promise,	that	is,	seems	most	likely	to	
produce	interesting	and	important	results?	

• Do	you	think	an	artificial	agent	can	be	‘intelligent’?	(We	talked	about	this	in	class.)	Why?	
	
	

PART	II.	AI	NOW	(9	PTS.)	
Assignment:	Answer	the	following	short-answer	questions	(3-5	sentences	per	question)	
1. What	current	area	(research	trend	OR	application	area)	of	AI	are	you	most	excited	about?	

Why?	
2. Name	three	AI	problems	that	you	think	someone	should	be	working	on	right	now,	and	why.	
3. Name	one	AI	problems	that	you	think	nobody	should	work	on,	and	why.	

	
	

	
	
	
	 	

PART	III.		INTRODUCTION	TO	PYTHON	(40	PTS)	
• If	 you	 are	 not	 familiar	with	 Python,	 there	 are	 lots	 of	 online	 resources.	 Any	 resource	

where	 you	 look	 at	 code	 samples	 should	 be	 cited	 in	 the	 comments	 at	 the	 beginning	 of	 the	
program.	

• Documentation	and	error	 checking	are	essential	 in	 this	 class,	 so	although	 these	problems	are	
very	simple,	your	code	must	be	documented,	and	error	cases	must	be	handled.	 (For	example,	
what	if	someone	passes	a	number	greater	than	10,000?)	

• We	 will	 test	 your	 code	 partly	 automatically,	 so	 it	 is	 important	 that	 you	 follow	 all	 naming	
conventions	specified	and	use	the	correct	parameters	and	types.	

• Please	 be	 careful	 to	only	 return	 something	when	 a	 function	 calls	 for	 a	 return,	 and	 only	 print	
when	it	calls	for	printed	output.	You	will	lose	points	for,	e.g.,	printing	the	result	of	problem	1(b).	

• We	are	using	Python	3,	not	2,	for	this	course.	
	

Problem 1: Lists, Sets, Tuples, Strings, and Libraries (12 points)

(a)	Import	the	random	library.	

	
(b)	Write	a	short	function	called	lottery	that:	 3	

1. Populates	a	list	with	1000	random	numbers	under	10000	(235,	2,	75,	100,	7,	4…)	
a. You’ll	want	to	use	a	helper	function	to	create	this	list.	

2. Uses	random.shuffle	to	randomly	permute	the	elements	of	the	list.	
3. Randomly	chooses	four	of	those	elements	as	winning	lottery	numbers.	
4. Returns	(not	prints!)	a	list	containing	the	winning	numbers.	

Here	is	an	example	of	one	possible	return	value:	
lottery() ⇒		(75, 235, 7, 100)	

	
(c)	Write	a	short	function	called	select_set	that:	 4	

1. Creates	an	empty	set.	
2. Populates	the	set	with	4	winners	from	lottery.	
3. Concatenates	the	elements	of	the	set	into	a	comma-separated	string;	and	
4. Returns	the	result.		

Here	is	an	example	of	one	possible	return	value:	
lottery() ⇒		“75, 235, 7, 100”	

	
(d)	Write	a	short	function	called	print_winners	that:	 5	

1. Creates	an	empty	list.	
2. Populates	the	list	with	4	two-element	tuples	representing	pairs	of	the	winning		

numbers	returned	by	select_set,	plus	their	positions	in	the	list.	
3. Prints	the	resulting	list,	five	items	per	line.	

Here	is	an	example	of	the	expected	output:	
(75, 0) (235, 1) (7, 2) (100, 3)

	
	

Problem 2: Dictionaries and String Manipulations (18 points)

• For	this	part,	you	will	need	16	food	objects	and	their	prices.	Use	this	list:	

apples	 4	 eggplants	 13	 ice	cream	 1	 mozzarella	 16	
bananas	 11	 falafel	 15	 jicamas	 9	 nectarines	 2	
carrots	 12	 grapes	 9	 kale	 6	 oranges	 8	
daikon	 5	 horseradish	 14	 lemons	 10	 pineapples	 3	

	
(a)	Write	a	function	called	product_dict	that:		 6	

1. Creates	a	dictionary	containing	16	key/value	pairs	labeling	the	map	spaces:	
a. Key:	product	name	string,	e.g.,	“apple”	
b. Value:	the	price	of	the	product,	in	whole	dollars	
c. Returns	this	dictionary	

	

(b)	Write	a	function	called	price_deltas	that:		 12	
1. Takes	three	product	names	as	arguments.	
2. Calculates	the	delta	of	the	cost	between	the	cheapest	and	middle,	and	middle	and	highest.	
3. Returns	a	five-part	tuple	containing	the	labels	and	deltas,	from	cheapest	to	most	expensive.	

Break	ties	randomly.	

Here	are	some	examples	of	possible	test	cases:	
price_delta(“apple”, “banana”, “grape”) ⇒
 (“apple”, 5, “grape”, 2, “banana”)

Why:	apples	are	lowest;	grapes	are	$5	more	than	apples;	bananas	are	$2	more	than	grapes.	
	
	
(c)	Write	a	function	called	price_print	that:		 8	

1. Takes	the	return	of	price_delta	as	an	argument.	
2. Prints	the	output	in	exactly	the	following	format:	

	[middle]	cost(s)	[delta1]	more	than	[lowest]	but	[delta2]	dollars	more	than	[highest].	

Here	is	an	example	of	one	possible	test	case:	
grapes cost(s) five dollars more than apples but two dollars less than
bananas 	

Note	that	dollar	values	are	spelled	out!	

Problem 3: Call and Test (10 points)

Write	a	main	method	that	takes	three	food	labels	as	command	line	arguments,	then	calls	all	of	the	
functions	from	Problems	1	and	2,	and	prints	out	the	results	of	print_winners	and	price_print.	Do	
not	add	additional	labels	or	formatting.	
	

Here	is	an	example	of	one	possible	output:	

(75, 0) (235, 1) (7, 2) (100, 3)
grapes cost(s) five dollars more than apples but two dollars less than
bananas 	

	

	 	

PART	IV.		AGENTS	(20	PTS)	

Problem 1: (10 points)

Fill	out	the	following	PEAS	table	for	agents	doing	these	tasks.	This	is	a	design	question	–	how	would	
you	 design	 this	 agent?	What	would	 you	 use	 from	 the	 environment?	What	would	 you	 consider	 a	
‘good’	performance?	(You	do	not	have	to	type	in	boxes.	You	can	give	us	an	answer	with	four	bullet	
points	per	agent.)	
	

System	 Performance	
Measure(s)	 Environment	 Actuators	 Sensors	

Example:	Robot	
Soccer	Player	

Winning	games,	
scoring	goals	for	
team,	blocking	goals	
against	team	

Field,	ball,	
teammates,	
other	team,	own	
body	

Kickers	(legs),	
movement	
(legs	or	
wheels)	

Camera,	touch	
sensors,	orientation	
sensors,	wheel/joint	
encoders	

(a)	Pancake-
stacking	robot	
http://tiny.cc/p
ancake-robot	

		 		 		 		

(b)	Stock	market	
agent	

		
	
	
	

		 		 		

(c)	Virtual	
checkers	
player	

	
	
	
		

		 		 		

(d)	Customer	
service	
chatbot	

		
	
	
	

		 		 		

Problem 2: (10 points)

Define	each	of	the	following	for	the	stock	market	agent,	as	designed	above.	
	
(a) The	world	(a	description	of	all	possible	states)	
(b) Start	state(s)	
(c) Actions	available	to	the	agent		
(d) All	goal	state(s)	
(e) The	solution	criteria	for	this	agent	
	

