
1

Final Exam
Review

What Have We Covered?
•  Agents
•  States and State Spaces

•  Search
•  Problem solving as search
•  Uninformed search

•  Informed search
•  Local search, genetic

algorithms

•  Constraint Satisfaction

•  Game playing

•  Probabilistic reasoning

•  Bayesian networks

•  Decision making under
uncertainty

•  Multi-Agent Systems

•  Knowledge
•  Knowledge-Based Agents
•  First-Order Logic & Inference

•  Planning
•  Classical

•  PO Planning

•  Machine Learning
•  Decision Trees

•  Classification

What does that mean?

•  Exam will mostly cover stuff since the midterm, but
will draw from the first half of the class.
•  For example, how to search a plan space.

•  You should expect a problem on state spaces.

•  There will likely be a problem about CSPs.

Logistics

•  No food

•  Calculators okay (simple calculations only) but not
phones

•  Bring pencils

•  Exam held in classroom

Kinds of Questions

•  Definitions (a few)

•  Word problems (“You are trying to find
a…”, “What kind of planner would you
use to...”)

•  Problem-solving (e.g., variable
elimination)
•  Esp. from homework or class examples

•  Design: represent knowledge, draw a
graph, assign probabilities to, FOL
descriptions…

Can you
understand
and apply
concepts
and math

The Exam Itself

•  Will it be as long as the midterm?
•  No.

•  Will it be a similar level of difficulty?
•  Probably.

•  What’s the best way to study?
•  Homeworks
•  Sample problems from class
•  Slides!

•  Study groups are the best thing you can do!

2

Unsolicited Advice

•  Get some sleep beforehand.

•  4h. study + 4h. sleep < 2h. study +6h. sleep

•  Really!

•  You don’t think as clearly when you’re muzzy, and
thinking clearly is more critical than cramming a
few more concepts.

State Spaces

•  What information is necessary to describe all relevant
aspects to solving the goal?

•  The size of a problem is usually described in terms of
the possible number of states
•  Tic-Tac-Toe has about 39 states.
•  Checkers has about 1040 states.
•  Rubik’s Cube has about 1019 states.
•  Chess has about 10120 states in a typical game.
•  Theorem provers may deal with an infinite space

•  State space size ≈ solution difficulty

State Spaces

•  What information is necessary to describe all
relevant aspects to solving the goal?

•  The size of a problem is usually described in terms
of the possible number of states

•  Please be able to specify a state space; see Russell
& Norvig pg. 70, 71, and 72 for examples.

Search

•  Solving problems by traversing states

•  Generally, a state is an node, an edge is an action
•  state: location (7,6)

•  possible actions: N, S, E, W
•  Leading to new states

•  What’s the best thing to try first?

•  Do we care about the path (sequences of moves) or
just the solution found?

Types of Search

•  Blind/uninformed:
•  Don’t know anything about the problem domain
•  Just that there’s an answer somewhere (probably)

•  Informed:
•  We know something about the problem that guides search
•  E.g.: solutions for Tic-Tac-Toe are deep in tree
•  This leads to heuristics

•  Local:
•  We only consider nearby states when applying heuristics

Heuristics

•  Rule of thumb; a general idea what to “try first”
•  Given as a predicted cost to solution from a state

•  Domain-specific

•  Admissible: predicts ≤ actual cost from a state
•  That is, it’s optimistic.

•  Can you come up with a state where your heuristic gives
too high a number?

•  Beware “holy grail” answers

3

α-β Pruning and Chance

•  α-β Pruning for chance trees:
•  Bound the possible values a chance node can take, given

current average

•  Consider whether n more values averaged into the first
value can change that bound

•  This requires known bounds on the utility function

Agents

•  An agent is a physical or virtual entity, capable of…
•  Perceiving environment (at least partially)
•  Acting in (and on) an environment
•  Taking actions

•  And which has…
•  Choices of action
•  Goals (or sometimes “tendencies”)
•  Some form of planning, problem-solving, or reacting

•  Types:
•  Reflex agents
•  Model-based agents
•  Goal-based agents

Know
what these

mean

Multi-Agent Systems

•  So, a MAS is a systems with multiple agents that…
•  Communicate with one another (sometimes)

•  Affect one another (Directly or through environment)

•  Possible kinds of interactions
•  Cooperate (share goals), or

•  Compete (have non-mutually-satisfiable goals), or

•  Are self-interested (have possibly interacting goals)

Kinds of Interaction

•  Cooperative MAS
•  How can they solve problems working together?

•  Distribute the planning (what needs doing?)
•  Distribute the doing (who can do what piece?)

•  Competitive or self-interested MAS:
•  Distributed rationality: Voting, auctions
•  Negotiation: Contract nets
•  Strictly adversarial interactions

•  Takeaways: types of interactions
•  Nash equilibria, Pareto optimality, voting systems, auctions
•  Explain these terms; choose or explain a voting system

Decision-Making

•  Value function: In decision theory, gives a ranking
of the “goodness” (desirability) of states
•  E.g.: Eating Italian > pizza > burgers > sandwiches

•  Utility function gives a number, not just a ranking
•  E.g.: Pizza = 19, burgers = 9, sandwiches = 5

•  Lottery outputs $5000, $100, $5

17

CSPs

•  Defining a CSP:
•  What are the variables we are trying to assign values to?

•  What are the values they could take?

•  How do the assignments for some of them constrain
assignments for others?

•  There are often several possible representations. Think
carefully.

•  Make sure you understand: values, variables,
domains, instantiations, constraints and how to
represent them!

18

4

• A knowledge-based agent needs (at least):
•  A knowledge base (representations of facts)
•  An inference system (can conclude things from facts)

Living people give tests.
Dr. M is a living person.
∴ …

• Represent sentences or assertions

• The KB: how the agent represents the environment
•  What it “perceives” and “knows”

•  Inference: how the agent solves problems/reaches goals
•  Actions change the KB, and have effects derived from inference

Knowledge-Based Agents

19

Represented

Inferred
Is this right?

Dr. M gives tests.

Knowledge-Based Agents

•  Takeaways
•  What the agent can represent, it knows

•  What is not represented or representable, it doesn’t

•  Actions are based on knowledge of change

•  Action choices can be found through inference

•  Be careful not to assume un-represented
knowledge!

Entailment and Derivation

• Entailment: KB ⊨ Q
•  Q is entailed by KB if and only if there is no logically

possible world in which Q is false while all the
premises in KB are true.

•  Or, stated positively, Q is entailed by KB if and only if
the conclusion is true in every logically possible world
in which all the premises in KB are true.

• Derivation: KB ⊢ Q
•  We can derive Q from KB if there is a proof

consisting of a sequence of valid inference steps
starting from the premises in KB and resulting in Q

21

x ⊢ y: y is provable from x

x ⊨ y: x semantically entails y

Please be
able to
answer
questions
using these
words.

Knowledge Representations

•  Propositional Logic

•  First-Order Logic

•  Higher-Order Logic
•  Know what it is and why you might use it

•  States and Situations

Propositional Logic

•  Components
•  Logical constants: true, false
•  Propositional symbols: P, Q, S, ... (sentences)
•  Sentences are combined by connectives:

 ∧ , ∨ , ⇒, ⇔, ¬

•  Terminology
•  Worlds; assignments; truth values; validity; entailment; derivation;

tautologies; inconsistent

•  Rules
•  Logical inference is used to create new sentences that logically follow

from existing sentences
•  IF/THEN and definitions
•  “If A then B” == A à B

First-Order Logic Adds…

•  Variable symbols
•  E.g., x, y, foo

•  Constants
•  E.g., John, MyUstairsNeighbor

•  Connectives
•  Same as in PL: not (¬), and (∧), or (∨), implies (→),

if and only if (biconditional ↔)

•  Quantifiers
•  Universal ∀x or (Ax): for all, for each, for every
•  Existential ∃x or (Ex): there exists, there is some

5

First-Order Logic

•  The world in FOL:
•  Constants, which are things with individual identities
•  Properties of objects that distinguish them from other objects
•  Relations that hold among sets of objects
•  Functions, which are a subset of relations where there is only one

“value” for any given “input”

•  Examples:
•  Objects: Students, lectures, companies, cars ...
•  Relations: Brother-of, bigger-than, outside, part-of, has-color,

occurs-after, owns, visits, precedes, ...
•  Properties: blue, oval, even, large, ...
•  Functions: father-of, best-friend, second-half, one-more-than ...

A Common Error

•  A complex sentence is formed from atomic sentences
connected by the logical connectives:
¬P, P∨Q, P∧Q, P→Q, P↔Q where P and Q are sentences

 has-a(x, Bachelors) ∧ is-a(x, human)

 has-a(John, Bachelors) ∧ is-a(John, human)

 has-a(Mary, Bachelors) ∧ is-a(Mary, human)

does NOT SAY everyone with a bachelors’ is human

PL/FOL Takeaways

•  Representations
•  Represent something in FOL
•  Understand and change representations

•  Derive (simple) conclusions from a KB
•  Not full proofs; might need Modus Ponens

•  Understand KB-agents
•  Understand how a KB changes
•  Understand how KB, agents, inference, and actions interrelate

•  Use existential and universal quantification properly

Inference

•  Drawing conclusions from the knowledge you have.

•  Types
•  Rule Applications
•  Forward- and Backward-chaining
•  Model Checking

•  Given KB, does sentence S hold?
•  Basically generate and test:

•  Generate all the possible models
•  Consider the models M in which KB is TRUE
•  If ∀M S , then S is provably true
•  If ∀M ¬S, then S is provably false
•  Otherwise (∃M1 S ∧ ∃M2 ¬S): S is satisfiable but neither provably true or

provably false

Make sure you understand these
thoroughly (look at examples)

Model Checking

•  Given KB, does sentence S hold?

•  Basically generate and test:
•  Generate all the possible models
•  Consider the models M in which KB is TRUE
•  If ∀M S , then S is provably true
•  If ∀M ¬S, then S is provably false
•  Otherwise (∃M1 S ∧ ∃M2 ¬S): S is satisfiable but neither

provably true or provably false

Quick review: What’s a KB? What’s a sentence?

What does model mean?

Reasoning and Inference

•  Given a formally represented world
•  Agents and their behaviors

•  Goals

•  State spaces

•  What is inference?

•  What kinds of inference can you do?
•  Forward Chaining

•  Backward Chaining

6

Planning

1.  Classical Planning
•  Produce a fully ordered set of actions that accomplish a

goal according to some test

2.  Partial-order planning
•  Produce a set of sub-sequences of actions that must be

accomplished in some order, with some constraints

3.  Probabilistic planning
•  Same as 1 or 2, but with non-deterministic actions

Planning Problem

•  Find a sequence of actions [operations] that achieves a
goal when executed from the initial world state.

•  That is, given:
•  A set of operator descriptions (possible primitive actions by the

agent)
•  An initial state description
•  A goal state (description or predicate)

•  Compute a plan, which is
•  A sequence of operator instances [operations]
•  Executing them in initial state à state satisfying description of

goal-state

With “Situations”

•  Initial state and Goal state with explicit situations
At(Home, S0) ∧ ¬Have(Milk, S0) ∧ ¬Have(Bananas, S0) ∧ ¬Have(Drill,

S0)
(∃s) At(Home,s) ∧ Have(Milk,s) ∧ Have(Bananas,s) ∧ Have(Drill,s)

•  Operators:
∀(a,s) Have(Milk,Result(a,s)) ⇔ �

 ((a=Buy(Milk) ∧ At(Grocery,s)) ∨ �
 (Have(Milk, s) ∧ a ≠ Drop(Milk)))

∀(a,s) Have(Drill,Result(a,s)) ⇔ �
 ((a=Buy(Drill) ∧ At(HardwareStore,s)) ∨ �
 (Have(Drill, s) ∧ a ≠ Drop(Drill)))

With Implicit Situations

•  Initial state
At(Home) ∧ ¬Have(Milk) ∧ ¬Have(Bananas) ∧ ¬Have(Drill)

•  Goal state
At(Home) ∧ Have(Milk) ∧ Have(Bananas) ∧ Have(Drill)

•  Operators:
Have(Milk) ⇔ �

 ((a=Buy(Milk) ∧ At(Grocery)) ∨ (Have(Milk) ∧ a ≠ Drop(Milk)))
Have(Drill) ⇔ �

 ((a=Buy(Drill) ∧ At(HardwareStore)) ∨ (Have(Drill) ∧ a ≠ Drop(Drill)))

At(Home) ∧ ¬Have(Milk) ∧ ¬Have(Drill)

At(Home) ∧ Have(Milk) ∧ Have(Drill)

•  Knowledge Base for MilkWorld
•  What do we have? Not have?

•  How does one “have” things? (2 rules recommended)

•  Where are drills sold?
•  Where is milk sold?

•  What actions do we have available?

Planning as Inference
Planning as
Inference

At(Home) ∧ ¬Have(Milk) ∧ ¬Have(Drill)

At(Home) ∧ Have(Milk) ∧ Have(Drill)

•  Knowledge Base for MilkWorld
•  What do we have? Not have?

•  How does one “have” things? (2 rules recommended)

•  Where are drills sold?
•  Where is milk sold?

•  What actions do we have available?

Knowledge Base
1. We’re currently home.

2. We don’t have anything.

3. One has things when they are bought
at appropriate places.

4. One has things one already has and
hasn’t dropped.

5. Hardware stores sell drills.

6. Groceries sell milk.

7. Our actions are:

7

Inference

•  What two things do we
combine first (by number)?
•  How about 1 and 7(a)?

•  action 1 = Go(GS)
•  action 2 = Buy(Drill)

•  What then changes in the
knowledge base?
•  ¬At(X)

•  At(GS)

Knowledge Base
1. We’re currently home.

 At(Home)
2. We don’t have anything.
 ¬Have(Drill)
 ¬Have(Milk)
3. One has things when they are bought
at appropriate places.

 Have(X) ⇔
 (At(Y) ∧ (Sells(X,Y) ∧ (a=Buy(X))
4. You have things you already have and
haven’t dropped.
 (Have(X) ∧ a ≠ Drop(X)))
5. Hardware stores sell drills.
 (Sells(Drill,HWS)
6. Groceries sell milk.
 (Sells(Milk,GS)
7. Our actions are:
 At(X) ∧ Go(Y) => At(Y) ∧ ¬At(X)
 Drop(X) => ¬Have(X)
 Buy(X) [defined above]

And so on…

Partial-Order Planning

•  Linear planner
•  Plan is a totally ordered sequence of plan steps

•  Non-linear planner (aka partial-order planner)
•  Plan is a set of steps with some interlocking constraints
•  E.g., S1<S2 (step S1 must come before S2)

•  Partially ordered plan (POP) refined by either:
•  adding a new plan step, or
•  adding a new constraint to the steps already in the plan.

•  A POP can be linearized (converted to a totally ordered plan)
•  In more than one way, typically!

Non-Linear Plan: Steps

•  A non-linear plan consists of
(1) A set of steps {S1, S2, S3, S4…}

Each step has an operator description, preconditions and post-conditions

(2) A set of causal links { … (Si,C,Sj) …}
(One) goal of step Si is to achieve precondition C of step Sj

(3) A set of ordering constraints { … Si<Sj … }
if step Si must come before step Sj

•  Be able to: generate plans, order sequences of actions,
and know how to resolve threats.

Back to Milk
World…

•  Actions:
1.  Go(GS)

2.  Buy(Milk)

3.  Go(HWS)

4.  Buy(Drill)
5.  Go(Home)

Knowledge Base
1. We’re currently home.

 At(Home) ß this was not true throughout!
2. We have milk and a drill.
 Have(Drill)

 Have(Milk)
None of these has changed.
3. One has things when they are bought at
appropriate places.

 Have(X) ⇔
 (At(Y) ∧ (Sells(X,Y) ∧ (a=Buy(X))
4. You have things you already have and haven’t
dropped.
 (Have(X) ∧ a ≠ Drop(X)))
5. Hardware stores sell drills.
 (Sells(Drill,HWS)
6. Groceries sell milk.
 (Sells(Milk,GS)
7. Our actions are:
 At(X) ∧ Go(Y) => At(Y) ∧ ¬At(X)
 Drop(X) => ¬Have(X)
 Buy(X) [defined above]

Specifying Steps and Constraints

•  Go(X)
•  Preconditions: ¬At(X)

•  Postconditions: At(X)

•  Buy(T)
•  Preconditions: At(Z) ^ Sells(T, Z)

•  Postconditions: Have(T)

•  Causal Links: Go(X) à At(X)

•  Ordering Constraints: Go(X) < At(X)

Eventually…

1.  Go(GS)
2.  Buy(Milk)
3.  Go(HWS)
4.  Buy(Drill)
5.  Go(Home)

•  Ordering is not strict.

•  Go(HWS) preconditions:
•  ¬At(HWS) ^ ¬Have(Drill)

•  So, 1<2, 3<4

•  How many non-loopy
paths – i.e., plans?

At(Home)
At(HWS)
¬Have(Milk)
¬Have(Drill)

At(Home)
At(GS)
¬Have(Milk)
¬Have(Drill)

At(Home)
¬Have(Milk)
¬Have(Drill)

Go(HWS) Go(GS) Go(Home)Go(Home)

Buy(Drill) Buy(Milk)

… …

8

Machine Learning

•  Decision Trees, others

•  Supervised vs. Unsupervised
•  What is classification?

•  What is clustering?
•  Exploitation v. Exploration

•  K-Means, EM, and failure modes

Why Learn?

•  Discover previously-unknown new things or structure

•  Fill in skeletal or incomplete domain knowledge

•  Build agents that can adapt to users or other agents

•  Understand and improve efficiency of human learning

•  Stop doing things by hand and per-domain

•  When is ML appropriate? When not?

52

What are…

•  Classification?

•  Regression?

•  Hypothesis?

•  Hypothesis space?

•  Training set and test set?

•  Ockham’s razor?

•  Supervised/unsupervised
learning?

•  Rote learning?

•  Induction?

•  Clustering?

•  Analogy?

•  Discovery?

•  Genetic algorithms?

•  Reinforcement Learning?

•  GIGO?

53

A General Model of
Learning Agents

•  A learning agent is composed of:
1.  Representation: how do we describe the problem space?

2.  Actor: the part of the system that actually does things.

3.  Critic: Provides the experience we learn from.

4.  Learner: the actual learning algorithm.
5.  (sometimes): Environment.

•  Please make sure you can define a learning agent in
these terms.

54

The Classification Problem

•  Extrapolate from examples (training data) to make
accurate predictions about future data

•  Supervised vs. unsupervised learning
•  Learn some unknown function f(X) = Y, where
•  X is an input example
•  Y is the desired output.
•  Supervised learning implies we are given a training set of (X, Y)

pairs by a “teacher”
•  Unsupervised learning means we are only given the Xs and some

(ultimate) feedback function on our performance

55

The Classification Problem (1)

•  Extrapolate from examples (training
data) to make accurate predictions
about future data

•  Supervised vs. unsupervised learning
•  Learn an unknown function f(X) = Y, where
•  X is an input example
•  Y is the desired output. (f is the..?)
•  Supervised learning implies we are given a training set of (X, Y)

pairs by a “teacher”
•  Unsupervised learning means we are only given the Xs and some

(ultimate) feedback function on our performance

56

9

The Classification Problem (2)

•  Concept learning or classification
(aka “induction”)
•  Given a set of examples of some

concept/class/category:

•  Determine if a given example is an
instance of the concept (class member) or not

•  If it is, we call it a positive example

•  If it is not, it is called a negative example

•  Or we can make a probabilistic prediction (e.g., 90% sure
it’s a member)

57

Learning Decision Trees

•  Goal: Classify examples as positive or negative
instances using supervised learning from a training set

•  A decision tree is a tree where:
•  Each non-leaf node is associated with an attribute (feature)

•  Each leaf node has associated with it a classification (+ or -)
•  Positive and negative data points

•  That is: does it, or does it not, belong to a class?

•  Each arc is associated with one possible value of the attribute
at the node from which the arc is directed

58

For Example

•  Each non-leaf node is
associated with an
attribute (feature)

•  Each leaf node is
associated with a
classification (+ or -)

•  Each arc is associated
with one possible value
of the attribute at the
node from which the arc
is directed

59

Learning a Decision Tree

1.  Select attribute to split on
2.  Generate child nodes
3.  Partition examples
4.  Assign examples to child
5.  Repeat until all training examples at node are

+ve or -ve

60

Choosing the Best Attribute

•  Key problem: which attribute to split on
•  Some possibilities are:

•  Random: Select any attribute at random

•  Least-Values: attribute with the smallest number of possible values

•  Most-Values: attribute with the largest number of possible values

•  Max-Gain: attribute that has the largest expected information gain–
i.e., the attribute that will result in the smallest expected size of the
subtrees rooted at its children

•  ID3 uses Max-Gain to select the best attribute

•  Know what the choices are and when to use them
61

Measuring Model Quality

•  How good is a model?
•  Precision/Recall

•  Training Error

•  Cross-Validation

•  Overfitting: coming up with a model that is TOO
specific to your training data

67

10

Naïve Bayes

•  Use Bayesian modeling

•  Make the simplest possible independence
assumption:
•  Each attribute is independent of the values of the other

attributes, given the class variable

•  In our restaurant domain: Cuisine is independent of
Patrons, given a decision to stay (or not)

70

Bayesian Formulation

•  The probability of class C given F1, ..., Fn
 p(C | F1, ..., Fn) = p(C) p(F1, ..., Fn | C) / P(F1, ..., Fn)�

 = α p(C) p(F1, ..., Fn | C)

•  Assume that each feature Fi is conditionally independent of the
other features given the class C. Then:

 p(C | F1, ..., Fn) = α p(C) Πi p(Fi | C)

•  We can estimate each of these conditional probabilities from the
observed counts in the training data:

 p(Fi | C) = N(Fi ∧ C) / N(C)
•  One subtlety of using the algorithm in practice: When your estimated

probabilities are zero, ugly things happen
•  The fix: Add one to every count (aka “Laplacian smoothing”)

71

Naive Bayes: Example

•  p(Wait | Cuisine, Patrons, Rainy?) �
 = α p(Cuisine ∧ Patrons ∧ Rainy? | Wait)�

= α p(Wait) p(Cuisine | Wait) p(Patrons | Wait) �
 p(Rainy? | Wait)

 naive Bayes assumption: is it reasonable?

72

Bayesian Learning: Bayes’ Rule

•  Given some model space (set of hypotheses hi) and
evidence (data D):
•  P(hi|D) = α P(D|hi) P(hi)

•  We assume observations are independent of each other,
given a model (hypothesis), so:
•  P(hi|D) = α ∏j P(dj|hi) P(hi)

•  To predict the value of some unknown quantity X
 (e.g., the class label for a future observation):
•  P(X|D) = ∑i P(X|D, hi) P(hi|D) = ∑i P(X|hi) P(hi|D)

These are equal by our
independence assumption

74

