Just Enough Python

© David Matuszek, 2018

@ Python 3 and IDLE

- We will use version 3.x of Python (where x is the most recent

version

+ Differences between Python 2 and Python 3 are mostly minor, but
can be confusing

+ Python comes with an IDE (Integrated Development

Environment) called IDLE

« IDLE is a REPL (Read-Evaluate-Print-Loop) that lets you enter
Python statements one at a time, and see what they do

- IDLE also lets you create, edit, run, test, and debug programs

© David Matuszek 2018

@ Program components

+ A program typically needs to:
+ Read information in from somewhere (the keyboard, or a file)

* Perform computations on numbers, strings (text) and booleans
(logical true/false values)

* Make decisions, based on the current state of the program
* Repeat the same operation over and over again

+ Delegate: Perform complex operations described separately and
given appropriate names

+ Write out results to somewhere (the screen, or a file)

3 © David Matuszek 2018

A Values

« There are many different kinds of values, including:

- integers, such as 23 and -5

* floating-point numbers, such as 3.1416)

nun nnn

* strings, such as "hello" or 'hi' or multiple lines
* booleans, True and False

« lists,suchas [1, 2, "hello"]

- sets,suchas {1, 2, "hello"}

« dictionaries, such as {1: "one" 2:"two"}

« Functions,such as lambda x, y: math.sqrt(x**2 + y**2)
* Objects that you create

« An explicit value, written out by itself, is called a literal or literal value

4 © David Matuszek 2018

e Variables

« Awvariable is a name that “holds,” or is associated with, a value
+ Variables are declared by assigning them a value

+ Example: age = 23
+ Variables can hold values of any type

+ Some programmers prefer camel case variable named,
likeInJava

+ Most programmers prefer using underscores, 1ike_this

5 © David Matuszek 2018

A Reading input from the user

+ A function is a named piece of code that can return a value
* The input function is used to read input from the user

+ There are two forms, with and without an argument:

input () just returns a string entered by the user

input (prompt) displays the “prompt” string, then returns the string entered by the
user

* Example: name = input(“What is your name?”)
+ Usually (as in this example) you will want to save the entered value in a variable
+ The value returned by input is always a string
- If you want to read a number from the user, use the additional functions int or float

+ Example: age = int(input("What is your age?”))

6 © David Matuszek 2018

@ Doing arithmetic

* Arithmetic is slightly complicated because there are two kinds of numbers,
integers (“whole numbers”) and floating-point numbers or floats (numbers
containing a decimal point)

* Operations are + (add), — (subtract), * (multiplication), two kinds of division, /
and //, and % (modulus, or remainder of a division)

+ When youuse +, -, *, //, or % on just integers, you get an integer result
e // iscalled integer division
+ If the numbers don’t divide evenly, you get the smaller number as a result

+ All other combinations result of numbers and operations result in a float

Parentheses (), but not brackets [] or braces {}, can be used to group
operations

7 © David Matuszek 2018

A Using strings

« A string is a sequence of characters enclosed in either single quotes '..." or double quotes "..
A string enclosed in single quotes may contain double quotes, and vice versa
+ Some single characters cannot easily be entered directly into strings, and must be “escaped” (backslashed)
* \n represents a newline character
« \t represents a tab character
« \'" represents a single quote (inside a singly-quoted string)
» \" represents a double quote (inside a doubly-quoted string)

+ Strings can be concatenated (joined) with the + operator

Example: "Do you love me\nOr do you not?" +
"You told me once\nBut I forgot."

2w wun v '

* So-called “triple quotes”, . or
multiple lines

', can be used to write strings that extend over

8 © David Matuszek 2018

@ Using booleans

+ The two boolean values are True and False
+ Capitalization is important!
* The three boolean operators are not, and, and or
+ The following comparison operators on numbers will give a boolean result:
< (less than)
<= (less than or equal)
== (equal)
!'= (not equal)
>= (greater than or equal)
> (greater than
+ These comparisons also work on strings (all capital letters < all lowercase letters)
+ Booleans, like numbers and strings, can be assigned to variables

* Example: in_range = grade >= 0 and grade <= 100

9 © David Matuszek 2018

@ The print function

+ In Python 3, print is a function, but is used like a statement
+ More about functions later
+ Syntax: print (arguments)

+ The arguments are values, variables, or expressions, separated by
commas

+ The arguments are “printed” (displayed on the screen) on a single line,
separated by spaces

- Example: print ("You have", points, “points.")

+ Note: print statements are seldom used in the REPL, because they are
built into the Read-Eval-Print-Loop, so results are printed automatically

10 © David Matuszek 2018

@ Control statements

« Control statements are used to decide whether and how often some other, “controlled”
statements are executed

- if statements decide whether or not to execute a group of statements
+ if-else statements decide which of two groups of statements to execute
» while statements execute a group of statements as long as some condition is true

« for statements execute a group of statements with a variable taking on a sequence of
values

« For every kind of control statement:
+ The control statement ends in a colon, :
+ The controlled statements are indented four spaces

+ In IDLE, pressing the Tab key is the same as typing four spaces

il © David Matuszek 2018

A Layout

Every statement goes on a line by itself

Put spaces around operators, including the assignment operator, =

* average = sum / 5

Put spaces after commas (but not before commas)

* print(2, "plus", 2, "is", 2 + 2)

When using a function, do not put spaces on either side of the parentheses
« age = input("What is your age? “)

Do not put spaces inside parentheses

* age = input("What is your age? “) # Don’tdo this!

12 © David Matuszek 2018

A i f statements

+ The if statement can have any number of elif tests and one else

- Example:
* if grade == "A":
print "Congratulations!"
elif grade == "B":
print "That's pretty good."
elif grade == "C":
print "Well, it's passing, anyway."
else:

print "You really blew it this time!"

- Notice that you don't need parentheses around the condition

13 © David Matuszek 2018

o while loops

+ A “while loop” has this syntax:
while condition:
one or more statements

+ Example:
countdown = 10
while countdown >= O:
print (countdown)
countdown = countdown - 1
print("Blast off!")

- Notice that you don't need parentheses around the condition

© David Matuszek 2018

[o for loops

+ A “for loop” has this syntax:
for variable in sequence:

one or more statements

+ One way to get a sequence is to list the members of the sequence in brackets,
[1, separated by commas

* for word in [“one”, “two”, “three”]:
print (word)

+ Another way is to use the range function, range (start, end) which will
return a sequence of integers from szart up to, but not including, end

* for number in range(1l, 11):
print (number)

+ This prints the numbers 1 through 10, each on a separate line

15 © David Matuszek 2018

[o Function example

+ Example function definition:
def lcd(a, b):
"""Compute largest common divisor of a and b
while b != 0:
r=a=s%hb

a=>b
b=r
return a

+ This function has two parameters, so it should be called with two arguments

Since the parameters are treated as numbers, the arguments to it should be
numbers (or variables containing numbers)

« Example function call:
print ("The LCD of", 12, "and", 5, "is", lcd(12, 5))

16 © David Matuszek 2018

ot Function literals

+ A function literal can be written as 1ambda parameters: expression
* hyp = lambda x, y: math.sqrt(x**2 + y**2)
+ Python has some support for functional programming

+ That means functions are just another kind of value

+ Examples:
>>>s = [1, 2, 3, 4, 5]
>>> m = map(lambda x: 10 * x, s)
>>> m
<map object at 0x107b1c908>
>>> list(m)
[10, 20, 30, 40, 50]
>>> list(filter(lambda x: x % 2 == 0, s))
[2, 4]

© David Matuszek 2018

[List comprehensions

« Alist comprehension is a way of constructing a list according to a rule
* [expression for variable in sequence]

+ That means functions are just another kind of value
+ Examples:

>>> s = [1, 2, 3, 4, 5]

>>> [10 * x for x in s]
[10, 20, 30, 40, 50]

>>> [x for x in s if x % 2 == 0]
[2, 4]
>>> "" join([chr(ord(x) + 1) for x in "Hello there"])
'"Ifmmp!uifsf’
18

© David Matuszek 2018

[o Programs

* A program is code that has been saved to a file
* The file should have the . py extension
+ You can create a new file in IDLE, or load in an existing file
+ The file can be executed by hitting the F5 key

+ A program is executed as it is loaded in, top to bottom.
It can be either:

+ Just a collection of statements, executed one after the other, or
+ A collection of functions that can be called individually from the REPL, or

A collection of functions, plus special code to start the program and call the
various functions as needed. The special code is:

if _ name__ == "__main__ ":
One or more statements to execute when the program is loaded

19 © David Matuszek 2018

A Errors

+ Errors are inevitable. You will make mistakes. If this embarrasses you, get over it!

+ Most of computer science is learning how to minimize errors, find them when they occur, and
recover from them

- Kinds of errors:
* A syntax error is one recognized by the compiler (the thing that gets your program ready to
execute), and prevents it from even starting

Example: print ('This won't work')

A runtime error is one that causes your program to “crash”
Example:y = 3 / (x - x)

* Alogic error or semantic error is one that causes your program to produce incorrect results
Example: hypotenuse = math.sqrt(a * a + b + b)

A user error is when the user provides invalid input to the program, causing the program to crash
or to produce incorrect results

- We will discuss how to handle user errors in a later lecture

20 © David Matuszek 2018

o Comments

* A comment is a note to any human looking at the program;
comments are ignored by the computer.

= A comment begins with # and extends to the end of the line

= Good uses of comments:
= At the beginning of a program, to tell what the program does
= When using someone else’s code, to say where you got it from
= To explain any code that’s hard to understand
= Bad uses of comments:
= To explain something that’s obvious anyway
= To explain code that’s hard to understand, but could be made simpler
* To add irrelevant comments, like # Go Eagles!
= When you should instead use a doc string (described on a later slide)

2 © David Matuszek 2018

The End

“Programming is an art form that fights back.”
-- Anonymous

22

© David Matuszek 2018

