
Just Enough Python
© David Matuszek, 2018

© David Matuszek 2018

Python 3 and IDLE
• We will use version 3.x of Python (where x is the most recent

version

• Differences between Python 2 and Python 3 are mostly minor, but
can be confusing

• Python comes with an IDE (Integrated Development
Environment) called IDLE

• IDLE is a REPL (Read-Evaluate-Print-Loop) that lets you enter
Python statements one at a time, and see what they do

• IDLE also lets you create, edit, run, test, and debug programs

2

© David Matuszek 2018

Program components
• A program typically needs to:

• Read information in from somewhere (the keyboard, or a file)

• Perform computations on numbers, strings (text) and booleans
(logical true/false values)

• Make decisions, based on the current state of the program

• Repeat the same operation over and over again

• Delegate: Perform complex operations described separately and
given appropriate names

• Write out results to somewhere (the screen, or a file)

3 © David Matuszek 2018

Values
• There are many different kinds of values, including:

• integers, such as 23 and -5

• floating-point numbers, such as 3.1416)

• strings, such as "hello" or 'hi' or """multiple lines"""

• booleans, True and False

• lists, such as [1, 2, "hello"]

• sets, such as {1, 2, "hello"}

• dictionaries, such as {1:"one" 2:"two"}

• Functions, such as lambda x, y: math.sqrt(x**2 + y**2)

• Objects that you create

• An explicit value, written out by itself, is called a literal or literal value

4

© David Matuszek 2018

Variables
• A variable is a name that “holds,” or is associated with, a value

• Variables are declared by assigning them a value

• Example: age = 23

• Variables can hold values of any type

• Some programmers prefer camel case variable named,
likeInJava

• Most programmers prefer using underscores, like_this

5 © David Matuszek 2018

Reading input from the user
• A function is a named piece of code that can return a value

• The input function is used to read input from the user

• There are two forms, with and without an argument:

• input() just returns a string entered by the user

• input(prompt) displays the “prompt” string, then returns the string entered by the
user

• Example: name = input(“What is your name?”)

• Usually (as in this example) you will want to save the entered value in a variable

• The value returned by input is always a string

• If you want to read a number from the user, use the additional functions int or float

• Example: age = int(input("What is your age?”))

6

© David Matuszek 2018

Doing arithmetic
• Arithmetic is slightly complicated because there are two kinds of numbers,

integers (“whole numbers”) and floating-point numbers or floats (numbers
containing a decimal point)

• Operations are + (add), - (subtract), * (multiplication), two kinds of division, /
and //, and % (modulus, or remainder of a division)

• When you use +, -, *, //, or % on just integers, you get an integer result

• // is called integer division

• If the numbers don’t divide evenly, you get the smaller number as a result

• All other combinations result of numbers and operations result in a float

• Parentheses (), but not brackets [] or braces {}, can be used to group
operations

7 © David Matuszek 2018

Using strings
• A string is a sequence of characters enclosed in either single quotes '…' or double quotes "…"

• A string enclosed in single quotes may contain double quotes, and vice versa

• Some single characters cannot easily be entered directly into strings, and must be “escaped” (backslashed)

• \n represents a newline character

• \t represents a tab character

• \' represents a single quote (inside a singly-quoted string)

• \" represents a double quote (inside a doubly-quoted string)

• Strings can be concatenated (joined) with the + operator

• Example: "Do you love me\nOr do you not?" +  
 "You told me once\nBut I forgot."

• So-called “triple quotes”, """...""" or '''...''', can be used to write strings that extend over
multiple lines

8

© David Matuszek 2018

Using booleans
• The two boolean values are True and False

• Capitalization is important!

• The three boolean operators are not, and, and or

• The following comparison operators on numbers will give a boolean result:  
< (less than)  
<= (less than or equal)  
== (equal)  
!= (not equal)  
>= (greater than or equal)  
> (greater than

• These comparisons also work on strings (all capital letters < all lowercase letters)

• Booleans, like numbers and strings, can be assigned to variables

• Example: in_range = grade >= 0 and grade <= 100

9 © David Matuszek 2018

The print function
• In Python 3, print is a function, but is used like a statement

• More about functions later

• Syntax: print(arguments)

• The arguments are values, variables, or expressions, separated by
commas

• The arguments are “printed” (displayed on the screen) on a single line,
separated by spaces

• Example: print("You have", points, “points.")

• Note: print statements are seldom used in the REPL, because they are
built into the Read-Eval-Print-Loop, so results are printed automatically

10

© David Matuszek 2018

Control statements
• Control statements are used to decide whether and how often some other, “controlled”

statements are executed

• if statements decide whether or not to execute a group of statements

• if-else statements decide which of two groups of statements to execute

• while statements execute a group of statements as long as some condition is true

• for statements execute a group of statements with a variable taking on a sequence of
values

• For every kind of control statement:

• The control statement ends in a colon, :

• The controlled statements are indented four spaces

• In IDLE, pressing the Tab key is the same as typing four spaces

11 © David Matuszek 2018

Layout
• Every statement goes on a line by itself

• Put spaces around operators, including the assignment operator, =

• average = sum / 5

• Put spaces after commas (but not before commas)

• print(2, "plus", 2, "is", 2 + 2)

• When using a function, do not put spaces on either side of the parentheses

• age = input("What is your age? “)

• Do not put spaces inside parentheses

• age = input("What is your age? “) # Don’t do this!

12

© David Matuszek 2018

if statements
• The if statement can have any number of elif tests and one else

• Example:

• if grade == "A":  
 print "Congratulations!"  
elif grade == "B":  
 print "That's pretty good."  
elif grade == "C":  
 print "Well, it's passing, anyway."  
else:  
 print "You really blew it this time!"

• Notice that you don't need parentheses around the condition

13 © David Matuszek 2018

while loops

• A “while loop” has this syntax:  
while condition:  
 one or more statements

• Example:  
countdown = 10  
while countdown >= 0:  
 print(countdown)  
 countdown = countdown - 1  
print("Blast off!")

• Notice that you don't need parentheses around the condition

14

© David Matuszek 2018

for loops
• A “for loop” has this syntax:  
for variable in sequence:  
 one or more statements

• One way to get a sequence is to list the members of the sequence in brackets,
[], separated by commas

• for word in [“one”, “two”, “three”]:  
 print(word)

• Another way is to use the range function, range(start, end) which will
return a sequence of integers from start up to, but not including, end

• for number in range(1, 11):  
 print(number)

• This prints the numbers 1 through 10, each on a separate line

15 © David Matuszek 2018

Function example
• Example function definition:  
def lcd(a, b):  
 """Compute largest common divisor of a and b"""  
 while b != 0:  
 r = a % b  
 a = b  
 b = r  
 return a

• This function has two parameters, so it should be called with two arguments

• Since the parameters are treated as numbers, the arguments to it should be
numbers (or variables containing numbers)

• Example function call:  
print("The LCD of", 12, "and", 5, "is", lcd(12, 5))

16

© David Matuszek 2018

Function literals
• A function literal can be written as lambda parameters: expression

• hyp = lambda x, y: math.sqrt(x**2 + y**2)

• Python has some support for functional programming

• That means functions are just another kind of value

• Examples: 
>>> s = [1, 2, 3, 4, 5]  
>>> m = map(lambda x: 10 * x, s)  
>>> m  
<map object at 0x107b1c908>  
>>> list(m)  
[10, 20, 30, 40, 50]  
>>> list(filter(lambda x: x % 2 == 0, s))  
[2, 4]

17 © David Matuszek 2018

List comprehensions

• A list comprehension is a way of constructing a list according to a rule

• [expression for variable in sequence]

• That means functions are just another kind of value

• Examples: 
>>> s = [1, 2, 3, 4, 5]  
>>> [10 * x for x in s]  
[10, 20, 30, 40, 50]  
>>> [x for x in s if x % 2 == 0]  
[2, 4]  
>>> "".join([chr(ord(x) + 1) for x in "Hello there"]) 
'Ifmmp!uifsf'

18

© David Matuszek 2018

Programs
• A program is code that has been saved to a file

• The file should have the .py extension

• You can create a new file in IDLE, or load in an existing file

• The file can be executed by hitting the F5 key

• A program is executed as it is loaded in, top to bottom.  
It can be either:

• Just a collection of statements, executed one after the other, or

• A collection of functions that can be called individually from the REPL, or

• A collection of functions, plus special code to start the program and call the
various functions as needed. The special code is:  
if __name__ == "__main__ ":  
 One or more statements to execute when the program is loaded

19 © David Matuszek 2018

Errors
• Errors are inevitable. You will make mistakes. If this embarrasses you, get over it!

• Most of computer science is learning how to minimize errors, find them when they occur, and
recover from them

• Kinds of errors:

• A syntax error is one recognized by the compiler (the thing that gets your program ready to
execute), and prevents it from even starting  
Example: print('This won't work')

• A runtime error is one that causes your program to “crash”  
Example: y = 3 / (x - x)

• A logic error or semantic error is one that causes your program to produce incorrect results  
Example: hypotenuse = math.sqrt(a * a + b + b)

• A user error is when the user provides invalid input to the program, causing the program to crash
or to produce incorrect results

• We will discuss how to handle user errors in a later lecture

20

© David Matuszek 2018

Comments

■ A comment is a note to any human looking at the program;
comments are ignored by the computer.

■ A comment begins with #	and extends to the end of the line
■ Good uses of comments:

■ At the beginning of a program, to tell what the program does
■ When using someone else’s code, to say where you got it from
■ To explain any code that’s hard to understand

■ Bad uses of comments:
■ To explain something that’s obvious anyway
■ To explain code that’s hard to understand, but could be made simpler
■ To add irrelevant comments, like # Go Eagles!	
■ When you should instead use a doc string (described on a later slide)

21 © David Matuszek 2018

The End

22

“Programming is an art form that fights back.”
 -- Anonymous

