

Today's Class

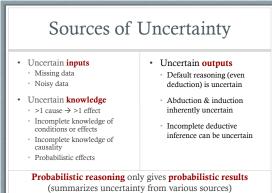
We don't (can't!) know everything about most problems.

- Most problems are not:
 Deterministic
 Fully observable
- Or, we can't calculate everything.
 Continuous problem spaces

Probability lets us understand, quantify, and work with this uncertainty.

Bayesian Reasoning

- · Posteriors and priors
- What is inference?
- What is uncertainty?
- When/why use probabilistic reasoning?
- What is induction?
- · What is the probability of two independent events?
- · Frequentist/objectivist/subjectivist assumptions



Decision Making with Uncertainty

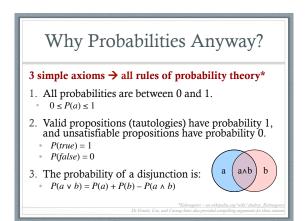
- Rational behavior: for each possible action,
 - Identify possible outcomes
 - Compute probability of each outcome
 - Compute **utility** of each outcome
 - "goodness" or "desirability" per some formally specified definition
 Compute probability-weighted (expected) utility of
 - possible outcomes for each action
 - Select the action with the highest expected utility (principle of Maximum Expected Utility)

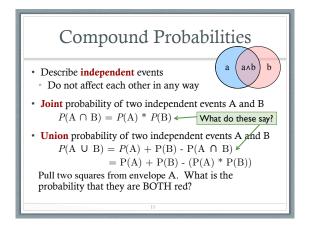
Also the definition of "rational" for deterministic decision-making!

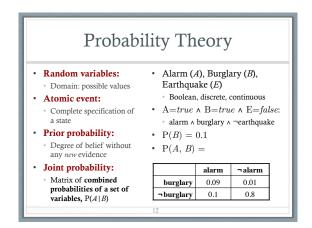
- World: The complete set of possible states
- Random variables: Problem aspects that take a value
 "The number of blue squares we are holding," *B*"The combined value of two dice we rolled," *C*
- Event: Something that happens
- Sample Space: All the things (outcomes) that could happen in some set of circumstances
 Pull 2 squares from envelope A: what is the sample space?
 How about envelope B?
- · World, redux: A complete assignment of values to variables

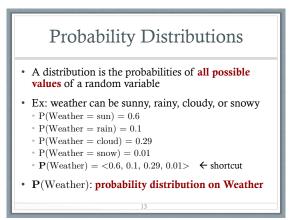
Basic Probability

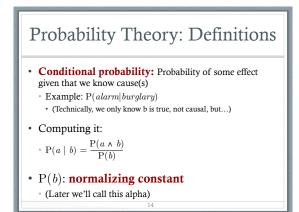
- Each P is a non-negative value in [0,1]
 P({1,1}) = 1/36
- Total probability of the sample space is 1 • $P({1,1}) + P({1,2}) + P({1,3}) + ... + P({6,6}) = 1$
- For mutually exclusive events, the probability for at least one of them is the sum of their individual probabilities
 P(sunny) V P(cloudy) = P(sunny) + P(cloudy)
- · Experimental probability: Based on frequency of past events
- Subjective probability: Based on expert assessment





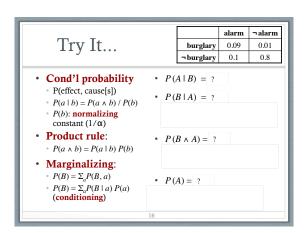


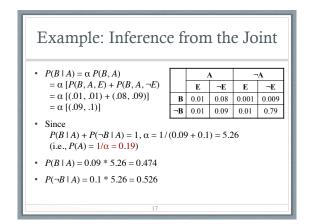


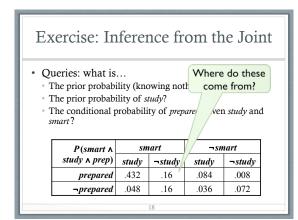


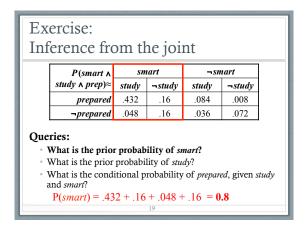
Probability Theory: Definitions • Product rule: • $P(a \land b) = P(a \mid b) P(b)$ • Marginalizing (summing out): • Finding distribution over *one* or a *subset* of variables • Marginal probability of B summed over all alarm states: • $P(B) = \Sigma_a P(B, a)$ • Conditioning over a subset of variables:

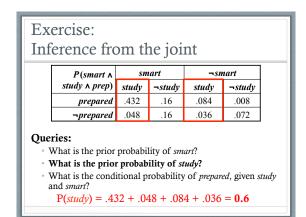
• $\mathbf{P}(B) = \Sigma_a \mathbf{P}(B \mid a) \mathbf{P}(a)$

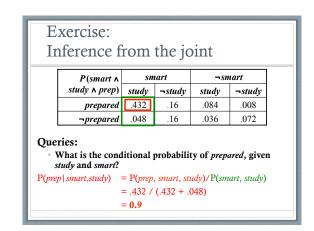


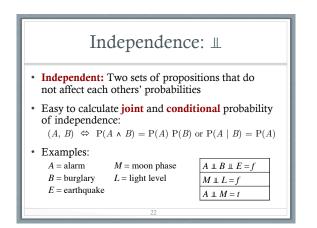


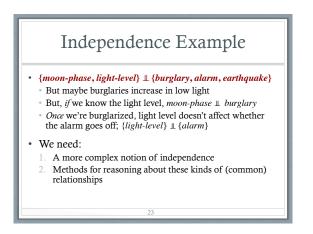


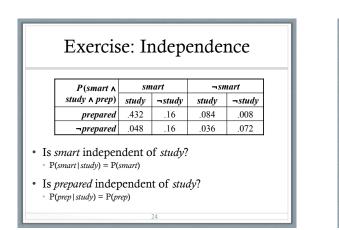


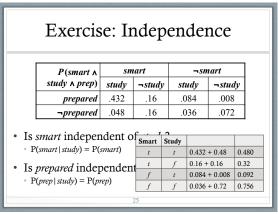




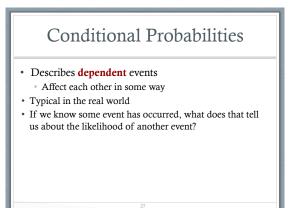


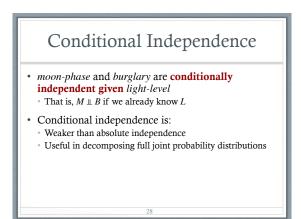






Exercise: Independence								
			Smart	Study				
1			t	t	0.432 + 0.48	0.480		
	P(smart A		t	f	0.16 + 0.16	0.32		
	study A prep)	study ∧ prep) stu prepared .4	f	t	0.084 + 0.008	0.092		
	prepared		f	f	0.036 + 0.72	0.756		
	¬prepared	.0	48	.16	.036 .072	2		
	smart study) = F smart study) = F	`	,	dy) / P((study)			
• 0.8	8 = (.432 + .048))/.	.6					
• 0.8	s = 0.8	/						





Conditional Independence

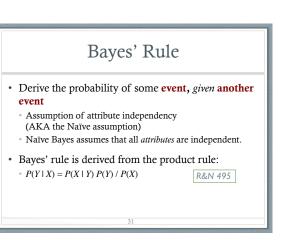
- **Absolute** independence: A ⊥ B, if:
 P(A ∧ B) = *P*(A) *P*(B)
 - Equivalently, P(A) = P(A | B) and P(B) = P(B | A)
- A and B are **conditionally independent** given C if: • $P(A \land B | C) = P(A | C) P(B | C)$
- This lets us decompose the joint distribution:
 P(A \wedge B \wedge C) = P(A | C) P(B | C) P(C)
- What does this mean?

Exercise: Conditional Independence

P(smart A	sn	art	¬smart	
study \land prep)	study	¬study	study	-study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

- Is *smart* conditionally independent of *prepared*, given *study*?
- Is study conditionally independent of *prepared*, given *smart*?



Bayes' Rule

- Bayes' rule is derived from the product rule:
 P(Y | X) = P(X | Y) P(Y) / P(X)
- Often useful for diagnosis. If we have: *X* = (observed) effects, *Y* = (hidden) causes
 A model for how causes lead to effects: *P*(*X* | *Y*)
 - Prior beliefs about frequency of occurrence of effects: P(Y)
- We can reason abductively from effects to causes: • *P*(*Y* | *X*)

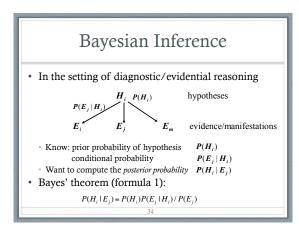
Naïve Bayes Algorithm

• Estimate the probability of each class: • Compute the posterior probability (Bayes rule)

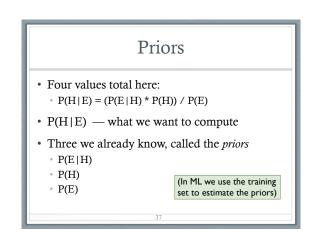
$$P(c_i \mid D) = \frac{P(c_i)P(D \mid c_i)}{P(D)}$$

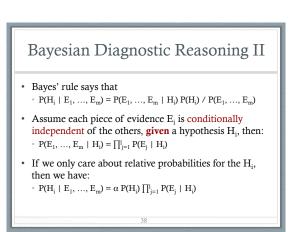
· Choose the class with the highest probability

• Assumption of attribute independency (Naïve assumption): Naïve Bayes assumes that all of the attributes are independent.









Bayes Example: Diagnosing Meningitis

$P(H_i | E_j) = P(H_i)P(E_j | H_i)/P(E_j)$

- Your patient comes in with a stiff neck.
- Is it meningitis?
- Suppose we know that • Stiff neck is a symptom in 50% of meningitis cases
- Meningitis (m) occurs in 1/50,000 patients Stiff neck (s) occurs in 1/20 patients
- So probably not. But specifically?

Bayes Example: Diagnosing Meningitis $P(H_i | E_j) = P(H_i)P(E_j | H_i)/P(E_j)$ • Stiff neck is a symptom in 50% of meningitis cases • Meningitis (m) occurs in 1/50,000 patients • Stiff neck (s) occurs in 1/20 patients Then • P(s|m) = 0.5, P(m) = 1/50000, P(s) = 1/20• P(m | s) = (P(s | m) P(m))/P(s)= (0.5 x 1/50000) / 1/20 = .0002• So we expect that one in 5000 patients with a stiff neck to have meningitis.

Analysis of Naïve Bayes Algorithm

- · Advantages:
 - · Sound theoretical basis
 - · Works well on numeric and textual data
 - · Easy implementation and computation
 - Has been effective in practice (e.g., typical spam filter)

Limitations of Simple **Bayesian** Inference

- Cannot easily handle multi-fault situations, nor cases where intermediate (hidden) causes exist:
 - Disease D causes syndrome S, which causes correlated manifestations $M_1 \mbox{ and } M_2$
- Consider a composite hypothesis $H_1 \wedge H_2,$ where H_1 and H_2 are independent. What is the relative posterior? $\begin{array}{r} \bullet \ \ P(H_1 \land H_2 \mid E_1, \, ..., E_m) = \alpha \ \ P(E_1, \, ..., E_m \mid H_1 \land H_2) \ \ P(H_1 \land H_2) \\ = \alpha \ \ P(E_1, \, ..., E_m \mid H_1 \land H_2) \ \ P(H_1) \ \ P(H_2) \\ = \alpha \ \ \prod_{m=1}^m P(E_m \mid H_1 \land H_2) \ \ P(H_1) \ \ P(H_2) \end{array}$
- How do we compute $P(E_i | H_1 \land H_2)$??

Limitations of Simple Bayesian Inference II

- Assume H1 and H2 are independent, given E1, ..., Ej?
- $P(H_1 \land H_2 | E_1, ..., E_j) = P(H_1 | E_1, ..., E_j) P(H_2 | E_1, ..., E_j)$ This is a very unreasonable assumption
- Earthquake and Burglar are independent, but not given Alarm:
- P(burglar | alarm, earthquake) << P(burglar | alarm)
- Simple application of Bayes' rule doesn't handle causal chaining: A: this year's weather; B: cotton production; C: next year's cotton price
- A influences C indirectly: $A {\rightarrow} B {\rightarrow} C$ P(C | B, A) = P(C | B)
- Need a richer representation to model interacting hypotheses, conditional independence, and causal chaining
- Next time: conditional independence and Bayesian networks!

43