Probabilistic Reasoning
AI Class 9 (Ch. 13)

Cynthia Matuszek — CMSC 671

Today’s Class

We don’t (can’t!) know everything about most problems.

* Most problems are not:
* Deterministic
* Fully observable

» Or, we can’t calculate everything.
+ Continuous problem spaces

Probability lets us understand, quantify, and work with
this uncertainty.

Sources of Uncertainty

+ Uncertain inputs * Uncertain outputs

* Missing data  Default reasoning (even
+ Noisy data deduction) is uncertain

* Uncertain knowledge © Abduction & induction
= >1 cause > >1 effect inherently uncertain
« Incomplete knowledge of
conditions or effects

« Incomplete knowledge of
causality

* Probabilistic effects

+ Incomplete deductive
inference can be uncertain

Probabilistic reasoning only gives probabilistic results

(summarizes uncertainty from various sources)
6

Today’s Class

Probability theory
Probability notation

Bayesian inference
* From the joint distribution | Probabilistic inference:
- Using independence / finding posterior probability

factoring for a proposition, given
- From sources of evidence | gbserved evidence.

—R&N 490

Bayesian Reasoning

Posteriors and priors

What is inference?

What is uncertainty?

When/why use probabilistic reasoning?

‘What is induction?

‘What is the probability of two independent events?
Frequentist/objectivist/subjectivist assumptions
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Decision Making with Uncertainty

» Rational behavior: for each possible action,
« Identify possible outcomes
« Compute probability of each outcome
+ Compute utility of each outcome
« “goodness” or “desirability” per some formally specified definition
- Compute probability-weighted (expected) utility of
possible outcomes for each action

- Select the action with the highest expected utility
(principle of Maximum Expected Utility)

Also the definition of “rational”
for deterministic decision-making!




L. & Probability

‘World: The complete set of possible states

Random variables: Problem aspects that take a value
“The number of blue squares we are holding,” B
“The combined value of two dice we rolled,” C

Event: Something that happens

Sample Space: All the things (outcomes) that could
happen in some set of circumstances
Pull 2 squares from envelope A: what is the sample space?
How about envelope B?

‘World, redux: A complete assignment of values to variables

Why Probabilities Anyway?

3 simple axioms -> all rules of probability theory*

1. All probabilities are between 0 and 1.
0<Pa)=<1

. Valid propositions (tautologies) have probability 1,
and unsatisfiable propositions have probability 0.
P(true) =1
P(false) =0

. The probability of a disjunction is:
P(av b)=P(a) + P(b) - P(a A b)

Probability Theory

Random variables: Alarm (4), Burglary (B),
Domain: possible values Earthquake (E)

Atomic event: Boolean, discrete, continuous
Complete specification of A=true n B=true n E=false:
astate alarm A burglary A —earthquake

Prior probability: P(B) = 0.1
Degree of belief without P(4, B) =
any new evidence

Joint probability: alarm

Matrix of combined
probabilities of a set of
variables, P(4|B)

burglary| 0.09

= burglary 0.1
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Basic Probability «.":

Each P is a non-negative value in [0,1]
P({1,1}) = 1/36

Total probability of the sample space is 1
P({1,1}) + P({1,2}) + P({1,3}) + .. + P({6,6}) =1

For mutually exclusive events, the probability for at least one
of them is the sum of their individual probabilities
P(sunny) V P(cloudy) = P(sunny) + P(cloudy)

Experimental probability: Based on frequency of past events

Subjective probability: Based on expert assessment
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Compound Probabilities

* Describe independent events
Do not affect each other in any way

» Joint probability of two independent events A and B
PANE) = P(A) * B)
* Union probability of two independent events A ahd B
P(A U B)=PA)+PB)-PANB)
=P(A) + P(B) - (P(A) * P(B))
Pull two squares from envelope A. What is the
probability that they are BOTH red?
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Probability Distributions

A distribution is the probabilities of all possible
values of a random variable

» Ex: weather can be sunny, rainy, cloudy, or snowy
P(Weather = sun) = 0.6
P(Weather = rain) = 0.1
P(Weather = cloud) = 0.29
P(Weather = snow) = 0.01
P(Weather) = <0.6, 0.1, 0.29, 0.01> € shortcut

» P(Weather): probability distribution on Weather
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Probability Theory: Definitions

» Conditional probability: Probability of some effect
given that we know cause(s)

Example: P(alarm|burglary)
* (Technically, we only know b is true, not causal, but...)

* Computing it:

Pla| b) — P(;(g) )
* P(b): normalizing constant

(Later we’ll call this alpha)
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TI'y It. .o burglary

—burglary

* Cond’l probability PAIB) =7
P(effect, cause[s])
P(alb)=P(a A b)/ P(b)
P(b): normalizing
constant (1/x)

* Product rule: PBAA)= 2
P(a A b)=P(alb) P(b)

P(BIA) = 2

* Marginalizing:
P(B)=Z P(B,a)
P(B) =X ,P(B|a) P(a)
(conditioning)

Exercise: Inference from the Joint

¢ Queries: what is... Where do these
The prior probability (knowing nott  come from?
The prior probability of study?

The conditional probability of prepare/  ven study and
smart?

P(smart A —smart
study A prep) study | -study
prepared | . . .084 .008
—prepared| . . .036 072

Probability Theory: Definitions

* Product rule:
P(a A b) =P(a]| b) P(b)
» Marginalizing (summing out):
Finding distribution over one or a subset of variables

Marginal probability of B summed over all alarm states:
P(B) = %,P(B, o)

» Conditioning over a subset of variables:
P(B) = X,P(B| a) P(a)

Example: Inference from the Joint

P(B1A) =0 P(B,A) A -A
=o[P(B,AE)+ P(B,A,-E) E | -E E
=a [(01,.01) + (.08, .09)]
=a [(.09,.1)]

-E

0.01 | 0.08 | 0.001
0.01 | 0.09 | 0.01

Since
P(BI1A)+P-BlA)=1,00=1/(009+0.1)=5.26
(ie., P(A) = 1/a.=0.19)

P(BI1A)=0.09 *526=0474
P(-B1A)=0.1 *526=0.526

Exercise:
Inference from the joint

P(smart A smart —~smart
study A prep)=| study | -~study | study | =study
prepared| 432 .16 .084 .008
—prepared] 048 .16 .036 .072

Queries:
‘What is the prior probability of smar?
‘What is the prior probability of study?

‘What is the conditional probability of prepared, given study
and smart?

P(smart)= 432+ .16 +.048 + .16 = 0.8
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Exercise:
Inference from the joint

P(smart A smart —smart
study A prep) | study | -study | study | -study

prepared | 432 .16 .084 .008

—prepared| .048 .16 .036 .072

Queries:
‘What is the prior probability of smart?
‘What is the prior probability of study?

‘What is the conditional probability of prepared, given study
and smart?

P(study) = 432 + 048 + .084 + .036 = 0.6

Independence: 1L

* Independent: Two sets of propositions that do
not affect each others’ probabilities

 Easy to calculate joint and conditional probability
of independence:
(4, B) © P(A A B) = P(4) P(B) or P(4 | B) = P(4)
* Examples:
A =alarm M = moon phase ALBLE=f

B = burglary L =light level MuLL=f
E = earthquake ALM=1¢

Exercise: Independence

P(smart A smart ~smart
study A prep) | study study | -~study
prepared | 432 . .084 .008
—-prepared| .048 . .036 .072

¢ Is smart independent of study?
P(smart | study) = P(smart)

* Is prepared independent of study?
P(prep | study) = P(prep)

Exercise:
Inference from the joint

P(smart A smart —smart
study A prep) | study | -study | study | -study
prepared|| 432 || .16 084 .008
—prepared| .048 .16 .036 .072

Queries:

‘What is the conditional probability of prepared, given
study and smart?

P(prep | smart,study) = P(prep, smart, study)/P(smart, study)
=.432 /(432 +.048)
=0.9

Independence Example

* {moon-phase, light-level} 1 {burglary, alarm, earthquake}
But maybe burglaries increase in low light
But, if we know the light level, moon-phase L burglary

Once we’re burglarized, light level doesn’t affect whether
the alarm goes off; {light-level} L {alarm}

* We need:
A more complex notion of independence

Methods for reasoning about these kinds of (common)
relationships

Exercise: Independence

P(smart A smart ~smart
study A prep) | study | -study | study | -study
prepared | 432 .16 .084 .008
—-prepared| 048 .16 .036 072

¢ Is smart independent of stady

P(smart | study) = P(smart) r 10432+048 | 0480

0.16 + 0.16 0.32

* Is prepared independen

P(prep | study) = P(prep)

S
t 0.084 +0.008 | 0.092
f [0.036+0.72 |0.756




Exercise: Independence

Study

t 0432 +0.48

P(smart n|__| 0.16 +0.16

study A prep)

prepared

f
r | 0.084+0.008
f |0.036+0.72

-prepared| . 16 [ 036 | .07

P(smart| study) = P(smart)

P(smart| study) = P(smart, study) / P(study)
0.8=(432+.048)/ .6

0.8=0.8 v

Conditional Independence

* moon-phase and burglary are conditionally
independent given light-level
That is, M 1L B if we already know L

» Conditional independence is:
‘Weaker than absolute independence
Useful in decomposing full joint probability distributions

Exercise: Conditional
Independence

P(smart A smart ~smart
study A prep) | study | -study | study | -study

prepared | 432 .16 .084 .008

—-prepared| .048 .16 .036 .072

* Queries:
Is smart conditionally independent of prepared,
given study?
Is study conditionally independent of prepared,
given smart?

Conditional Probabilities

» Describes dependent events
Affect each other in some way
* Typical in the real world

« If we know some event has occurred, what does that tell
us about the likelihood of another event?

Conditional Independence

Absolute independence: A 1 B, if:
P(A A B) = P(A) P(B)
Equivalently, P(A) = P(A|B) and P(B) = P(B 1 A)

A and B are conditionally independent given C if:
P(AABIC)=P(AIC)PBIC)

This lets us decompose the joint distribution:
P(AANBAC)=P(AIC)PBIC)P(C)

‘What does this mean?

Bayes’ Rule

* Derive the probability of some event, given another
event

Assumption of attribute independency
(AKA the Naive assumption)

Naive Bayes assumes that all astributes are independent.

» Bayes’ rule is derived from the product rule:

P(Y1X)=PX 1Y) P(Y)/ PX)




Bayes’ Rule Naive Bayes Algorithm

» Bayes’ rule is derived from the product rule: » Estimate the probability of each class:
PY1X)=PX1Y)PY)/P(X) Compute the posterior probability (Bayes rule)

* Often useful for diagnosis. If we have: Pc, | D) = P(c))P(D|c,)
X = (observed) effects, ¥ = (hidden) causes ' P(D)
A model for how causes lead to effects: P(X | Y)
Prior beliefs about frequency of occurrence of effects: P(Y)

Choose the class with the highest probability

» Assumption of attribute independency (Naive
assumption): Naive Bayes assumes that all of the
P(Y1X) - .
attributes are independent.

* We can reason abductively from effects to causes:
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Bayesian Inference Simple Bayesian Diagnostic Reasoning

* In the setting of diagnostic/evidential reasoning » Knowledge base:

Evidence / manifestations: E,, ... E|

H, pH, hypotheses !
P(E;|H, & P Hypotheses / disorders: ~ H, ... H,
* E; and H, are binary; hypotheses are mutually exclusive (non-

overlapping) and exhaustive (cover all possible cases)

E, E; E evidence/manifestations
Conditional probabilities: P(Ej |H),i=1,...n;j=1,..m

J m

Know: prior probability of hypothesis ~ P(H,) . . .
conditional probability P(E, | H,) * Cases (evidence for a particular instance): E, ..., E |

Wam’to compute the posterior probability  P(H, | E;) * Goal: Find the hypothesis H; with the highest posterior
» Bayes’ theorem (formula 1): Max, P(H, | E E.)
i i oo Hm,
P(H,|E,)= P(H)P(E,|H,)/ P(E,)
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Priors Bayesian Diagnostic Reasoning II

* Four values total here: Bayes’ rule says that

P(H|E) = (P(E|H) * P(H)) / P(E) P(H; | Ey, ..., Ep) =P(Ey, ..., By, | H) P(Hy / P(E,, ..., Ep)
Assume each piece of evidence E; is conditionally
independent of the others, given a hypothesis H;, then:
* Three we already know, called the priors PEy, -, By | H) =TT}, P(E; | Hy

P(E|H) If we only care about relative probabilities for the H;,

P(H) then we have:

(In ML we use the training P(H. | E E )=« P(H)TT.., PE. | H
P(E) set to estimate the priors) 1 By o B ) ITi-1 PCE; 1 H)

* P(H|E) — what we want to compute




Bayes Example: Diagnosing Meningitis

|P(H, | E;) = P(H,P(E, | H,)/ P(E,)|

Your patient comes in with a stiff neck.
Is it meningitis?

Suppose we know that
Stiff neck is a symptom in 50% of meningitis cases
Meningitis (m) occurs in 1/50,000 patients
Stiff neck (s) occurs in 1/20 patients

So probably not. But specifically?

Analysis of Naive Bayes Algorithm

» Advantages:
Sound theoretical basis
‘Works well on numeric and textual data
Easy implementation and computation
Has been effective in practice (e.g., typical spam filter)

Limitations of Simple Bayesian Inference II

« Assume H1 and H2 are independent, given E1, ..., Ej?
P(H, AH, | E,,..,E)=P(H, | E,, .., E)P(H, | E,, ..., E)
+ This is a very unreasonable assumption
Earthquake and Burglar are independent, but ot given Alarm:
+ P(burglar | alarm, earthquake) << P(burglar | alarm)
« Simple application of Bayes’ rule doesn’t handle causal chaining:
A: this year’s weather; B: cotton production; C: next year’s cotton price
A influences C indirectly: A—B— C
P(C | B,A)=P(C | B)
Need a richer representation to model interacting hypotheses,
conditional independence, and causal chaining
* Next time: conditional independence and Bayesian networks!
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Bayes Example: Diagnosing Meningitis

|P(H, | E;) = P(H,P(E, | H,)/ P(E,)|

Stiff neck is a symptom in 50% of meningitis cases
Meningitis (m) occurs in 1/50,000 patients
Stiff neck (s) occurs in 1/20 patients
* Then
P(s|m) = 0.5, P(m) = 1/50000, P(s) = 1/20
P(m|s) = (P(s|m) P(m))/P(s)
=(0.5x 1/50000) / 1/20 =.0002

» So we expect that one in 5000 patients with a stiff
neck to have meningitis.
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Limitations of Simple
Bayesian Inference

¢ Cannot easily handle multi-fault situations, nor cases

where intermediate (hidden) causes exist:

Disease D causes syndrome S, which causes correlated
manifestations M; and M,

» Consider a composite hypothesis H; A H,, where H,; and

H, are independent. What is the relative posterior?
P(H, AH, | E,,...,E) = « PE,, ..., E, | H, » H)) P(H, A Hy)
= a P(E,, ..., E, | H, » Hy P(H,) P(H,)
& [Tz P(E, | Hy A Hy) P(H)) P(H,)

* How do we compute P(E; | H; A H,) 7?
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