Game Playing

Al Class 8 — Ch. 5.1-5.3, 5.4.1, 5.5

Cynthia Matuszek — CMSC 671

Why Games?

Clear criteria for success

Offer an opportunity to study problems involving
{hostile / adversarial / competing} agents.

Interesting, hard problems which require minimal setup

Often define very large search spaces
chess 35'%0 nodes in search tree, 10%° legal states

Historical reasons

Fun! (Mostly.)

State-of-the-art: Go

Computers finally got there: AlphaGo!
Made by Google DeepMind in London

2015: Beat a professional Go player without handicaps
2016: Beat a 9-dan professional without handicaps
2017: Beat Ke Jie, #1 human player

2017: DeepMind published AlphaGo Zero

No human games data
Learns from playing itself
Better than AlphaGo in 3 days of playing

6

* Game trees

Today’s Class

* Tail end of Constraint Satisfaction

* Game playing

Framework We've seen multi-agent

systems, and search
problems where another
agent’s moves need to be
Alpha-beta pruning taken into account — but what
Adding randomness if they are actively moving
against us?

Minimax

State-of-the-art

Chess:
Deep Blue beat Gary Kasparov in 1997
Garry Kasparav vs. Deep Junior (Feb 2003): tie!
Kasparov vs. X3D Fritz (November 2003): tie!
Deep Fritz beat world champion Vladimir Kramnik (2006)

Checkers: Chinook (an Al program with a very large
endgame database) is the world champion and can
provably never be beaten. Retired in 1995.

Bridge: “Expert-level” Al, but no world champions

5

‘The board set for play

Chinook

‘World Man-Machine Checkers Champion,
developed by researchers at the University of
Alberta.

Earned this title by competing in human
tournaments, winning the right to play for the
world championship, eventually defeating the
best players in the world.

Play it! http://www.cs.ualberta.ca/~chinook

Developers have fully analyzed the game of
checkers, and can provably never be beaten

http://www.sciencemag.org/cgi/content/abstract/,
1144079v1

7| §"Bookmarks J_Localion it /jwww chessiom com/home/ntmi/b hurt ~ q

game 6 may 11 @ 3:00;
OIS Garry Kasparov ©

== Fotow

Nice, but | have some bad news about u
this to defend against the robots...

o Naor aricrt
pr—

With'aWdfamatic victory in §

Deep Blue won ifs six-gamd
with Champion Garry Kaspd % Password reset

s s v e s)
st res o o v
ot B m G B, el

i o o

PRt s

O Kaparn
SRR e
ctm
)
= Commun
el e

o 10 Comrs e e conmmty >

|1> pross room J| J1» eeasace

Cill [Document Dane

How to Play (How to Search)

* Obvious approach:
From current game state:
Consider all the legal moves you can make
Compute new position resulting from each move
Evaluate each resulting position
Decide which is best
Make that move
Wait for your opponent to move
Repeat

ALPHAG

2:11:49

Typical Games

2-person game

Players alternate moves

Zero-sum: one player’s loss is the other’s gain

Perfect information: both players have access to complete
information about the state of the game. No information is
hidden from either player.

Deterministic: No chance (e.g., dice) involved

Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello
Not: Bridge, Solitaire, Backgammon, ...

12

How to Play (How to Search)

* Key problems:

Representing the “board”

* What does that mean in, e.g., bridge?
Generating all legal next boards
Evaluating a position

Evaluation function Evaluation Function: the Idea

* Evaluation function or static evaluator is used to « Iam always trying to reach the highest value
evaluate the “goodness” of a game position

Unlike heuristic search, where evaluation function is a positive * You are always trying to reach the lowest value
estimate of cost from start node to a goal, passing through »

. . . » Captures everyone’s goal in a single function
» Zero-sum assumption allows one evaluation function to .
describe goodness of a board for both players (how?) S(m) >> 0: position 7 good for me and bad for you
f(n) >> 0: position 7 good for me and bad for you f(n) << 0: position 7 bad for me and good for you
f(n) << 0: position 1 bad for me and good for you f(n) = 0x¢ : position # is a neutral position
f(#) = 0x¢ : position 7 is a neutral position f(n) = +oo: win for me
f(n) = +o0: win for me

n) = -00: win for you
f(n) = -0: win for you Sf() y

Evaluation function examples Evaluation function examples

» Example of an evaluation function for Tic-Tac-Toe: * Most evaluation functions are specified as a
f(n) = [#3-lengths open for x] - [#3-lengths open for O] weighted sum of position features:
A 3-length is a complete row, column, or diagonal fn) = w,* feat(n) + w,* featn) + ... + w,* feat,(n)

» Alan Turing’s function for chess + Example features for chess: piece count, piece
fn) = w(n)/ b(r) placement, squares controlled, ...
w(n) = sum of the point value of white’s pieces
b(n) = sum of black’s

* Deep Blue had over 8000 squarf contrfol, rook-in-file, x-
PO : rays, king safety, pawn structure
features in its nonlinear | 2cloy twns, ray control,
evaluation function! outposts, pawn majority, rook on
the 7t blockade, restraint,
trapped pieces, color complex, ...

Animation of the Minimax algorithm

Minimax Procedure
Create start node: MAX node, current board state
Expand nodes down to a depth of lookahead

Apply evaluation function at each leaf node

“Back up” values for each non-leaf node until a
value is computed for the root node
MIN: backed-up value is lowest of children’s values
MAX: backed-up value is highest of children’s values

Pick operator associated with the child node whose
backed-up value set the value at the root

23 https:/fwww.youtube.com/watch?v=6ELUVKSkCts

Minimax Algorithm Example: Nim

In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table — we’ll play 7-coin Nim

Each player in turn has to pick up either one or two objects

Whoever picks up the last object loses

Static evaluator
value

Partial Game Tree for Tic-Tac-Toe Minimax Tree

=+, MAX node

* f(n) =+1 if position
is a win for X.

* f(n) = -1 if position is
a win for O.

* f(n) = 0 if position is

value computed
a draw.

by minimax

Nim Game Tree Improving Minimax

In-class exercise: Basic problem: must examine a number of states

.. - that is exponential in d'!
Draw minimax search tree for 4-coin Nim P

@
. . Solution: judicious prunin, 2\
Things to consider: ! P £

A O
of the search tree
© What's your start state?
+ What’s the maximum depth of the tree? Minimum? “Cut off” whole sections that ‘ b
Pick up either one or two objects & (& can’t be part of the best solution D0000
P) & * Or, sometimes, probably won’t o
Whoever picks up the last object loses /ﬂ (82 * Can be a completeness vs. efficiency tradeoff, esp. in
& stochastic problem spaces
29

Alpha-Beta Pruning

» We can improve on the performance of the
minimax algorithm through alpha-beta pruning
« Basic idea: “If you have an idea that is surely bad, don't take the
time to see how truly awful it is.” — Pat Winston
* We don’t need to compute
the value at this node.

« No matter what it is, it can’t
affect the value of the root
node.

* Because the MAX player
will choose this value.

Alpha-beta Example (b=3)

i /7//22 e v\ﬂ-;(l e

VANWANVA

14 1

Alpha-Beta Pruning

Traverse search tree in depth-first order
At each MAX node n, &(7) = maximum value found so far

At each MIN node n, () = minimum value found so far
o starts at -0 and increases, B starts at +o and decreases

B-cutoff: Given a MAX node 7,
- Cut off search below 7 (i.e., don’t look at any more of #’s children) if:
= a&(n) > B(i) for some MIN node ancestor i of 7

o—cutoff:

- Stop searching below MIN node # if:

= B(n) < (i) for some MAX node ancestor 7 of 7
35

Alpha-Beta Pruning

Effectiveness of Alpha-Beta

Alpha-beta is guaranteed to:
+ Compute the same value for the root node as minimax
+ With < computation

Worst case: nothing pruned
- Examine &7 leaf nodes
« Each node has b children and a d-ply search is performed

Best case: examine only (26)%2 leaf nodes.
 So you can search twice as deep as minimax!
* When each player’s best move is the first alternative generated

In Deep Blue, empirically, alpha-beta pruning took
average branching factor from ~35 to ~6!
40

Games of Chance Game Trees with Chance

MAX
Backgamlrlnon: a two-player 1 « Chance nodes (circles)
game with uncertainty ‘ represent random events e
Players roll dice to
determine what moves to ° FQI‘ a random event
make with N outcomes:

‘White has just rolled 5 and * Chance node has N

6 and has four legal moves: distinct children

¢ 510,511 Each has a probability
- 5.11,19-24
- 5-10,10-16 * Example:

" 5L 1116 * Rolling 2 dice > 21 TR
distinct outcomes

Good for decision making s
in adversarial problems * Not all equally likely!

with skill and luck

24 23 22 21 20 19 18 17 16 15 14 13
4

Game Trees with Chance Meaning of the Evaluation Function

Use minimax to Al = best

compute values for movey, .

MAX and MIN nodes N AN 2 outcomes,
13 P=19. 1)

Use expected values for

chance nodes

Over a max node, as in C:
expectimax(C) = wax
P(d;) * maxvalue(i))

i
o . de: TERMINAL + Dealing with probabilities and expected values means we have to be careful
Ver a min node: about the “meaning” of values returned by the static evaluator.

expectimin(C) = i(P(dl.) * minvalue(i)) A “relative-order preserving” change of values would not change decision of
minimax, but could change the decision with chance nodes.

20 20 30 30 1 1 400 400
i

43 44

Example: Oopsy-Nim Nim Game Tree

« Starts out like Nim
 Each player in turn has to pick up either one or two objects
- Sometimes (probability = 0.25), when you try to pick up two objects, * Draw minimax search tree for 4-coin Nim
you drop them both

* In-class exercise:

» Things to consider:
+ What’s your start state?
+ What'’s the maximum depth of the tree? Minimum?

- Picking up a single object always works

* Question: Why can’t we draw the entire game tree?

* Exercise: Draw the 4-ply game tree (2 moves per player)

