Game Playing

AI Class 8 - Ch. 5.1-5.3, 5.4.1, 5.5

State-of-the-art: Go

- Computers finally got there: AlphaGo!
- Made by Google DeepMind in London
- 2015: Beat a professional Go player without handicaps
- 2016: Beat a 9-dan professional without handicaps
- 2017: Beat Ke Jie, \#1 human player
- 2017: DeepMind published AlphaGo Zero

No human games data

- Learns from playing itself
- Better than AlphaGo in 3 days of playing

Today's Class

- Tail end of Constraint Satisfaction
- Game playing
- Framework

We've seen multi-agent systems, and search problems where another agent's moves need to be taken into account - but what if they are actively moving against us?

- Game trees
- Minimax
- Alpha-beta pruning
- Adding randomness

Why Games?

- Clear criteria for success
- Offer an opportunity to study problems involving \{hostile / adversarial / competing\} agents.
- Interesting, hard problems which require minimal setup
- Often define very large search spaces
- chess 35^{100} nodes in search tree, 10^{40} legal states
- Historical reasons
- Fun! (Mostly.)

State-of-the-art

- Chess:

- Deep Blue beat Gary Kasparov in 1997
- Garry Kasparav vs. Deep Junior (Feb 2003): tie!
- Kasparov vs. X3D Fritz (November 2003): tie!
- Deep Fritz beat world champion Vladimir Kramnik (2006)
- Checkers: Chinook (an AI program with a very large endgame database) is the world champion and can provably never be beaten. Retired in 1995.
- Bridge: "Expert-level" AI, but no world champions

Typical Games

- 2-person game

- Players alternate moves
- Zero-sum: one player's loss is the other's gain
- Perfect information: both players have access to complete information about the state of the game. No information is hidden from either player.
- Deterministic: No chance (e.g., dice) involved
- Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello
- Not: Bridge, Solitaire, Backgammon, ...

How to Play (How to Search)

- Obvious approach:
- From current game state:
\longrightarrow - Consider all the legal moves you can make
- Compute new position resulting from each move
- Evaluate each resulting position
- Decide which is best
- Make that move
- Wait for your opponent to move
- Repeat

How to Play (How to Search)

- Key problems:
- Representing the "board"
- What does that mean in, e.g., bridge?
- Generating all legal next boards
- Evaluating a position

Evaluation function

- Evaluation function or static evaluator is used to evaluate the "goodness" of a game position
- Unlike heuristic search, where evaluation function is a positive estimate of cost from start node to a goal, passing through n
- Zero-sum assumption allows one evaluation function to describe goodness of a board for both players (how?)
- $f(n) \gg 0$: position n good for me and bad for you
- $f(n) \ll 0$: position n bad for me and good for you
$f(n)=0 \pm \varepsilon$: position n is a neutral position
$f(n)=+\infty$: win for me
$f(n)=-\infty$: win for you

Evaluation function examples

- Example of an evaluation function for Tic-Tac-Toe:
- $f(n)=[\# 3$-lengths open for \times]-[\#3-lengths open for O]
- A 3-length is a complete row, column, or diagonal
- Alan Turing's function for chess
- $f(n)=w(n) / b(n)$
- $w(n)=$ sum of the point value of white's pieces
- $b(n)=$ sum of black's

Evaluation Function: the Idea

- I am always trying to reach the highest value
- You are always trying to reach the lowest value
- Captures everyone's goal in a single function - $\boldsymbol{f (n)} \gg 0$: position n good for me and bad for you
- $f(n) \ll 0$: position n bad for me and good for you
- $\boldsymbol{f}(\boldsymbol{n})=\mathbf{0} \pm \varepsilon$: position n is a neutral position
- $\boldsymbol{f}(\boldsymbol{n})=+\infty$: win for me
$f(n)=-\infty$: win for you

Evaluation function examples

- Most evaluation functions are specified as a weighted sum of position features:
- $f(n)=w_{1}{ }^{*}$ feat $_{l}(n)+w_{2}{ }^{*}$ feat $_{2}(n)+\ldots+w_{n}{ }^{*}$ feat $_{k}(n)$
- Example features for chess: piece count, piece placement, squares controlled, ...
- Deep Blue had over $\mathbf{8 0 0 0}$ square control, rook-in-file, x features in its nonlinear $\begin{aligned} & \text { rays, king safety, pawn structure, } \\ & \text { passed pawns, ray control, }\end{aligned}$ evaluation function! outposts, pawn majority, rook on the $7^{\text {th }}$ blockade, restraint, trapped pieces, color complex, ...

Minimax Procedure

- Create start node: MAX node, current board state
- Expand nodes down to a depth of lookahead
- Apply evaluation function at each leaf node
- "Back up" values for each non-leaf node until a value is computed for the root node - MIN: backed-up value is lowest of children's values - MAX: backed-up value is highest of children's values
- Pick operator associated with the child node whose backed-up value set the value at the root

Nim Game Tree

- In-class exercise:

- Draw minimax search tree for 4-coin Nim
- Things to consider:
- What's your start state?
- What's the maximum depth of the tree? Minimum?
- Pick up either one or two objects
- Whoever picks up the last object loses

Improving Minimax

- Basic problem: must examine a number of states that is exponential in d !
- Solution: judicious pruning of the search tree
- "Cut off" whole sections that can't be part of the best solution
- Or, sometimes, probably won't
- Can be a completeness vs. efficiency tradeoff, esp. in stochastic problem spaces

Alpha-Beta Pruning

- Traverse search tree in depth-first order
- At each MAX node $\mathrm{n}, \mathrm{\alpha}(n)=$ maximum value found so far
- At each MIN node $\mathrm{n}, \beta(n)=$ minimum value found so far - α starts at $-\infty$ and increases, β starts at $+\infty$ and decreases
- $\boldsymbol{\beta}$-cutoff: Given a MAX node n,
- Cut off search below n (i.e., don't look at any more of n 's children) if: - $\alpha(n) \geq \beta(\mathrm{i})$ for some MIN node ancestor i of n
- α-cutoff
- Stop searching below MIN node n if:
$\beta(\mathrm{n}) \leq \alpha(\mathrm{i})$ for some MAX node ancestor i of n

Effectiveness of Alpha-Beta

- Alpha-beta is guaranteed to:
- Compute the same value for the root node as minimax - With \leq computation
- Worst case: nothing pruned - Examine b^{d} leaf nodes
- Each node has b children and a d-ply search is performed
- Best case: examine only $(2 b)^{d / 2}$ leaf nodes.
- So you can search twice as deep as minimax!
- When each player's best move is the first alternative generated
- In Deep Blue, empirically, alpha-beta pruning took average branching factor from ~ 35 to ~ 6 !

- Use minimax to compute values for MAX and MIN nodes
- Use expected values for chance nodes
- Over a max node, as in C: $\operatorname{expectimax}(C)=$

$$
\Sigma_{i}\left(\mathrm{P}\left(d_{i}\right) * \operatorname{maxvalue}(i)\right)
$$

- Over a min node:
termaninal

Meaning of the Evaluation Function

Example: Oopsy-Nim

- Starts out like Nim
- Each player in turn has to pick up either one or two objects
- Sometimes (probability $=0.25$), when you try to pick up two objects, you drop them both
- Picking up a single object always works

Nim Game Tree

- In-class exercise:

- Draw minimax search tree for 4 -coin Nim
- Things to consider:
- What's your start state?
- What's the maximum depth of the tree? Minimum?
- Question: Why can't we draw the entire game tree?
- Exercise: Draw the 4-ply game tree (2 moves per player)

