
1

1

Game Playing
AI Class 8 — Ch. 5.1-5.3, 5.4.1, 5.5

Cynthia Matuszek – CMSC 671 Based on slides by Marie desJardin, Francisco Iacobelli

Today’s Class

•  Tail end of Constraint Satisfaction

•  Game playing
•  Framework

•  Game trees
•  Minimax

•  Alpha-beta pruning

•  Adding randomness

3

We’ve	seen	multi-agent	
systems,	and	search	
problems	where	another	
agent’s	moves	need	to	be	
taken	into	account	–	but	what	
if	they	are	actively	moving	
against	us?	

Why Games?

•  Clear criteria for success

•  Offer an opportunity to study problems involving
{hostile / adversarial / competing} agents.

•  Interesting, hard problems which require minimal setup

•  Often define very large search spaces
•  chess 35100 nodes in search tree, 1040 legal states

•  Historical reasons

•  Fun! (Mostly.)

 4

•  Chess:
•  Deep Blue beat Gary Kasparov in 1997
•  Garry Kasparav vs. Deep Junior (Feb 2003): tie!
•  Kasparov vs. X3D Fritz (November 2003): tie!
•  Deep Fritz beat world champion Vladimir Kramnik (2006)

•  Checkers: Chinook (an AI program with a very large
endgame database) is the world champion and can
provably never be beaten. Retired in 1995.

•  Bridge: “Expert-level” AI, but no world champions

State-of-the-art

5

State-of-the-art: Go

•  Computers finally got there: AlphaGo!
•  Made by Google DeepMind in London

•  2015: Beat a professional Go player without handicaps

•  2016: Beat a 9-dan professional without handicaps

•  2017: Beat Ke Jie, #1 human player

•  2017: DeepMind published AlphaGo Zero
•  No human games data
•  Learns from playing itself
•  Better than AlphaGo in 3 days of playing

6

Chinook

•  World Man-Machine Checkers Champion,
developed by researchers at the University of
Alberta.

•  Earned this title by competing in human
tournaments, winning the right to play for the
world championship, eventually defeating the
best players in the world.

•  Play it! http://www.cs.ualberta.ca/~chinook

•  Developers have fully analyzed the game of
checkers, and can provably never be beaten
•  (http://www.sciencemag.org/cgi/content/abstract/

1144079v1)

7

2

www.wired.com/2017/05/googles-alphago-levels-board-games-power-grids

Typical Games

•  2-person game

•  Players alternate moves

•  Zero-sum: one player’s loss is the other’s gain

•  Perfect information: both players have access to complete
information about the state of the game. No information is
hidden from either player.

•  Deterministic: No chance (e.g., dice) involved

•  Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello

•  Not: Bridge, Solitaire, Backgammon, ...

12

How to Play (How to Search)

•  Obvious approach:
•  From current game state:

•  Consider all the legal moves you can make

•  Compute new position resulting from each move

•  Evaluate each resulting position
•  Decide which is best

•  Make that move

•  Wait for your opponent to move

•  Repeat

13

x1 x2 x3 x4

How to Play (How to Search)

•  Key problems:
•  Representing the “board”
•  What does that mean in, e.g., bridge?

•  Generating all legal next boards

•  Evaluating a position

14

x1 x2 x3 x4

3

Evaluation function

•  Evaluation function or static evaluator is used to
evaluate the “goodness” of a game position
•  Unlike heuristic search, where evaluation function is a positive

estimate of cost from start node to a goal, passing through n

•  Zero-sum assumption allows one evaluation function to
describe goodness of a board for both players (how?)
•  f (n) >> 0: position n good for me and bad for you
•  f (n) << 0: position n bad for me and good for you
•  f (n) = 0±ε : position n is a neutral position
•  f (n) = +∞: win for me
•  f (n) = -∞: win for you

15

Evaluation Function: the Idea

•  I am always trying to reach the highest value

•  You are always trying to reach the lowest value

•  Captures everyone’s goal in a single function
•  f (n) >> 0: position n good for me and bad for you

•  f (n) << 0: position n bad for me and good for you

•  f (n) = 0±ε : position n is a neutral position

•  f (n) = +∞: win for me

•  f (n) = -∞: win for you

16

Evaluation function examples

•  Example of an evaluation function for Tic-Tac-Toe:
•  f (n) = [#3-lengths open for ×] - [#3-lengths open for O]
•  A 3-length is a complete row, column, or diagonal

•  Alan Turing’s function for chess
•  f (n) = w(n)/b(n)

•  w(n) = sum of the point value of white’s pieces

•  b(n) = sum of black’s

17

Evaluation function examples

•  Most evaluation functions are specified as a
weighted sum of position features:
•  f (n) = w1 * feat1(n) + w2 * feat2(n) + ... + wn * featk(n)

•  Example features for chess: piece count, piece
placement, squares controlled, …

•  Deep Blue had over 8000
features in its nonlinear
evaluation function!

18

square	control,	rook-in-file,	x-
rays,	king	safety,	pawn	structure,	
passed	pawns,	ray	control,	
outposts,	pawn	majority,	rook	on	
the	7th	blockade,	restraint,	
trapped	pieces,	color	complex,	...	

Minimax Procedure

•  Create start node: MAX node, current board state

•  Expand nodes down to a depth of lookahead

•  Apply evaluation function at each leaf node

•  “Back up” values for each non-leaf node until a
value is computed for the root node
•  MIN: backed-up value is lowest of children’s values
•  MAX: backed-up value is highest of children’s values

•  Pick operator associated with the child node whose
backed-up value set the value at the root

23 https://www.youtube.com/watch?v=6ELUvkSkCts

4

Minimax Algorithm

2 7 1 8

MAX
MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

Static evaluator
value

2 7 1 8

2 1

2

Example: Nim

•  In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table – we’ll play 7-coin Nim

•  Each player in turn has to pick up either one or two objects

•  Whoever picks up the last object loses

Partial Game Tree for Tic-Tac-Toe

27

•  f (n) = +1 if position
is a win for X.

•  f (n) = -1 if position is
a win for O.

•  f (n) = 0 if position is
a draw.

Minimax Tree

MAX node

MIN node

f value
value computed

by minimax

Nim Game Tree

•  In-class exercise:

•  Draw minimax search tree for 4-coin Nim

•  Things to consider:
•  What’s your start state?

•  What’s the maximum depth of the tree? Minimum?

•  Pick up either one or two objects

•  Whoever picks up the last object loses

29

Improving Minimax

•  Basic problem: must examine a number of states
that is exponential in d !

•  Solution: judicious pruning
of the search tree

•  “Cut off ” whole sections that
can’t be part of the best solution
•  Or, sometimes, probably won’t

•  Can be a completeness vs. efficiency tradeoff, esp. in
stochastic problem spaces

5

Alpha-Beta Pruning

•  We can improve on the performance of the
minimax algorithm through alpha-beta pruning
•  Basic idea: “If you have an idea that is surely bad, don't take the

time to see how truly awful it is.” – Pat Winston

34 2 7 1

= 2

≤ 2

≤ 1

?

•  We don’t need to compute
the value at this node.

•  No matter what it is, it can’t
affect the value of the root
node.

•  Because the MAX player
will choose this value.

MAX

MAX

MIN

Alpha-Beta Pruning

•  Traverse search tree in depth-first order

•  At each MAX node n, α(n) = maximum value found so far

•  At each MIN node n, β(n) = minimum value found so far
•  α starts at -∞ and increases, β starts at +∞ and decreases

•  β-cutoff: Given a MAX node n,
•  Cut off search below n (i.e., don’t look at any more of n’s children) if:
•  α(n) ≥ β(i) for some MIN node ancestor i of n

•  α-cutoff:
•  Stop searching below MIN node n if:
•  β(n) ≤ α(i) for some MAX node ancestor i of n

35

Alpha-beta Example (b=3)

36

3 12 8 2 14 1

3 MIN

MAX 3

2 - prune 14 1 - prune

Alpha-Beta Pruning

37

MAX

MIN

MAX

39

Effectiveness of Alpha-Beta

•  Alpha-beta is guaranteed to:
•  Compute the same value for the root node as minimax
•  With ≤ computation

•  Worst case: nothing pruned
•  Examine bd leaf nodes
•  Each node has b children and a d-ply search is performed

•  Best case: examine only (2b)d/2 leaf nodes.
•  So you can search twice as deep as minimax!
•  When each player’s best move is the first alternative generated

•  In Deep Blue, empirically, alpha-beta pruning took
average branching factor from ~35 to ~6!

40

6

Games of Chance

•  Backgammon: a two-player
game with uncertainty

•  Players roll dice to
determine what moves to
make

•  White has just rolled 5 and
6 and has four legal moves:
•  5-10, 5-11
•  5-11, 19-24
•  5-10, 10-16
•  5-11, 11-16

•  Good for decision making
in adversarial problems
with skill and luck

41

Game Trees with Chance

•  Chance nodes (circles)
represent random events

•  For a random event
with N outcomes:
•  Chance node has N

distinct children
•  Each has a probability

•  Example:
•  Rolling 2 dice à 21

distinct outcomes
•  Not all equally likely!

42

Max
Rolls

Min
Rolls

Game Trees with Chance

•  Use minimax to
compute values for
MAX and MIN nodes

•  Use expected values for
chance nodes

43

•  Over a max node, as in C:

 expectimax(C) =
 ∑i(P(di) * maxvalue(i))

•  Over a min node:

 expectimin(C) = ∑i(P(di) * minvalue(i))

Meaning of the Evaluation Function

44

•  Dealing with probabilities and expected values means we have to be careful
about the “meaning” of values returned by the static evaluator.

•  A “relative-order preserving” change of values would not change decision of
minimax, but could change the decision with chance nodes.

A1 = best
move

A2 = best
move

2 outcomes,
P= {.9, .1}

Example: Oopsy-Nim

•  Starts out like Nim

•  Each player in turn has to pick up either one or two objects

•  Sometimes (probability = 0.25), when you try to pick up two objects,
you drop them both

•  Picking up a single object always works

•  Question: Why can’t we draw the entire game tree?

•  Exercise: Draw the 4-ply game tree (2 moves per player)

Nim Game Tree

•  In-class exercise:

•  Draw minimax search tree for 4-coin Nim

•  Things to consider:
•  What’s your start state?

•  What’s the maximum depth of the tree? Minimum?

46

