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Admissibility

Admissibility is a property of heuristics
« They are optimistic — think goal is closer than it is
* (Or, exactly right)

Admissible algorithms
can be pretty bad!

Using admissible heuristics guarantees that the first

solution found will be optimal, for some algorithms (A*).

Local Search Algorithms

* Sometimes the path to the goal is irrelevant
© Goal state itself is the solution
+ Jan objective function to evaluate states

« In such cases, we can use local search algorithms

« Keep a single “current” state, try to improve it

Today’s Class

Local Search

Iterative improvement methods

Hill climbing “If the path to the goal
Simulated annealing | does not matter... [we
can use] a single current
node and move to
neighbors of that node.”

Local beam search
Genetic algorithms

Online search

- R&N pg. 121

Admissibility and Optimality

Intuitively:
* When A* finds a path of length &, it has already tried
every other path which can have length <k

- Because all frontier nodes have been sorted in ascending
order of f{n)=g(n)+h(n)

Does an admissible heuristic guarantee optimality
for greedy search?

« Reminder: f(n) = h(n), always choose node “nearest” goal
* No sorting beyond that

Local Search Algorithms

Sometimes the path to the goal is irrelev Very efficient!
+ Goal state itself is the solution Why?

3 an objective function to evaluate states

State space = set of “complete” configurations
« That is, all elements of a solution are present

- Find configuration satisfying constraints

+ Example?

In such cases, we can use local search algorithms

Keep a single “current” state, try to improve it
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objecie

gobal maximum

Landscapes |~ — State Space (Landscape)

Search graph = landscape

Each node has successor(s) it can reach (called s)
« Its children, unless there are loops

Each successor has some “goodness” (desirability)
according to the objective function

h(n) — h(s) is a positive, negative, or 0

Positive is “uphill” (moving | Minor hassle:

to a more desirable state) Sometimes maximizing,
sometimes minimizing.
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State Space (Landscape) State Space (Landscape)

objective objective

S A S

current state state space current state state space

State Space (Landscape) State Space (Landscape)

objective objective
P2 global maximum

shoulder
local maximum
flat local maximum

A S

current state state space current state state space




Iterative Improvement Search Hill Climbing on State Surface

) . evaluation
* Start with an initial guess Concept:
trying to reach

the “highest”

(most

desirable)

* Some examples: point (state)
Hill climbing “Height”
Simulated annealing Defined by

Constraint satisfaction Evaluation
Function

* Gradually improve it until it is legal or optimal

Hill Climbing Search

1]2
goal |8

If there exists a successor s for the current state # such that
h(s) > h(n)
h(s) >= k() for all the successors ¢ of 7,

then move from # to s. Otherwise, halt at 7.

Look one step ahead to determine if any successor is “better” than
current state
If so, move to the best successor

A kind of Greedy search in that it uses /
But, does not allow backtracking or jumping to an alternative path
Doesn't “remember” where it has been.

Not complete
Search will terminate at local minima, plateaux, ridges.
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Exploring the Landscape Drawbacks of Hill Climbing

* Local Maxima: local maximum

* Problems: local maxima, plateaus, ridges
Peaks that aren’t the highest
point in the space R, 1

plateau * Remedies:
+ Plateaus:

it sesion that si i Random restart: keep restarting the search from random
wa ;2:;111?1;%;?13“ SRt ! locations until a goal is found.
direction (random walk) : Problem reformulation: reformulate the search space to
+ Ridges: / 4 eliminate these problematic features

Flat like a plateau, but with

drop-offs to the sides; steps ' : ‘ * Some problem spaces are great for hill climbing;
to the North, East, South .
and West may go down, but d others are terrible

a step to the NW may go up.

Image from: htip://classes.yale.edu/fractals/CA/GA/Fitness/Fitness. himl




Example of a Local Optimum

= -(manhattan distance)

Some Extensions of Hill Climbing

Stochastic Beam Search
Chooses semi-randomly from “uphill” possibilities
“Steeper” moves have a higher probability of being chosen

Random-Restart Climbing
Can actually be applied to any form of search
Pick random starting points until one leads to a solution

Genetic Algorithms

Each successor is generated from two predecessor (parent)
states

Gradient Ascent / Descent

24 Images from hitp://en.wikipedia.org/viki/Gradient_descent

Some Extensions of Hill Climbing

» Simulated Annealing

Escape local maxima by allowing some “bad” moves but
gradually decreasing their frequency

* Local Beam Search
Keep track of k states rather than just one
At each iteration:
» All successors of the k states are generated and evaluated
* Best k are chosen for the next iteration

Gradient Descent (or Ascent)

Downward “steps” whose length is proportional to negative of the
gradient (slope) at the current state.

“Steepest descent” > long “steps”

Jump to a node that is “farther away” if f(+) difference is large

Gradient descent procedure for finding the arg, min f{x)
choose initial x, randomly
repeat: X, X, — T]f’ (Xi)
until the sequence X, X, ..., X;, X;;, converges

Step size 7 (eta) is small (~0.1-0.05)

Good for differentiable, continuous spaces
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Gradient Methods vs. Newton’s Method

A reminder of Newton’s
method from Calculus:

Xt <X = 1S9 /(%)

Newton’ s method uses 24

order information (the second

derivative, or, curvature) to

take a more direct route to the

minimum.

The second-order information ~ Contour lines of a function (blue)
is more expensive to compute,  * Gradient descent (green)

but converges more quickly. « Newton’s method (red)

Images from hitp://en.wikipedia.org/wiki/Newton's_method_in_optimization




Simulated Annealing

Simulated annealing (SA): analogy between the way
metal cools into a minimum-energy crystalline structure
and the search for a minimum generally

In very hot metal, molecules can move fairly freely

But, they are slightly less likely to move out of a stable structure

As you slowly cool the metal, more molecules are “trapped” in
place

Conceptually: Escape local maxima by allowing some
“bad” (locally counterproductive) moves but gradually
decreasing their frequency
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Simulated Annealing (IV)

« f(s) represents the quality of state # (high is good)
* A “bad” move from A to B is accepted with probability

P(move,_5) = eU®-s® /1

A—B) ~

« (Note that f(B) — f(A) will be negative, so bad moves always have a
relative probability less than one. Good moves, for which f(B) — f(A) is
positive, have a relative probability greater than one.)

* Temperature

Higher temperature = more likely to make a “bad” move

As T tends to zero, this probability tends to zero

* SA becomes more like hill climbing

If T is lowered slowly enough, SA is complete and admissible.
* domain-specific
* sometimes hard to determine

Local Beam Search

Begin with k£ random states
k, instead of one, current state(s)

Generate all successors of these states
Keep the k best states across all successors

Stochastic beam search

Probability of keeping a state is a function of its heuristic
value
More likely to keep “better” successors
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Simulated Annealing (II)

Can avoid becoming trapped at local minima.

Uses a random local search that:
Accepts changes that increase objective function f
As well as some that decrease it

Uses a control parameter T freedom to
By analogy with the original application make “bad”
Is known as the system “temperature” moves

T starts out high and gradually decreases toward 0
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The Simulated Annealing Algorithm

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature™
static: current, anode
next, a node
T,a® " ling the ility of

current+— MAKE-NODE(INITIAL-STATE[problem])
for 7+ 1toocdo
T+ scheduleff]
if 7=0 then return current
next  a randomly selected successor of current
AE ¢ VALUE[next] - VALUE[current]
if AE > 0 then current +next

else current < next only with probability ¢*“7

Genetic Algorithms

The Idea:

New states are generated by
“mutating” a single state or
“reproducing” (somehow
combining) two parent states

Selected according to their fitness

Similar to stochastic beam search

 Start with k£ random states (the initial population)

Encoding used for the “genome” of an individual strongly affects the
behavior of the search

Must have some combinable representation of state spaces

Genetic algorithms / genetic programming are a large and active area
of research




Tabu Search

Problem: Hill climbing can get stuck on local
maxima

Solution: Maintain a list of & previously visited
states, and prevent the search from revisiting them

Why not always do this?

Summary: Local Search (I)

« State space can be treated as a “landscape” of
movement on quality of states where we are trying
to find “high” points

 Best-first search is a general class of search
algorithms where the minimum-cost nodes are
expanded first

* Greedy search uses minimal estimated cost /4(n) to
the goal state as measure of goodness
Reduces search time, but is neither complete nor optimal
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Class Exercise:
Local Search for N-Queens

Q

(more on constraint satisfaction heuristics next time...)

Online Search

Interleave computation and action (search some, act some)
Exploration: Can’t infer outcomes of actions; must actually perform them to learn what
will happen

Competitive ratio = Path cost found* / Path cost that could be found**
* On average, or in an adversarial scenario (worst case)
** If the agent knew the nature of the space, and could use offline search

Relatively easy if actions are reversible

LRTA* (Learning Real-Time A*): Update /(s) (in state table) based on
experience

More about online search and nondeterministic actions next time...
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Summary: Local Search (IT)

Hill-climbing algorithms keep only a single state in
memory, but can get stuck on local optima.

Simulated annealing escapes local optima, and is complete
and optimal given a “long enough” cooling schedule.

Genetic algorithms search a space by modeling biological
evolution.

Online search algorithms are useful in state spaces with

partial/no information. .
Questions!?




