Local Search
Al Class 6 (Ch. 4.1-4.2)

e

Matuszek — CMSC 671

Admissibility

Admissibility is a property of heuristics
« They are optimistic — think goal is closer than it is
* (Or, exactly right)

Admissible algorithms
can be pretty bad!

Using admissible heuristics guarantees that the first

solution found will be optimal, for some algorithms (A*).

Local Search Algorithms

* Sometimes the path to the goal is irrelevant
© Goal state itself is the solution
+ Jan objective function to evaluate states

« In such cases, we can use local search algorithms

« Keep a single “current” state, try to improve it

Today’s Class

Local Search

Iterative improvement methods

Hill climbing “If the path to the goal
Simulated annealing | does not matter... [we
can use] a single current
node and move to
neighbors of that node.”

Local beam search
Genetic algorithms

Online search

- R&N pg. 121

Admissibility and Optimality

Intuitively:
* When A* finds a path of length &, it has already tried
every other path which can have length <k

- Because all frontier nodes have been sorted in ascending
order of f{n)=g(n)+h(n)

Does an admissible heuristic guarantee optimality
for greedy search?

« Reminder: f(n) = h(n), always choose node “nearest” goal
* No sorting beyond that

Local Search Algorithms

Sometimes the path to the goal is irrelev Very efficient!
+ Goal state itself is the solution Why?

3 an objective function to evaluate states

State space = set of “complete” configurations
« That is, all elements of a solution are present

- Find configuration satisfying constraints

+ Example?

In such cases, we can use local search algorithms

Keep a single “current” state, try to improve it

7

objecie

gobal maximum

Landscapes |~ — State Space (Landscape)

Search graph = landscape

Each node has successor(s) it can reach (called s)
« Its children, unless there are loops

Each successor has some “goodness” (desirability)
according to the objective function

h(n) — h(s) is a positive, negative, or 0

Positive is “uphill” (moving | Minor hassle:

to a more desirable state) Sometimes maximizing,
sometimes minimizing.

8

State Space (Landscape) State Space (Landscape)

objective objective

S A S

current state state space current state state space

State Space (Landscape) State Space (Landscape)

objective objective
P2 global maximum

shoulder
local maximum
flat local maximum

A S

current state state space current state state space

Iterative Improvement Search Hill Climbing on State Surface

) . evaluation
* Start with an initial guess Concept:
trying to reach

the “highest”

(most

desirable)

* Some examples: point (state)
Hill climbing “Height”
Simulated annealing Defined by

Constraint satisfaction Evaluation
Function

* Gradually improve it until it is legal or optimal

Hill Climbing Search

1]2
goal |8

If there exists a successor s for the current state # such that
h(s) > h(n)
h(s) >= k() for all the successors ¢ of 7,

then move from # to s. Otherwise, halt at 7.

Look one step ahead to determine if any successor is “better” than
current state
If so, move to the best successor

A kind of Greedy search in that it uses /
But, does not allow backtracking or jumping to an alternative path
Doesn't “remember” where it has been.

Not complete
Search will terminate at local minima, plateaux, ridges.

16

Exploring the Landscape Drawbacks of Hill Climbing

* Local Maxima: local maximum

* Problems: local maxima, plateaus, ridges
Peaks that aren’t the highest
point in the space R, 1

plateau * Remedies:
+ Plateaus:

it sesion that si i Random restart: keep restarting the search from random
wa ;2:;111?1;%;?13“ SRt ! locations until a goal is found.
direction (random walk) : Problem reformulation: reformulate the search space to
+ Ridges: / 4 eliminate these problematic features

Flat like a plateau, but with

drop-offs to the sides; steps ' : ‘ * Some problem spaces are great for hill climbing;
to the North, East, South .
and West may go down, but d others are terrible

a step to the NW may go up.

Image from: htip://classes.yale.edu/fractals/CA/GA/Fitness/Fitness. himl

Example of a Local Optimum

= -(manhattan distance)

Some Extensions of Hill Climbing

Stochastic Beam Search
Chooses semi-randomly from “uphill” possibilities
“Steeper” moves have a higher probability of being chosen

Random-Restart Climbing
Can actually be applied to any form of search
Pick random starting points until one leads to a solution

Genetic Algorithms

Each successor is generated from two predecessor (parent)
states

Gradient Ascent / Descent

24 Images from hitp://en.wikipedia.org/viki/Gradient_descent

Some Extensions of Hill Climbing

» Simulated Annealing

Escape local maxima by allowing some “bad” moves but
gradually decreasing their frequency

* Local Beam Search
Keep track of k states rather than just one
At each iteration:
» All successors of the k states are generated and evaluated
* Best k are chosen for the next iteration

Gradient Descent (or Ascent)

Downward “steps” whose length is proportional to negative of the
gradient (slope) at the current state.

“Steepest descent” > long “steps”

Jump to a node that is “farther away” if f(+) difference is large

Gradient descent procedure for finding the arg, min f{x)
choose initial x, randomly
repeat: X, X, — T]f’ (Xi)
until the sequence X, X, ..., X;, X;;, converges

Step size 7 (eta) is small (~0.1-0.05)

Good for differentiable, continuous spaces

23

Gradient Methods vs. Newton’s Method

A reminder of Newton’s
method from Calculus:

Xt <X = 1S9 /(%)

Newton’ s method uses 24

order information (the second

derivative, or, curvature) to

take a more direct route to the

minimum.

The second-order information ~ Contour lines of a function (blue)
is more expensive to compute, * Gradient descent (green)

but converges more quickly. « Newton’s method (red)

Images from hitp://en.wikipedia.org/wiki/Newton's_method_in_optimization

Simulated Annealing

Simulated annealing (SA): analogy between the way
metal cools into a minimum-energy crystalline structure
and the search for a minimum generally

In very hot metal, molecules can move fairly freely

But, they are slightly less likely to move out of a stable structure

As you slowly cool the metal, more molecules are “trapped” in
place

Conceptually: Escape local maxima by allowing some
“bad” (locally counterproductive) moves but gradually
decreasing their frequency

26

Simulated Annealing (IV)

« f(s) represents the quality of state # (high is good)
* A “bad” move from A to B is accepted with probability

P(move,_5) = eU®-s® /1

A—B) ~

« (Note that f(B) — f(A) will be negative, so bad moves always have a
relative probability less than one. Good moves, for which f(B) — f(A) is
positive, have a relative probability greater than one.)

* Temperature

Higher temperature = more likely to make a “bad” move

As T tends to zero, this probability tends to zero

* SA becomes more like hill climbing

If T is lowered slowly enough, SA is complete and admissible.
* domain-specific
* sometimes hard to determine

Local Beam Search

Begin with k£ random states
k, instead of one, current state(s)

Generate all successors of these states
Keep the k best states across all successors

Stochastic beam search

Probability of keeping a state is a function of its heuristic
value
More likely to keep “better” successors

31

Simulated Annealing (II)

Can avoid becoming trapped at local minima.

Uses a random local search that:
Accepts changes that increase objective function f
As well as some that decrease it

Uses a control parameter T freedom to
By analogy with the original application make “bad”
Is known as the system “temperature” moves

T starts out high and gradually decreases toward 0

27

The Simulated Annealing Algorithm

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature™
static: current, anode
next, a node
T,a® " ling the ility of

current+— MAKE-NODE(INITIAL-STATE[problem])
for 7+ 1toocdo
T+ scheduleff]
if 7=0 then return current
next a randomly selected successor of current
AE ¢ VALUE[next] - VALUE[current]
if AE > 0 then current +next

else current < next only with probability ¢*“7

Genetic Algorithms

The Idea:

New states are generated by
“mutating” a single state or
“reproducing” (somehow
combining) two parent states

Selected according to their fitness

Similar to stochastic beam search

 Start with k£ random states (the initial population)

Encoding used for the “genome” of an individual strongly affects the
behavior of the search

Must have some combinable representation of state spaces

Genetic algorithms / genetic programming are a large and active area
of research

Tabu Search

Problem: Hill climbing can get stuck on local
maxima

Solution: Maintain a list of & previously visited
states, and prevent the search from revisiting them

Why not always do this?

Summary: Local Search (I)

« State space can be treated as a “landscape” of
movement on quality of states where we are trying
to find “high” points

 Best-first search is a general class of search
algorithms where the minimum-cost nodes are
expanded first

* Greedy search uses minimal estimated cost /4(n) to
the goal state as measure of goodness
Reduces search time, but is neither complete nor optimal

35

Class Exercise:
Local Search for N-Queens

Q

(more on constraint satisfaction heuristics next time...)

Online Search

Interleave computation and action (search some, act some)
Exploration: Can’t infer outcomes of actions; must actually perform them to learn what
will happen

Competitive ratio = Path cost found* / Path cost that could be found**
* On average, or in an adversarial scenario (worst case)
** If the agent knew the nature of the space, and could use offline search

Relatively easy if actions are reversible

LRTA* (Learning Real-Time A*): Update /(s) (in state table) based on
experience

More about online search and nondeterministic actions next time...

34

Summary: Local Search (IT)

Hill-climbing algorithms keep only a single state in
memory, but can get stuck on local optima.

Simulated annealing escapes local optima, and is complete
and optimal given a “long enough” cooling schedule.

Genetic algorithms search a space by modeling biological
evolution.

Online search algorithms are useful in state spaces with

partial/no information. .
Questions!?

