Uninformed Search 2 Today’s Class

Informed Search Rest of blind search “An informed search
Al Class 5 (Ch. 3.5-3.7) Heuristic search strategy—one that uses

problem specific
R Best-first search knowledge... can find
i - Greedy search solutions more efficiently
* Beam search then an uninformed

© A A* »”
> trategy.
- Examples strategy

~R&Npg. 92

Memory-conserving
variations of A*

) Heuristic functions
Dr. Cynthia Matuszek — CMSC 671

Things to Differentiate

Questions?

* Goal testing
* Expanding

* Generating

Blind Search (Redux) “Satisficing”

: . fa . Wikipedia: “Satisficing is ... searching until
¢ Last time: * This time: an acceptability threshold is met”
* Bread-first - Iterative Contrast with optimality Another piece of

i + Satisficable problems do not get problem
° Depth'ﬁrSt deepenmg b:n;it%mefgging:tsl o%:li(r)ngf srglau’fion definition
« Uniform-cost * Bidirectional Ex: You h9ave an ﬁ% }p tlie é:lafis. Stutc_lyirtgg for four(hotgs will
. : get you a 95 on the final. Studying for four more (eight
HOIy Grail hours) will get you a 99 on the final. What to do?

earch -
§ A combination of satisfy and suffice

Introduced by Herbert A. Simon in 1956

1.

2.

Depth-First Iterative Deepening (DFID)

c=ctl

DFS to depth 0 (i.e., treat start node as ol cAl e) Cln
having no successors) [DFS with depth cutoff c;

Iff no solution found, do DFS to depth 1

« Complete

Optimal/Admissible if all operators have the same cost
« Otherwise, not optimal, but guarantees finding solution of shortest length

« Time complexity is a little worse than BFS or DFS because nodes near

the top of the search tree are generated multiple times

« Because most nodes are near the bottom of a tree, worst case time

complexity is still exponential, O(bd)

7

Iterative deepening search (c=1)

oo e e e e

Iterative deepening search (c=3)

o
o

W@*&N
a7t i dn

1.

2.

Depth-First Iterative Deepening (DFID)

DFS to depth 0 (i.e., treat start node as il cem Gt ks
having no successors) L DFS with depth cutoff c;

Iff no solution found, do DFS to depth 1 c=ctl

« Complete

Optimal/Admissible if all operators have the same cost

“oweris — The key: at every stage,

- Timecom ¢hrow away work from soer

* Because n

the top of] .
previous stages (or you

don’t save anything!)

complexit

8

Iterative deepening search (c=2)

LN SN, &,
S s

Limit=2 @

Depth-First Iterative Deepening

If branching factor is b and solution is at depth d, then nodes

at depth d are generated once, nodes at depth d-1 are

generated twice, etc.

- Hence bt + 2b@D + _ +db <b / (1 - 1/b)> = O(be).

« If b=4, then worst case is 1.78 * 49, i.e., 78% more nodes searched than
exist at depth d (in the worst case).

Linear space complexity, O(bd), like DFS

Has advantage of both BFS (completeness) and DFS
(limited space, finds longer paths more quickly)

Generally preferred for large state spaces where solution
depth is unknown

Example for Illustrating Search Strategies Depth-First Search @.?/ ©

.y (LS\R é" /
Expanded node Nodes list @
{8}
S0 {A3B!C8}
A3 {DSEGI8 B! C8}
Dé { EIO GIS Bl CS }
El0 {GBBICS}
GI8 {BIC8}
Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) = 5

14

Depth-First Search Breadth-First Search ®‘\

. . ® ©
S ESEA

Expanded node Nodes list
(s
{80} S0 {A3BIC8}
S0 {A3BI C8} A3 {BICSDSEI0GS}
AWe won'’t go through these in B {CDPERGEGH)
. s {DSE0 GI8 G2 G13 }
detail, but please make sure Do (E0GH G G)
c you understand them. EN (GGGl
. . GI8 (G2 G}
Solution path found is S A G, cost 18

. . Soluti th found is S A G, cost 18
Number of nodes expanded (including goal node) = 5 olution path found 1s : €08)
Number of nodes expanded (including goal node) = 7

Expanded node Nodes list

15 16

Uniform-Cost Search @f/ @ How they Perform
Expanded node Nodes list ®/é\éo/ Depth-First Search:

{S%y Expanded nodes: SADE G
50 (BlA*CY) Solution found: S A G (cost 18) / N
B! {A3SC8G2!)} Breadth-First Search: (A) Q @
A3 {DSCBEN G18 G2 } Expanded nodes: SABCDE G /7 \{

Do (BB GG Solution found: § A G (cost 18) 20 /5

cs (ENGB GG) Uniform-Cost Search: @

El0 (GBGEGH) Expanded nodes: SADBCE G

Solution found: S C G (cost 13)
GB {GB8G?} This is the only uninformed search that worries about costs.
Solution path found is S C G, cost 13

Iterative-Deepening Search:
Number of nodes expanded (including goal node) = 7

nodes expanded: SSABCSADEG

17

Bi-directional Search

Alternate searching from
start state > goal i‘ #
goal state > start e
Stop when the frontiers intersect. # %

Works well only when there are
unique start and goal states

Requires ability to generate 49
“predecessor” states.)

Can (sometimes) find a solution fast & %

Comparing Search Strategies
Complete Optimal Time complexity Space complexity
Breadth first search: yes ves O(b%) O(b%)
Depth first search 1o 1o O(b™) O(bm)
Depth limitedsearch i 1>=d O(bY) O(bl)
depth first iterative yes O(b%) O(bd)

deepening search

bi-directionalscarch yes 5 0o(b%2) 0(b%2)

b is branching factor, d is depth of the shallowest solution,
m is the maximum depth of the search tree, | is the depth limit
21

A State Space that Generates an

Exponentially Growing Search Space

Bi-directional Search

Alternate searching from f
start state > goal i‘ #
goal state > start)
<

Al Lomansl

S 1a -y vy
Thought problems:What’s a real-
world problem where you can’t

generate predecessors? C
predecessor” states. @

Can (sometimes) find a solution fast & %

“«

Avoiding Repeated States

‘Ways to reduce size of state space (with increasing
computational costs)

In increasing order of effectiveness:
Do not return to the state you just came from.

Do not create paths with cycles in them.
Do not generate any state that was ever created before.

Effect depends on frequency of loops in state space.

Holy Grail Search ®}/ @
Expanded node Nodes list @yé\ﬁéo/

{80}

S0 {C8 A3B!}
{G]3 A3 Bl}
{A3B!}

Solution path found is S C G, cost 13 (optimal)
Number of nodes expanded (including goal node) = 3
(minimum possible!)

24

Holy Grail Search
Informed Search

‘Why not go straight to the solution, without
any wasted detours off to the side?

“An informed search strategy—one that
uses problem specific knowledge... can
find solutions more efficiently then an
uninformed strategy.” - R&N pg. 92

<foreshadowing> If only we knew where
we were headed... </foreshadowing>

Weak vs. Strong Methods Heuristic

* Weak methods: Free On-line Dictionary of Computing*

. A rule of thumb, simplification, or educated guess

« Examples 2. Reduces, limits, or guides search in particular domains
3

- Extremely general, not tailored to a specific situation 1

 Subgoaling: split a large problem into several smaller ones that can
be solved one at a time.

© Space splitting: try to list possible solutions to a problem, then try
to rule out classes of these possibilities ‘WordNet (r) 1.6*

© Means-ends analysis: consider current situation and goal, then L C ul £ rules) i ded o
look for ways to shrink the differences between the two - Commonsense rule (or set of rules) intended to increase

the probability of solving some problem

. Does not guarantee feasible solutions; often used with no
theoretical guarantee

* Called “weak” methods because they do not take
advantage of more powerful domain-specific heuristics

28 ‘Heavily edited for clarity

Heuristic Search Heuristic Search

* Uninformed search is generic * Romania: Arad-> Bucharest (for example)
* Node selection depends only on shape of tree and node
expansion strategy.

* Sometimes domain knowledge - Better decision
+ Knowledge about the specific problem

Heuristic Search

* Romania:

« Eyeballing it - certain cities first

- The to where we are going
Can domain AN
knowledge be

captured in a
heuristic?

Heuristic Function

» All domain-specific knowledge is encoded in
heuristic function 4

his some estimate of how desirable a move is
* How “close” (we think, maybe) it gets us to our goal

Usually:

© h(n)>0: for all nodes n

* h(n) = 0: nis a goal node

* h(n) = c0: nis a dead end (no goal can be reached from n)

34

Domain Information

Informed methods add domain-specific information!
Goal: select the best path to continue searching

Define /(n) to estimate the “goodness” of node n

 h(n) = estimated cost (or distance) of minimal cost path from
n to a goal state

Heuristics Examples

e 8-puzzle:
- # of tiles in wrong place

* 8-puzzle (better):
 Sum of distances from goal

- Captures distance and
number of nodes

* Romania:

« Straight-line distance from
start node to Bucharest

- Captures “closer to Bucharest”
33

Example Search Space Revisited

start state

arc cost

& o
/é) é/ e

goal state

Is It A Heuristic?

* A heuristic function is:
* An estimate of how close we are to a goal
* We don’t assume perfect knowledge
* That would be holy grail search
* The estimate can be wrong
- Based on domain-specific information
« Computable from the current state description

Straight Lines to Budapest (km)

Pitesti 1
Rimnicu Vilcea
Sibiu 25

Timisoara
Urziceni
Vaslui
Zerind

Best-First Search

A generic way of referring to informed methods

* Use an evaluation function f'(n) for each node
—>estimate of “desirability”
* f(n) incorporates domain-specific information
« Different f(n) - Different searches

Greedy Best-First Search

Idea: always choose “closest node” to goal
 Most likely to lead to a solution quickly

So, evaluate nodes based only
on heuristic function

* fin) = h(n)

Sort nodes by increasing
values of f

Select node believed to be closest
to a goal node (hence “greedy”)
* That is, select node with smallest /' value

Admissible Heuristics

Admissible heuristics never overestimate cost
« They are optimistic — think goal is closer than it is
* h(n) < h'(n)
« where 4’(n) is true cost to reach goal from n
* hygp(Lugoj) = 244
* Can there be a shorter path?

Using admissible heuristics guarantees that the first
solution found will be optimal

Best-First Search (more)

* Order nodes on the list by

* Increasing value of f'(n)

» Expand most desirable unexpanded node
* Implementation:
* Order nodes in frontier in decreasing order of desirability

 Special cases:
* Greedy best-first search
© A* search

Greedy Best-First Search

Admissible?
© Why not?

Example:
* Greedy search will find:
adb>c>dDeDg; cost=5

+ Optimal solution:
a>g>h>i; cost=3

Not complete (why?)

Straight Lines to Budapest (km)

Pitest 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara

Urziceni

Vaslui

Zerind

R&N pg. 68, 93

Greedy Best-First Search: Ex. 2

hSLD(n)

366

Greedy Best-First Search: Ex. 2

Greedy Best-First Search: Ex. 1

What can we
say about the
search space?

Greedy Best-First Search: Ex. 2

Beam Search Quick Terminology Reminders

Use an evaluation function f (1) = h(n), but the * What s f(n)? + What is /*(n)?

maximum size of the nodes list is %, a fixed constant * An evaluation function - A heuristic function that
that gives... gives the...
Only keeps & best nodes as candidates for expansion, * A cost estimate of...

; * True cost to reach goal from 7
and throws the rest away * The distance from nto G

* Why don’t we just use that?
More space-efficient than greedy search, but may * What is i(n)?

. . L . * What is g(n)?
throw away a node that is on a solution path * A heuristic function 80y .
that... * The path cost of getting from

Not complete * Encodes domain Ston
knowledge about... « describes the “already spent”
Not admissible * The search space costs of the current search

Algorithm A* A" Search

Use evaluation function f (n) = g(n) + h(n) * Idea: Evaluate nodes by combining g(n), the cost of
reaching the node, with h(n), the cost of getting from
g(n) = minimal-cost path from any S to state the node to the goal.

* That is, the cost of getting to the node so far
 Evaluation function:

Sfn) = g(n) + h(n)
* g(n) = cost so far to reach n
* h(n) = estimated cost from # to goal

* fln) = estimated total cost of path
through 7 to goal

Ranks nodes on frontier by estimated cost of solution
+ From start node, through given node, to goal

Not complete if /() can =

A" Search A" Example 1

Avoid ?xpandmg paths. that are already expensive s
« Combines costs-so-far with expected-costs 355=01366

A* is complete iff

* Branching factor is finite

 Every operator has a fixed positive cost

A¥* is admissible iff A
h(n) is admissible 9© f

A" Example 1 A" Example 1

=

S

303=140+253 471184329

Aiad

646-2804366 671=291+380 S

591=3384253 450=45040

646=280+366 415=239+176 671=2014380 413=220+193

A" Example 1

imisoaia

47=118+329

646=280+366

52355+160 4173772100 559-3001253 591-3084253 450-45040 526=366+ 160 417=317+100 553-300+253

Algorithm A*

Algorithm A with constraint that s(n) < h*(n)
© h*(n) = true cost of the minimal cost path from » to a goal.

Therefore, h(n) is an underestimate of the distance to the
goal

) S h() is admissible when A(n) < h*(n)
s> * Guarantees optimality

526=366+160 -~ | . 553=3004253

D > G A* is complete whenever the branching factor is finite,
HB=r180 615-985+160 607=FT+193 and every operator has a fixed positive cost

A* is admissible

10

Example Search Space Revisited Example

. start state
parent pointer h(n) f; (n)

~

g value

h value X i .
* h*(n)is the (hypothetical) perfect heuristic.

 Since h(n) < h*(n) for all n, h is admissible

+ Optimal path =S B G with cost 9.
goal state 70

Greedy Search A* Search

5 cost

1) = h(m) /@N:) ()= gm) + o) Jo)! « ‘0!
Node Nn.:de ‘@3 5‘4 x@il node exp. nodes list &x}é‘ﬁk
expanded list /@\ 4/\ { s(8) } @w = Q) o

s(8) } Q- Q- »éo “' {A(9) B(9) c(11) }
c(3) B(4) A(8) } { B(9) G(10) C(11) D(w) E(®) }
G(0) B(4) A(8) }
{ B(4) A(8) }

* Solution path found is S C G, 3 nodes expanded.

{ G(9) G(10) C(11) D(inf) E(w) }
{ C(11) D(w) E(%») }
* Solution path found is S B G, 4 nodes expanded..

* Fast!! But NOT optimal. « Still pretty fast, and optimal

Proof of the Optimality of A* Admissible heuristics

* Assume that A* has selected G,, a goal state with a E.g., for the 8-puzzle:
1 1 kS
suboptimal solution (g(G,) > /*). h,(n) = number of misplaced tiles El

el]
=Jl=L-]

* We show that this is impossible. hy(n) = total Manhattan distance
Choose a node » on the optimal path to G. (i.e., # of squares each tile is

Because i(n) is admissible, f'(n) < f*. from desired location)
If we choose G, instead of n for expansion, f(G,) < f(n).

This implies f(G,) <f*.

G, is a goal state: h(G,) =0, f(G,) = g(G»). (8 ="

Therefore g(G,) <f* hy(S)=1

Contradiction.

B
=]

o=
*EE

Admissible heuristics

E.g., for the 8-puzzle:

h,(n) = number of misplaced tiles

hy(n) = total Manhattan distance
(i.e., # of squares each tile is
from desired location)

- Jl=0-]

h(85)=8
() = 3+1424242+3+3+2 = 18

What’s a Good Heuristic?

e If hy(n) < hy(n) < h*(n) for all n, then:
Both are admissible
h, is strictly better than (dominates) /,.

* How do we find one?

1. Relaxing the problem:
Remove constraints to create a (much) easier problem
Use the solution cost for this problem as the heuristic function

2. Combining heuristics:
Take the max of several admissible heuristics
Still have an admissible heuristic, and it’s better!

77

Some Examples of Heuristics?

8-puzzle?
Manhattan distance

Driving directions?
Straight line distance

Crossword puzzle?

Making a medical diagnosis?

Dealing with Hard Problems

* For large problems, A* often requires too much space.
* Two variations conserve memory: IDA* and SMA*

e IDA¥* —iterative deepening A*
uses successive iteration with growing limits on /. For example,
* A* but don’t consider any node n where /'(n) > 10
* A* but don’t consider any node n where f'(n) > 20
* A* but don’t consider any node n where f'(n) > 30, ...

* SMA* — Simplified Memory-Bounded A*
uses a queue of restricted size to limit memory use.
throws away the “oldest” worst solution.

76

What’s a Good Heuristic? (2)

3. Use statistical estimates to compute /
May lose admissibility

4. Identify good features, then use a learning
algorithm to find a heuristic function
Also may lose admissibility

* Why are these a good idea, then?
Machine learning can give you answers you don’t “think of”
Can be applied to new puzzles without human intervention
Often work

Summary: Informed Search

Best-first search: general search where the minimum-cost
nodes (according to some measure) are expanded first.

Greedy search: uses minimal estimated cost h(n) to the
goal state as measure. Reduces search time but, is neither
complete nor optimal.

A* search: combines UCS and greedy search
S (n)=g(n) + h(n)
A* is complete and optimal, but space complexity is high.
Time complexity depends on the quality of the heuristic function.

IDA* and SMA* reduce the memory requirements of A*.
80

12

In-class Exercise: Creating Heuristics
Remove 5

8-Puzzle Boat Problems

(2]
- é sheep

1
| 8] cabbage
7

2

3 [s] wolf

Start Sate Gl Sate

N-Queens Water Jug Problem Route Planning

A
&
g
o . ¢ g
FRANCE
81

In-Class 8

Exercise
P

arct f 4 3
cos
3 5

/ 7 é)\‘z% h Lalue
T © @

Apply the following to search this space. At each search step, show:
the current node being expanded, g() (path cost so far), A(n) (heuristic
estimate), f(n) (evaluation function), and /*(n) (true goal distance).

Depth-first search Breadth-first search A* search
Uniform-cost search Greedy search

13

