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Artificial Intelligence 
Class 4: Uninformed Search (Ch. 3.4) 

Dr. Cynthia Matuszek – CMSC 671 

Some material adapted from slides by Gang Hua of  Stevens Institute of  Technology 
Some material adapted from slides by Charles R. Dyer, University of  Wisconsin-Madison 
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Today’s Class 

•  Q&A 

•  Sudoku example 

•  Formalizing search 

•  Uninformed search 
•  What does that mean? 

•  Specific algorithms 
•  Breadth-first search 
•  Depth-first search 
•  Uniform cost search 
•  Depth-first iterative deepening 

•  Example search problems revisited 
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“This	is	the	essence	of	
search—following		up	
one	option	now	and	
putting	the	others	
aside	for	later,	in	case	
the	first	choice	does	
not	lead	to	a	solution.”	

–	R&N	pg.	75	

Questions? 

•  Bread-first, depth-first, and uniform cost search 

•  Heuristic functions 

•  Admissibility 

•  Generation and expansion 

•  Goal tests 

•  Queueing function 

•  Complexity, completeness, and optimality 
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Sudoku, Naïvely 

•  State space: 4x4 matrix, divided into four 2x2 matrices: 
A, B, C, D, cells containing values [1-4] 

•  Operators: 
•  Put a 2 in square <x,y> 
•  Preconditions: 
•  <x,y> is empty 
•  <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …  
•  <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2 
•  if <x,y> in A, then 3 ∉ A; …  

•  How many operators is that? How many preconditions? 

•  Goal: all blocks are filled 
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Formalizing Search III 

•  A solution is a sequence of  operators that is 
associated with a path in a state space from a start 
node to a goal node. 

•  The cost of a solution is the sum of  the arc costs on 
the solution path. 
•  If  all arcs have the same cost, then the solution cost = the 

length of  the solution (number of  steps / state transitions) 
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Formalizing Search IV 

•  State-space search: searching through a state space 
for a solution by making explicit a sufficient 
portion of  an implicit state-space graph to find a 
goal node  
•  Initially V={S}, where S is the start node 

•  When S is expanded, its successors are generated; those 
nodes are added to V and the arcs are added to E 

•  This process continues until a goal node is found 

•  It isn’t usually practical to represent entire space 
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Formalizing Search V 

•  Each node implicitly or explicitly represents a 
partial solution path (and its cost) from start node 
to given node.  
•  In general, from a node there are many possible paths (and 

therefore solutions) that have this partial path as a prefix 
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State-Space Search Algorithm 
function	general-search	(problem,	QUEUEING-FUNCTION)	
;;	problem	describes	start	state,	operators,	goal	test,	
;;				and	operator	costs	
;;	queueing-function	is	a	comparator	function	that		
;;				ranks	two	states	
;;	returns	either	a	goal	node	or	failure	
	
nodes	=	MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))	
		loop	
					if	EMPTY(nodes)	then	return	"failure"	
					node	=	REMOVE-FRONT(nodes)	
					if	problem.GOAL-TEST(node.STATE)	succeeds	
								then	return	node	
					nodes	=	QUEUEING-FUNCTION(nodes,	EXPAND(node,	
													problem.OPERATORS))	
	end	
					;;	Note:	The	goal	test	is	NOT	done	when	nodes	are	generated	
					;;	Note:	This	algorithm	does	not	detect	loops	
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Uninformed vs. Informed Search 

•  Uninformed search strategies 
•  Use no information about the “direction” of  the goal node(s)  
•  Also known as “blind search” 
•  Methods: Breadth-first, depth-first, depth-limited, uniform-cost, 

depth-first iterative deepening, bidirectional 

•  Informed search strategies (next class...) 
•  Use information about the domain to (try to) (usually) head in 

the general direction of  the goal node(s) 
•  Also known as “heuristic search”  
•  Methods: Hill climbing, best-first, greedy search, beam search, 

A, A* 
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Key Procedures to Define 

•  EXPAND	
•  Generate all successor nodes of  a given node 

•  GOAL-TEST	
•  Test if  state satisfies all goal conditions 

•  QUEUEING-FUNCTION	
•  Used to maintain a ranked list of  nodes that are candidates 

for expansion 
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Generation vs. Expansion 

•  Selecting a state means making that node current 

•  Expanding the current state means applying every 
legal action to the current state 

•  Which generates a new set of  nodes 

22 R&N pg. 68, 80 

Why Apply Goal Test Late? 

•  Why does it matter when the goal test is applied (expansion 
time vs. generation time)? 

•  Optimality and complexity of  the algorithms are strongly affected! 
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Review: Characteristics 

•  Completeness: Is the algorithm guaranteed to find 
a solution (if  one exists)? 

•  Optimality: Does it find the optimal solution? 
•  (The solution with the lowest path cost of  all possible 

solutions) 

•  Time complexity: How long does it take to find a 
solution? 

•  Space complexity: How much memory is needed to 
perform the search? 

24 R&N pg. 68, 80 

Admissibility 

•  A heuristic function IS admissible if  it never 
overestimates the cost of  reaching the goal 

•  The estimated cost it estimates is not higher than the 
lowest possible cost from the current point in the 
path 
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Breadth-First 

•  Enqueue nodes in FIFO (first-in, first-out) order 

•  Characteristics: 
•  Complete (meaning?) 

•  Optimal (i.e., admissible) if  all operators have the same cost 

•  Otherwise, not optimal but finds solution with shortest path length 

•  Exponential time and space complexity, O(bd), where: 

•  d is the depth of  the solution  

•  b is the branching factor (number of  children) at each node 

•  Takes a long time to find long-path solutions 
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BFS BFS 
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Breadth-First: Analysis 

•  Takes a long time to find long-path solutions 
•  Must look at all shorter length possibilities first  

•  A complete search tree of  depth d where each non-leaf  
node has b children: 

       1 + b + b2 + ... + bd = (bd+1 - 1)/(b-1) nodes  

•  What if  we expand nodes when they are selected? 
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Breadth-First: O(Example) 

 1 + b + b2 + ... + bd = (bd+1 - 1)/(b-1) nodes  
•  Tree where: d=12 

•  Every node at depths 0, ..., 11 has 10 children (b=10) 

•  Every node at depth 12 has 0 children 

•  1 + 10 + 100 + 1000 + ... + 1012 = (1013 - 1)/9 = O(1012) 
nodes in the complete search tree 

•  If  BFS expands 1000 nodes/sec and each node uses 100 
bytes of  storage 

•  Will take 35 years to run in the worst case 

•  Will use 111 terabytes of  memory 
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 Depth-First (DFS) 

•  Enqueue nodes on nodes in LIFO (last-in, first-out) 
order 
•  That is, nodes used as a stack data structure to order nodes  

•  Characteristics: 
•  Might not terminate without a “depth bound”  
•  I.e., cutting off  search below a fixed depth D ( “depth-limited search”) 

•  Not complete 
•  With or without cycle detection, and with or without a cutoff  depth 

•  Exponential time, O(bd), but only linear space, O(bd) 
•  Can find long solutions quickly if  lucky 
•  And short solutions slowly if  unlucky 
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Loops?

Infinite 
search 
spaces?

DFS 
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DFS DFS 

DFS DFS 

DFS  Depth-First (DFS): Analysis 

•  DFS: 
•  Can find long solutions quickly if  lucky 
•  And short solutions slowly if  unlucky 

•  When search hits a dead end 
•  Can only back up one level at a time* 
•  Even if  the “problem” occurs because of  a bad operator 

choice near the top of  the tree 
•  Hence, only does “chronological backtracking” 

* Why? 
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Uniform-Cost (UCS) 

•  Enqueue nodes by path cost: 
•  Let g(n) = cost of  path from start node to current node n 
•  Sort nodes by increasing value of  g 
•  Identical to breadth-first search if all operators have equal cost 

•  “Dijkstra’s Algorithm” in algorithms literature  

•  “Branch and Bound Algorithm” in operations research literature  

•  Complete (*) 

•  Optimal/Admissible (*) 
•  Admissibility depends on the goal test being applied when a node is removed 

from the nodes list, not when its parent node is expanded and the node is 
first generated  

•  Exponential time and space complexity, O(bd) 
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Example: Path Costs 
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UCS Implementation 

•  For each frontier node, save the total cost of  the 
path from the initial state to that node 

•  Expand the frontier node with the lowest path cost 

•  Equivalent to breadth-first if  step costs all equal 

•  Equivalent to Dijkstra’s algorithm in general 

Uniform-cost search example 

Uniform-cost search example 

•  Expansion order: 
(S,p,d,b,e,a,r,f,e,G) 

Uniform-cost Search Example 

53 
https://www.youtube.com/watch?v=XyoucHYKYSE 
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Depth-First Iterative Deepening (DFID) 
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until solution found do: 
   DFS with depth cutoff c; 
   c = c+1 

1.  DFS to depth 0 (i.e., treat start node as  
having no successors) 

2.  Iff  no solution found, do DFS to depth 1 

•  Complete  

•  Optimal/Admissible if  all operators have the same cost 
•  Otherwise, not optimal, but guarantees finding solution of  shortest length 

•  Time complexity is a little worse than BFS or DFS because nodes near 
the top of  the search tree are generated multiple times 

•  Because most nodes are near the bottom of  a tree, worst case time 
complexity is still exponential, O(bd)  

Depth-First Iterative Deepening 

•  If  branching factor is b and solution is at depth d, then nodes 
at depth d are generated once, nodes at depth d-1 are 
generated twice, etc.  
•  Hence bd + 2b(d-1) + ... + db ≤ bd / (1 - 1/b)2 = O(bd).  
•  If  b=4, then worst case is 1.78 * 4d, i.e., 78% more nodes searched than 

exist at depth d (in the worst case).  

•  Linear space complexity, O(bd), like DFS 

•  Has advantage of  both BFS (completeness) and DFS 
(limited space, finds longer paths more quickly)  

•  Generally preferred for large state spaces where solution 
depth is unknown 
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Iterative deepening search (c=1) Iterative deepening search (c=2) 

Iterative deepening search (c=3) Example for Illustrating Search Strategies 
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Depth-First Search  

 

  Expanded node   Nodes list 

       { S0 } 

   S0     { A3 B1 C8 } 

   A3     { D6 E10 G18 B1 C8 }     

   D6     { E10 G18 B1 C8 } 

   E10     { G18 B1 C8 }                

   G18      { B1 C8 }  

      Solution path found is S A G, cost 18 
     Number of  nodes expanded (including goal node) = 5 
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  Expanded node   Nodes list 

    { S0 } 

   S0  { A3 B1 C8 } 

   A3  { B1 C8 D6 E10 G18 }    

   B1  { C8 D6 E10 G18 G21 } 

   C8  { D6 E10 G18 G21 G13 }          

   D6  { E10 G18 G21 G13 }    

   E10  { G18 G21 G13 }      

   G18  { G21 G13 } 

    Solution path found is S A G , cost 18 

    Number of  nodes expanded (including goal node) = 7 
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Uniform-Cost Search  

  Expanded node   Nodes list 

    { S0 } 

   S0  { B1 A3 C8 } 

   B1  { A3 C8 G21 } 

   A3  { D6 C8 E10 G18 G21 }   

   D6  { C8 E10 G18 G1 } 

   C8  { E10 G13 G18 G21 }        

   E10  { G13 G18 G21 } 

   G13  { G18 G21 }                              

    Solution path found is S C G, cost 13 

    Number of  nodes expanded (including goal node) = 7 
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How they Perform 

•  Depth-First Search:  
•  Expanded nodes: S A D E G  
•  Solution found: S A G (cost 18) 

•  Breadth-First Search:  
•  Expanded nodes: S A B C D E G  
•  Solution found: S A G (cost 18) 

•  Uniform-Cost Search:  
•  Expanded nodes: S A D B C E G  
•  Solution found: S C G (cost 13) 
This is the only uninformed search that worries about costs. 

•  Iterative-Deepening Search:  
•  nodes expanded: S S A B C S A D E G  
•  Solution found: S A G (cost 18) 
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Bi-directional Search 

•  Alternate searching from  
•  start state à goal  
•  goal state à start 

•  Stop when the frontiers intersect. 

•  Works well only when there are  
unique start and goal states 

•  Requires ability to generate 
“predecessor” states. 

•  Can (sometimes) find a solution fast 
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Bi-directional Search 

•  Alternate searching from  
•  start state à goal  
•  goal state à start 

•  Stop when the frontiers intersect. 

•  Works well only when there are  
unique start and goal states 

•  Requires ability to generate 
“predecessor” states. 

•  Can (sometimes) find a solution fast 
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For next time:  What’s a real 
world problem where you can’t 

generate predecessors?
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Comparing Search Strategies  
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Avoiding Repeated States  

•  Ways to reduce size of  state space (with increasing 
computational costs) 

•  In increasing order of  effectiveness: 

1.  Do not return to the state you just came from.  
2.  Do not create paths with cycles in them.  
3.  Do not generate any state that was ever created before. 

•  Effect depends on frequency of  loops in state space.  
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A State Space that Generates an 

 Exponentially Growing Search Space  
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Holy Grail Search 

  Expanded node   Nodes list 

    { S0 } 

   S0  {C8 A3 B1 } 

   C8  { G13 A3 B1 }     

   G13  { A3 B1 }  

 

      Solution path found is S C G, cost 13 (optimal) 

      Number of  nodes expanded (including goal node) = 3  

   (minimum possible!) 
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Holy Grail Search 

    Why not go straight to the solution, without  
any wasted detours off  to the side? 

 

If only we knew where  
we were headed… 
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<foreshadowing>
</foreshadowing>

8-Puzzle Revisited 

•  What’s a good  
algorithm? 
• Depth-first search? 

• Breadth-first search? 

• Uniform-cost? 
•  Iterative deepening? 
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“Satisficing” 

•  Wikipedia: “Satisficing is … searching until 
  an acceptability threshold is met” 

•  Contrast with optimality 
•  Satisficable problems do not get more 

benefit from finding an optimal solution 

•  Ex: You have an A in the class. Studying for four hours will 
get you a 95 on the final. Studying for four more (eight 
hours) will get you a 99 on the final. What to do? 

•  A combination of  satisfy and suffice 

•  Introduced by Herbert A. Simon in 1956 
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Another piece of 
problem 
definition


