
1

Slides adapted with thanks from: Dr. Marie desJardin

Artificial Intelligence
Class 4: Uninformed Search (Ch. 3.4)

Dr. Cynthia Matuszek – CMSC 671

Some material adapted from slides by Gang Hua of Stevens Institute of Technology
Some material adapted from slides by Charles R. Dyer, University of Wisconsin-Madison

S

C B A

D G E

3 1 8

15
20 5

3
7

Today’s Class

•  Q&A

•  Sudoku example

•  Formalizing search

•  Uninformed search
•  What does that mean?

•  Specific algorithms
•  Breadth-first search
•  Depth-first search
•  Uniform cost search
•  Depth-first iterative deepening

•  Example search problems revisited

3

“This	is	the	essence	of	
search—following		up	
one	option	now	and	
putting	the	others	
aside	for	later,	in	case	
the	first	choice	does	
not	lead	to	a	solution.”	

–	R&N	pg.	75	

Questions?

•  Bread-first, depth-first, and uniform cost search

•  Heuristic functions

•  Admissibility

•  Generation and expansion

•  Goal tests

•  Queueing function

•  Complexity, completeness, and optimality

4

Sudoku, Naïvely

•  State space: 4x4 matrix, divided into four 2x2 matrices:
A, B, C, D, cells containing values [1-4]

•  Operators:
•  Put a 2 in square <x,y>
•  Preconditions:
•  <x,y> is empty
•  <x, (y±1)> ≠ 2; <x, (y±2)> ≠ 2; …
•  <(x±1), y> ≠ 2; ... <(x±3), y> ≠ 2
•  if <x,y> in A, then 3 ∉ A; …

•  How many operators is that? How many preconditions?

•  Goal: all blocks are filled

3

1

3

2

9

1
3
3
4

x 4

Formalizing Search III

•  A solution is a sequence of operators that is
associated with a path in a state space from a start
node to a goal node.

•  The cost of a solution is the sum of the arc costs on
the solution path.
•  If all arcs have the same cost, then the solution cost = the

length of the solution (number of steps / state transitions)

16

Formalizing Search IV

•  State-space search: searching through a state space
for a solution by making explicit a sufficient
portion of an implicit state-space graph to find a
goal node
•  Initially V={S}, where S is the start node

•  When S is expanded, its successors are generated; those
nodes are added to V and the arcs are added to E

•  This process continues until a goal node is found

•  It isn’t usually practical to represent entire space

17

2

Formalizing Search V

•  Each node implicitly or explicitly represents a
partial solution path (and its cost) from start node
to given node.
•  In general, from a node there are many possible paths (and

therefore solutions) that have this partial path as a prefix

18

State-Space Search Algorithm
function	general-search	(problem,	QUEUEING-FUNCTION)	
;;	problem	describes	start	state,	operators,	goal	test,	
;;				and	operator	costs	
;;	queueing-function	is	a	comparator	function	that		
;;				ranks	two	states	
;;	returns	either	a	goal	node	or	failure	
	
nodes	=	MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))	
		loop	
					if	EMPTY(nodes)	then	return	"failure"	
					node	=	REMOVE-FRONT(nodes)	
					if	problem.GOAL-TEST(node.STATE)	succeeds	
								then	return	node	
					nodes	=	QUEUEING-FUNCTION(nodes,	EXPAND(node,	
													problem.OPERATORS))	
	end	
					;;	Note:	The	goal	test	is	NOT	done	when	nodes	are	generated	
					;;	Note:	This	algorithm	does	not	detect	loops	

19

A1 A2

A3 A6 A7

Uninformed vs. Informed Search

•  Uninformed search strategies
•  Use no information about the “direction” of the goal node(s)
•  Also known as “blind search”
•  Methods: Breadth-first, depth-first, depth-limited, uniform-cost,

depth-first iterative deepening, bidirectional

•  Informed search strategies (next class...)
•  Use information about the domain to (try to) (usually) head in

the general direction of the goal node(s)
•  Also known as “heuristic search”
•  Methods: Hill climbing, best-first, greedy search, beam search,

A, A*

20

Key Procedures to Define

•  EXPAND	
•  Generate all successor nodes of a given node

•  GOAL-TEST	
•  Test if state satisfies all goal conditions

•  QUEUEING-FUNCTION	
•  Used to maintain a ranked list of nodes that are candidates

for expansion

21

Generation vs. Expansion

•  Selecting a state means making that node current

•  Expanding the current state means applying every
legal action to the current state

•  Which generates a new set of nodes

22 R&N pg. 68, 80

Why Apply Goal Test Late?

•  Why does it matter when the goal test is applied (expansion
time vs. generation time)?

•  Optimality and complexity of the algorithms are strongly affected!

23

S

C B A

D G E

3 1 8

15 20 5
3

7

3

Review: Characteristics

•  Completeness: Is the algorithm guaranteed to find
a solution (if one exists)?

•  Optimality: Does it find the optimal solution?
•  (The solution with the lowest path cost of all possible

solutions)

•  Time complexity: How long does it take to find a
solution?

•  Space complexity: How much memory is needed to
perform the search?

24 R&N pg. 68, 80

Admissibility

•  A heuristic function IS admissible if it never
overestimates the cost of reaching the goal

•  The estimated cost it estimates is not higher than the
lowest possible cost from the current point in the
path

25

Breadth-First

•  Enqueue nodes in FIFO (first-in, first-out) order

•  Characteristics:
•  Complete (meaning?)

•  Optimal (i.e., admissible) if all operators have the same cost

•  Otherwise, not optimal but finds solution with shortest path length

•  Exponential time and space complexity, O(bd), where:

•  d is the depth of the solution

•  b is the branching factor (number of children) at each node

•  Takes a long time to find long-path solutions

26

BFS

BFS BFS

4

BFS BFS

D

Breadth-First: Analysis

•  Takes a long time to find long-path solutions
•  Must look at all shorter length possibilities first

•  A complete search tree of depth d where each non-leaf
node has b children:

 1 + b + b2 + ... + bd = (bd+1 - 1)/(b-1) nodes

•  What if we expand nodes when they are selected?

32

Breadth-First: O(Example)

 1 + b + b2 + ... + bd = (bd+1 - 1)/(b-1) nodes
•  Tree where: d=12

•  Every node at depths 0, ..., 11 has 10 children (b=10)

•  Every node at depth 12 has 0 children

•  1 + 10 + 100 + 1000 + ... + 1012 = (1013 - 1)/9 = O(1012)
nodes in the complete search tree

•  If BFS expands 1000 nodes/sec and each node uses 100
bytes of storage

•  Will take 35 years to run in the worst case

•  Will use 111 terabytes of memory

33

 Depth-First (DFS)

•  Enqueue nodes on nodes in LIFO (last-in, first-out)
order
•  That is, nodes used as a stack data structure to order nodes

•  Characteristics:
•  Might not terminate without a “depth bound”
•  I.e., cutting off search below a fixed depth D (“depth-limited search”)

•  Not complete
•  With or without cycle detection, and with or without a cutoff depth

•  Exponential time, O(bd), but only linear space, O(bd)
•  Can find long solutions quickly if lucky
•  And short solutions slowly if unlucky

34

Loops?

Infinite
search
spaces?

DFS

5

DFS DFS

DFS DFS

DFS DFS

6

DFS DFS

DFS DFS

DFS Depth-First (DFS): Analysis

•  DFS:
•  Can find long solutions quickly if lucky
•  And short solutions slowly if unlucky

•  When search hits a dead end
•  Can only back up one level at a time*
•  Even if the “problem” occurs because of a bad operator

choice near the top of the tree
•  Hence, only does “chronological backtracking”

* Why?

47

7

Uniform-Cost (UCS)

•  Enqueue nodes by path cost:
•  Let g(n) = cost of path from start node to current node n
•  Sort nodes by increasing value of g
•  Identical to breadth-first search if all operators have equal cost

•  “Dijkstra’s Algorithm” in algorithms literature

•  “Branch and Bound Algorithm” in operations research literature

•  Complete (*)

•  Optimal/Admissible (*)
•  Admissibility depends on the goal test being applied when a node is removed

from the nodes list, not when its parent node is expanded and the node is
first generated

•  Exponential time and space complexity, O(bd)

48

Example: Path Costs

49

UCS Implementation

•  For each frontier node, save the total cost of the
path from the initial state to that node

•  Expand the frontier node with the lowest path cost

•  Equivalent to breadth-first if step costs all equal

•  Equivalent to Dijkstra’s algorithm in general

Uniform-cost search example

Uniform-cost search example

•  Expansion order:
(S,p,d,b,e,a,r,f,e,G)

Uniform-cost Search Example

53
https://www.youtube.com/watch?v=XyoucHYKYSE

8

Depth-First Iterative Deepening (DFID)

54

until solution found do:
 DFS with depth cutoff c;
 c = c+1

1.  DFS to depth 0 (i.e., treat start node as
having no successors)

2.  Iff no solution found, do DFS to depth 1

•  Complete

•  Optimal/Admissible if all operators have the same cost
•  Otherwise, not optimal, but guarantees finding solution of shortest length

•  Time complexity is a little worse than BFS or DFS because nodes near
the top of the search tree are generated multiple times

•  Because most nodes are near the bottom of a tree, worst case time
complexity is still exponential, O(bd)

Depth-First Iterative Deepening

•  If branching factor is b and solution is at depth d, then nodes
at depth d are generated once, nodes at depth d-1 are
generated twice, etc.
•  Hence bd + 2b(d-1) + ... + db ≤ bd / (1 - 1/b)2 = O(bd).
•  If b=4, then worst case is 1.78 * 4d, i.e., 78% more nodes searched than

exist at depth d (in the worst case).

•  Linear space complexity, O(bd), like DFS

•  Has advantage of both BFS (completeness) and DFS
(limited space, finds longer paths more quickly)

•  Generally preferred for large state spaces where solution
depth is unknown

55

Iterative deepening search (c=1) Iterative deepening search (c=2)

Iterative deepening search (c=3) Example for Illustrating Search Strategies

59

S

C B A

D G E

3 1 8

15 20 5
3

7

9

Depth-First Search

 Expanded node Nodes list

 { S0 }

 S0 { A3 B1 C8 }

 A3 { D6 E10 G18 B1 C8 }

 D6 { E10 G18 B1 C8 }

 E10 { G18 B1 C8 }

 G18 { B1 C8 }

 Solution path found is S A G, cost 18
 Number of nodes expanded (including goal node) = 5

60

S

C B A

D G E

3 1 8

15 20 5
3 7

 Expanded node Nodes list

 { S0 }

 S0 { A3 B1 C8 }

 A3 { B1 C8 D6 E10 G18 }

 B1 { C8 D6 E10 G18 G21 }

 C8 { D6 E10 G18 G21 G13 }

 D6 { E10 G18 G21 G13 }

 E10 { G18 G21 G13 }

 G18 { G21 G13 }

 Solution path found is S A G , cost 18

 Number of nodes expanded (including goal node) = 7

61

Breadth-First Search
S

C B A

D G E

3 1 8

15 20 5
3 7

Uniform-Cost Search

 Expanded node Nodes list

 { S0 }

 S0 { B1 A3 C8 }

 B1 { A3 C8 G21 }

 A3 { D6 C8 E10 G18 G21 }

 D6 { C8 E10 G18 G1 }

 C8 { E10 G13 G18 G21 }

 E10 { G13 G18 G21 }

 G13 { G18 G21 }

 Solution path found is S C G, cost 13

 Number of nodes expanded (including goal node) = 7

62

S

C B A

D G E

3 1 8

15 20 5
3 7

How they Perform

•  Depth-First Search:
•  Expanded nodes: S A D E G
•  Solution found: S A G (cost 18)

•  Breadth-First Search:
•  Expanded nodes: S A B C D E G
•  Solution found: S A G (cost 18)

•  Uniform-Cost Search:
•  Expanded nodes: S A D B C E G
•  Solution found: S C G (cost 13)
This is the only uninformed search that worries about costs.

•  Iterative-Deepening Search:
•  nodes expanded: S S A B C S A D E G
•  Solution found: S A G (cost 18)

S

C B A

D G E

3 1 8

15 20 5
3 7

Bi-directional Search

•  Alternate searching from
•  start state à goal
•  goal state à start

•  Stop when the frontiers intersect.

•  Works well only when there are
unique start and goal states

•  Requires ability to generate
“predecessor” states.

•  Can (sometimes) find a solution fast

64

Bi-directional Search

•  Alternate searching from
•  start state à goal
•  goal state à start

•  Stop when the frontiers intersect.

•  Works well only when there are
unique start and goal states

•  Requires ability to generate
“predecessor” states.

•  Can (sometimes) find a solution fast

65

For next time: What’s a real
world problem where you can’t

generate predecessors?

10

Comparing Search Strategies

66

Avoiding Repeated States

•  Ways to reduce size of state space (with increasing
computational costs)

•  In increasing order of effectiveness:

1.  Do not return to the state you just came from.
2.  Do not create paths with cycles in them.
3.  Do not generate any state that was ever created before.

•  Effect depends on frequency of loops in state space.

67

A State Space that Generates an

 Exponentially Growing Search Space

68

Holy Grail Search

 Expanded node Nodes list

 { S0 }

 S0 {C8 A3 B1 }

 C8 { G13 A3 B1 }

 G13 { A3 B1 }

 Solution path found is S C G, cost 13 (optimal)

 Number of nodes expanded (including goal node) = 3

 (minimum possible!)

69

S

C B A

D G E

3 1 8

15 20 5
3 7

Holy Grail Search

 Why not go straight to the solution, without
any wasted detours off to the side?

If only we knew where
we were headed…

70

<foreshadowing>
</foreshadowing>

8-Puzzle Revisited

•  What’s a good
algorithm?
• Depth-first search?

• Breadth-first search?

• Uniform-cost?
•  Iterative deepening?

71

S

G

?

11

“Satisficing”

•  Wikipedia: “Satisficing is … searching until
 an acceptability threshold is met”

•  Contrast with optimality
•  Satisficable problems do not get more

benefit from finding an optimal solution

•  Ex: You have an A in the class. Studying for four hours will
get you a 95 on the final. Studying for four more (eight
hours) will get you a 99 on the final. What to do?

•  A combination of satisfy and suffice

•  Introduced by Herbert A. Simon in 1956

72

Another piece of
problem
definition

