Artificial Intelligence
Class 4: Uninformed Search (Ch. 3.4)

5%

Jolko)
N

Questions?

Bread-first, depth-first, and uniform cost search
Heuristic functions

Admissibility

Generation and expansion

Goal tests

Queueing function

Complexity, completeness, and optimality

4

Formalizing Search III

A solution is a sequence of operators that is
associated with a path in a state space from a start
node to a goal node.

The cost of a solution is the sum of the arc costs on
the solution path.

If all arcs have the same cost, then the solution cost = the
length of the solution (number of steps / state transitions)

© Q&A

Today’s Class

“This is the essence of
Sudoku example search—following up

« Formalizing search one option now and
« Uninformed search putting the others

What does that mean? aside for later, in case

Specific algorithms the first choice does
Breadth-first search . ”
Depth-first search not lead to a solution.
Uniform cost search
Depth-first iterative deepening - R&N pg. 75

« Example search problems revisited

3

Sudoku, Naively

State space: 4x4 matrix, divided into four 2x2 matrices:
A, B, C, D, cells containing values [1-4]

Operators:

Put a 2 in square <x,y>
Preconditions:

* <x,y>is empty 1
o <X, (YED>#2;<x, (y£2)>#2; ... 3,4

o <(xx1),y>#2;... <(xx3),y>#2 3 2

« if<x,y>in A, then 3¢ A; ... 4
How many operators is that? How many preconditions?
Goal: all blocks are filled

Formalizing Search IV

State-space search: searching through a state space
for a solution by making explicit a sufficient
portion of an implicit state-space graph to find a
goal node

Initially V={S}, where S is the start node

When S is expanded, its successors are generated; those
nodes are added to V and the arcs are added to E

This process continues until a goal node is found

« It isn’t usually practical to represent entire space

17

Formalizing Search V

» Each node implicitly or explicitly represents a
partial solution path (and its cost) from start node
to given node.

In general, from a node there are many possible paths (and
therefore solutions) that have this partial path as a prefix

Uninformed vs. Informed Search

¢ Uninformed search strategies
Use no information about the “direction” of the goal node(s)
Also known as “blind search”

Methods: Breadth-first, depth-first, depth-limited, uniform-cost,
depth-first iterative deepening, bidirectional

» Informed search strategies (next class...)

Use information about the domain to (try to) (usually) head in
the general direction of the goal node(s)

Also known as “heuristic search”

Methods: Hill climbing, best-first, greedy search, beam search,
A, A*

Generation vs. Expansion

* Selecting a state means making that node current

» Expanding the current state means applying every
legal action to the current state

* Which generates a new set of nodes

State-Space Search Algorithm

function general-search (problem, QUEUEING-FUNCTION)
55 problem describes start state, operators, goal test,
and operator costs
5 queueing-function is a comparator function that
ranks two states
; returns either a goal node or failure
nodes = MAKE-QUEUE (MAKE-NODE (problem. INITIAL-STATE))
loop
if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds
then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
problem.OPERATORS))

55 Note: The goal test is NOT done when nodes are generated
55 Note: This algorithm does not detect loops

19

Key Procedures to Define

* EXPAND
Generate all successor nodes of a given node

* GOAL-TEST
Test if state satisfies all goal conditions

* QUEUEING-FUNCTION

Used to maintain a ranked list of nodes that are candidates
for expansion

Why Apply Goal Test Late?

* Why does it matter when the goal test is applied (expansion
time vs. generation time)?

« Optimality and complexity of the algorithms are strongly affected!

/38
&, P

Review: Characteristics Admissibility

Complptenpss: Is thfe algorithm guaranteed to find * A heuristic function IS admissible if it never
a solution (if one exists)? overestimates the cost of reaching the goal

Optimality: Does it find the optimal solution? « The estimated cost it estimates is not higher than the
gﬁiiﬁs‘l)mn with the lowest path cost of all possible lowest possible cost from the current point in the
path

Time complexity: How long does it take to find a
solution?

Space complexity: How much memory is needed to
perform the search?

R&N pg. 68, 80

Breadth-First

» Enqueue nodes in FIFO (first-in, first-out) order

* Characteristics:
Complete (meaning?)
Optimal (i.e., admissible) if all operators have the same cost
Otherwise, not optimal but finds solution with shortest path length
Exponential time and space complexity, O(b9), where:
« dis the depth of the solution
* bis the branching factor (number of children) at each node

» Takes a long time to find long-path solutions

26

BFS

pPO O O ©

Breadth-First: Analysis

» Takes a long time to find long-path solutions
Must look at all shorter length possibilities first
A complete search tree of depth d where each non-leaf
node has b children:

1+b+b2+ ... +bd = (b - 1)/(b-1) nodes

‘What if we expand nodes when they are selected?

Depth-First (DFS)

* Enqueue nodes on nodes in LIFO (last-in, first-out)
order
That is, nodes used as a stack data structure to order nodes

* Characteristics:
Might not terminate without a “depth bound”

« Le., cutting off search below a fixed depth D (“depth-limited search”)

Not complete

« With or without cycle detection, and with or without a cutoff depth

Exponential time, O(b%), but only linear space, O(bd)
« Can find long solutions quickly if lucky
* And short solutions slowly if unlucky

34

Loops?

Infinite
search
spaces?

BFS

PO O ©

Breadth-First: O(Example)

1+b+b2+...+bd= (b4 -1)/(b-1) nodes
Tree where: d=12
Every node at depths 0, ..., 11 has 10 children (b=10)
Every node at depth 12 has 0 children
1+ 10+ 100 + 1000 + ... + 1012 = (10'3-1)/9 = O(10'2)
nodes in the complete search tree
If BFS expands 1000 nodes/sec and each node uses 100
bytes of storage
‘Will take 35 years to run in the worst case
Will use 111 terabytes of memory

33

/N\ /)\<\
o oo

@)
/ \\ /\ /\ /\
DDDBD O DD O

»@ ©
AR AN
C IO OEC)

/\ /\ /\ /\
DD DD DD DO

AYEA (/‘\
OREORORCRONC)

AN AN AYA
CORORORGRORCROREC)!

N\

o

//\ //\ /\
DDDDOD DO

/N
@

& % @b
ORORURONE)

/ N\
/] 70
\’j %)

/\ /\ /\ /\
® O WD O O W O

N
ORCRORC)

Depth-First (DFS): Analysis

» DFS:
Can find long solutions quickly if lucky
And short solutions slowly if unlucky

* When search hits a dead end
Can only back up one level at a time*

Even if the “problem” occurs because of a bad operator
choice near the top of the tree

Hence, only does “chronological backtracking”

* Why?

Uniform-Cost (UCS)

Enqueue nodes by path cost:
Let g(n) = cost of path from start node to current node n
Sort nodes by increasing value of g
Identical to breadth-first search if all operators have equal cost

“Dijkstra’s Algorithm” in algorithms literature
“Branch and Bound Algorithm” in operations research literature
Complete (*)
Optimal/Admissible (*)
Admissibility depends on the goal test being applied when a node is removed

from the nodes Iist, not when its parent node 1s expanded and the node is
first generated

Exponential time and space complexity, O(b¢)

48

UCS Implementation

For each frontier node, save the total cost of the
path from the initial state to that node

Expand the frontier node with the lowest path cost
Equivalent to breadth-first if step costs all equal

Equivalent to Dijkstra’s algorithm in general

Uniform-cost search example

» Expansion order:
(s7p7d$b’ e’a’7r7f7e7 G)

P

95 2’ -
G o @ gon e
@8 ags (P1 P q/l\

1

q

:1“@)10
a

Example: Path Costs

Romania with step costs in km I

Straight—line distance.
o Bucharest

Arad

Bucharest

Urziceni
Vaslui
Zerind

Animation of
the Uniform-
Cost search
Algorithm

https://www.youtube.com/watch?v=XyoucHYKYSE

Depth-First Iterative Deepening (DFID)

c=ctl

1. DFS to depth 0 (i.e., treat start node as it ciem it ckn
having no successors) L DFS with depth cutoff c;

2. Iff no solution found, do DFS to depth 1

« Complete

Optimal/Admissible if all operators have the same cost
Otherwise, not optimal, but guarantees finding solution of shortest length

+ Time complexity is a little worse than BFS or DFS because nodes near
the top of the search tree are generated multiple times

* Because most nodes are near the bottom of a tree, worst case time
complexity is still exponential, O(bd)

54

Iterative deepening search (c=1)

Limit = 1 o)
g Q >®/@\© o/®\® o/.\'

Iterative deepening search (c=3)

e
g
£ £ £

o
o

Depth-First Iterative Deepening

If branching factor is b and solution is at depth d, then nodes
at depth d are generated once, nodes at depth d-1 are
generated twice, etc.

Hence b¢ + 2b@D + . + db<bd / (1 - 1/b)2 = O(b?).

If b=4, then worst case is 1.78 * 49, i.e., 78% more nodes searched than

exist at depth d (in the worst case).

Linear space complexity, O(bd), like DFS

Has advantage of both BFS (completeness) and DFS
(limited space, finds longer paths more quickly)

Generally preferred for large state spaces where solution
depth is unknown

Iterative deepening search (c=2)

e K}\@ S

Example for Illustrating Search Strategies

Depth-First Search @2‘/ @
O 3

Expanded node Nodes list
(8%
SO {AS BI CS }
A3 {D6E10 GIS Bl CS}
D6 { EIU G18 Bl CS }
EIO { GIS Bl CS }
GIS { Bl CS }
Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) = 5

60

Uniform-Cost Search >~

7®\§ 0 /©
Expanded node Nodes list @ gé é 5

(s
SU { Bl AJ C3 }
Bl { A3 CB GZI }
A3 (D6 CE Elﬂ GlS G21 }
D6 { CS EIU Glg Gl }
cs {E0GB3G8 G2}
Ew { G13 GIB GZl }
G3 {GI8G2)
Solution path found is S C G, cost 13

Number of nodes expanded (including goal node) = 7

62

Bi-directional Search

Alternate searching from
start state > goal
goal state > start

Stop when the frontiers intersect.

Works well only when there are
unique start and goal states

Requires ability to generate
“predecessor” states.

Can (sometimes) find a solution fast

Breadth-First Search @2‘/ @
y %\K 0 /
Expanded node Nodes list @ é
{8}
SO { A3B! CB }
A3 {Bl CK DEEID GlB}
B! {CSDSENG8 G2}
{ Dﬁ Elﬂ GlS GZl G13 }
{ El0 G18 GZl G13 }
{ G18 Gll G13 }
{ G2l Gl3)
Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) = 7

61

How they Perform

Depth-First Search:
Expanded nodes: SADE G
Solution found: S A G (cost 18) f 1N
Breadth-First Search: @ () @

Expanded nodes: SABCDEG 3, 7 5

Solution found: S A G (cost 18) %20 5
Uniform-Cost Search: @

Expanded nodes: SADBCE G

Solution found: S C G (cost 13)
This is the only uninformed search that worries about costs.

Iterative-Deepening Search:
nodes expanded: SSABCSADEG

Bi-directional Search

Alternate searching from
start state > goal i‘
goal state > start ®#
S Ta 4lan Lo 4 tam e ‘-
For next time: What'’s a real
w world problem where you can’t

R generate predecessors!? »
‘predecessor states. @

Can (sometimes) find a solution fast &

Comparing Search Strategies Avoiding Repeated States

Complete Optimal Time complexity ~ Space complexity

BreatihGrsbsearehs ges . O(b) O(b) * Ways to reduce size of state space (with increasing
computational costs)
Depth first search no O(b™) O(bm)

Depth limited search d O(bh) O(bl)

depth first iterative 0O(b%) 0(bd) Do not return to the state you just came from.
deepening search Do not create paths with cycles in them.
bisdifestivnal s 0O(b¢?) 0O(bd?) Do not generate any state that was ever created before.

* In increasing order of effectiveness:

b is branching factor, d is depth of the shallowest solution, Effect depends on frequency of loops in state space.
m is the maximum depth of the search tree, | is the depth limit

66

A State Space that Generates an Holv Grail S h }/®1\‘\
Exponentially Growing Search Space Oly Lorall vearc y@ ©
X o
Expanded node Nodes list ® é\é‘/

{8%}
S0 {C8 A3B!}
C8 { GI3 A3 B! }
Gl3 {A3 B! }

Solution path found is S C G, cost 13 (optimal)
Number of nodes expanded (including goal node) = 3
(minimum possible!)

69

Holy Grail Search 8-Puzzle Revisited

‘Why not go straight to the solution, without * What’s a good E E

any wasted detours off to the side? algorithm? E
1

Depth-first search?

Breadth-first search?
<foreshadowing> If only we knew where IE‘

1 - ?
we were headed... </foreshadowing> Unlfqrm COSt!]
Iterative deepening?

“Satisficing”

Wikipedia: “Satisficing is ... searching until

an acceptability threshold is met”

Contrast with optimality

Satisficable problems do not get more.
benefit from finding an optimal solution

Another piece of
problem
definition

Ex: You have an A in the class. Studying for four hours will
get you a 95 on the final. Studying for four more (eight
hours) will get you a 99 on the final. What to do?

A combination of satisfy and suffice

Introduced by Herbert A. Simon in 1956

11

