
1

Slides adapted with thanks from: Dr. Marie desJardin

Artificial Intelligence
Class 3: Search (Ch. 3.1–3.3)

Dr. Cynthia Matuszek – CMSC 671
Some material adopted from notes by Charles R. Dyer, University of Wisconsin-Madison, with thanks

Bookkeeping

•  TA Office hours: M 3-4, W 2-3

•  General HW 1 questions?

•  Basic Python
•  Sets, Tuples, Lists, Dictionaries, …
•  https://www.tutorialspoint.com/python
•  http://tiny.cc/concise-python-guide
•  http://www.w3resource.com/python/python-tutorial.php
•  https://docs.python.org/3
•  Especially Library Reference à Built-in Functions

2

Bits From Last Time

•  Sequential: Require memory of past actions to
determine next best action
•  Or: current action can influence all future actions

•  Episodic: A series of one-shot actions
•  Only the current percept(s) are relevant

•  Sensing/acting in episode(t) is independent of episode(t-1)

•  Single- vs. multi-agent: Is “your” agent the only
one affecting the world?

en.wikibooks.org/wiki/Artificial_Intelligence/AI_Agents_and_their_Environments
jeffclune.com/courses/media/courses/2014-Fall-AI/lectures/L04-AI-2014.pdf

What’s a “State”?

•  The current state of the agent’s environment

•  Everything in the problem representation

•  Values of all parameters at a particular point in time

•  Examples:
•  Chess board: 8x8 grid, location of all pieces
•  Tic-tac-toe: 3x3 grid, whether each is X, O, or open
•  Robot soccer: Location of all players, location of ball, possibly

last known trajectory of all players (if sequential)
•  Travel: Cities, distances between cities, agent’s current city

4

Some Examples
Agent Type Performance

Measure
Environment Actuators Sensors

Robot soccer
player

Winning game,
goals

for/against

Field, ball,
own team,
other team,
own body

Devices (e.g.,
legs) for

locomotion
and kicking

Camera, touch
sensors,

accelerometers,
orientation

sensors,
wheel/joint
encoders

Internet
book-shopping

agent

Obtain
requested/
Interesting

books,
minimize

expenditure

Internet

Follow link,
enter/submit
data in fields,
display to user

Web pages,
user requests

PEAS

Task
Environment

Observable Deterministic Episodic Static Discrete Agents

Robot
soccer

Partially Stochastic Sequential Dynamic Continuous Multi

Internet
book-

shopping

Partially Deterministic Sequential Static

Discrete Single

Environment

Today’s Class

•  Goal-based agents

•  Representing states and operators

•  Example problems

•  Generic state-space search algorithm

Everything in AI comes down to search.

Goal: understand search, and understand why.

6

2

Pre-Reading Review

•  What is search (a.k.a. state-space search)?

•  What are these concepts in search?
•  Initial state • Transition model
•  State space graph • Step cost
•  Goal test (cf. goal) • Path cost
•  Actions • Solution / optimal solution

•  What is an open-loop system?

•  What is the difference between expanding and generating a
state?

•  What is the frontier (a.k.a. open list)?

7

Search: The Core Idea

•  For any problem:
•  World is (always) in some state

•  Agents take actions, which
change the state

•  We need a sequence of
actions that gets the world
into a particular goal state.

•  To find it, we search the
space of actions and states.

8

some
action

some other
actionA1 A2A4

A3 A6 A7A5

Building Goal-Based Agents

•  To build a goal-based agent we need to decide:
•  What is the goal to be achieved?

•  What are the possible actions?

•  What relevant information must be encoded?
•  To describe the state of the world

•  To describe the available transitions

•  To solve the problem

Initial
state

Goal
state Actions

9

What is the Goal?

•  A situation we want to achieve

•  A set of properties that we want to hold

•  Must define a “goal test”
•  What does it mean to achieve it?
•  Have we done so?

•  This is a hard question that is rarely tackled in AI!
•  Often, we assume the system designer or user will specify the goal

•  For people, we stress the importance of establishing clear
goals for as the first step towards solving a problem.
•  What are your goals?
•  What problem(s) are you trying to solve?

10

What Are Actions?

•  Primitive actions or events:
•  Make changes in the world

•  In order to achieve a (sub)goal

•  Actions are also known as operators or moves

•  Examples:
Low-level:	
•  Chess:	“advance	a	pawn”	
•  Navigation:	“take	a	step”	
•  Finance:	“sell	10%	of	stock	X”	

11

High-level	:	
•  Chess:	“clear	a	path	for	a	queen”	
•  Navigation:	“go	home”	
•  Finance:	“sell	best-return	shares”	

Actions and Determinism

•  In a deterministic world there is no uncertainty in
an action’s effects

•  Current world state + chosen action fully specifies:

1.  Whether that action can be done in current world
•  Is it applicable? (E.g.: Do I own any of stock X to sell?)

•  Is it legal? (E.g.: Can’t just move a pawn sideways.)

2.  World state after action is performed

12

After last pt:
•No need for
“history”
information
•Everything is
encapsulated
by state

Wha?

3

Representing Actions

•  Actions here are:
•  Discrete events
•  That occur at an instant of time

•  For example:
•  State: “Mary is in class”
•  Action “Go home”
•  New state: “Mary is at home”

•  There is no representation of a state where she is in
between (i.e., in the state of “going home”).

13

A1 A2A4

Sliding Tile Puzzles

•  15-puzzles, 8-puzzles

•  How do we represent states?

•  How do we represent actions?
•  Tile-1 moves north
•  Tile-1 moves west
•  Tile-1 moves east
•  Tile-1 moves south
•  Tile-2 moves north
•  Tile-2 moves west
•  …

commons.wikimedia.org/wiki/File:15-puzzle-shuf;led.svg,		commons.wikimedia.org/wiki/File:15-puzzle-loyd-bis2.svg	

•  Number of actions / operators depends on
representation used in describing a state

•  8-puzzle:
•  Could specify 4 possible

moves (actions) for each
of the 8 tiles:

 4*8=32 operators.

•  Or, could specify four moves for the “blank” square:

 4 operators!

•  Careful representation can simplify a problem!

Representing Actions

15

…

Representing States

•  What information about the world sufficiently describes all
aspects relevant to solving the goal?

•  That is: what knowledge must be in a state description to
adequately describe the current state of the world?

•  The size of a problem is usually described in terms of the
number of states that are possible
•  Tic-Tac-Toe has about 39 states.

•  Checkers has about 1040 states.

•  Rubik’s Cube has about 1019 states.

•  Chess has about 10120 states in a typical game.

16

Closed World Assumption

•  We generally use the Closed World Assumption:

 “All necessary information about a problem
 domain is available in each percept so that each
 state is a complete description of the world.”

•  No incomplete information at any point in time.
•  A statement that is true is always known to be true.
 ∴ If we do not know something is true, it is false.

en.wikipedia.org/wiki/Closed-world_assumption	17

Some Example Problems

•  Toy problems and micro-worlds
•  8-Puzzle

• Boat Problems
• Cryptarithmetic

• Remove 5 Sticks
• Water Jug Problem

•  Real-world problems

18

4

8-Puzzle

 Given an initial configuration of 8 numbered tiles on
a 3 x 3 board, move the tiles in such a way so as to
produce a desired goal configuration of the tiles.

19

8-Puzzle

•  State: 3 x 3 array describing where tiles
are

•  Operators: Move blank square Left,
Right, Up or Down
•  This is a more efficient encoding of the

operators!

•  Initial State: Starting configuration of
the board

•  Goal: Some configuration of the board

20

The 8-Queens Problem

 Place eight (or
N) queens on a
chessboard such

that no queen
can reach any

other

21

Boat Problems

1 sheep, 1 wolf, 1 cabbage, 1 boat

•  Goal: Move everything across the river.

•  Constraints:
•  The boat can hold you plus one thing.
•  Wolf can never be alone with sheep.
•  Sheep can never be alone with cabbage.

•  State: location of sheep, wolf, cabbage on shores and boat.

•  Operators: Move ferry containing some set of occupants
across the river (in either direction) to the other side.

22

Remove 5 Sticks

•  Given the following
configuration of sticks,
remove exactly 5 sticks
in such a way that the
remaining
configuration forms
exactly 3 squares.

23

Mathematical operations
•  Proposed by Knuth (R&N p 73)

•  Compute any positive integer, starting with the integer 4, using only factorial, square root, and floor operations

•  Infinite state space!

•  States: Positive numbers

•  Initial state: 4

•  Actions: Factorial (of integer states), square root, floor

•  Transition model: Using mathematical definitions of actions

•  Goal test: State is the desired positive integer

5)!!4(=
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

24

5

Some Real-World Problems

•  Route finding

•  Touring (traveling salesman)

•  Logistics

•  VLSI layout

•  Robot navigation

•  Learning

25

Knowledge Representation Issues

•  What’s in a state?
•  Is the color of the tiles relevant to solving an 8-puzzle?

•  Is sunspot activity relevant to predicting the stock market?

•  What to represent is a very hard problem!
•  Usually left to the system designer to specify.

•  What level of abstraction to describe the world?
•  Too fine-grained and we “miss the forest for the trees”

•  Too coarse-grained and we miss critical information

26

Knowledge Representation Issues

•  Number of states depends on:
•  Representation choices

•  Level of abstraction

•  In the Remove-5-Sticks problem:
•  If we represent individual sticks, then there are 17-

choose-5 possible ways of removing 5 sticks (6188)

•  If we represent the “squares” defined by 4 sticks, there are
6 squares initially and we must remove 3

•  So, 6-choose-3 ways of removing 3 squares (20)

27

Formalizing Search in a State Space

•  A state space is a
graph (V, E):
•  V is a set of nodes

•  E is a set of arcs
•  Each arc is directed

from a node to
another node

•  How does that
work for 8-puzzle?

28

Formalizing Search in a State Space

•  V: A node is a data structure that contains:
•  State description

•  Bookeeping information: parent(s) of the node, name of
operator that generated the node from that parent, etc.

•  E: Each arc is an instance (single occurrence) of
one operator.
•  When operator is applied to the arc’s source node (state),

then
•  Resulting state is associated with the arc’s destination node

29

Formalizing Search

•  Each arc has a fixed, positive cost
•  Corresponding to the cost of the operator

•  What is “cost” of doing that action?

•  Each node has a set of successor nodes
•  Corresponding to all operators (actions) that can apply at

source node’s state

•  Expanding a node is generating successor nodes, and
adding them (and associated arcs) to the state-space graph

30

6

Formalizing Search II

•  One or more nodes are
designated as start
nodes

•  A goal test predicate is
applied to a state to
determine if its
associated node is a goal
node

31

Water Jug Problem

Name Cond. Transition Effect

Empty5 – (x,y)→(0,y) Empty 5-gal.
jug

Empty2 – (x,y)→(x,0) Empty 2-gal.
jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2-gal. into
5-gal.

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5-gal. into
2-gal.

5to2part y < 2 (1,y)→(0,y+1) Pour partial 5-
gal. into 2-gal.

 Given a full 5-gallon jug
and an empty 2-gallon
jug, the goal is to fill the
2-gallon jug with exactly
one gallon of water.

 State = (x,y), where x is
the number of gallons of
water in the 5-gallon jug
and y is # of gallons in
the 2-gallon jug

 Initial State = (5,0)

 Goal State = (*,1)
(* means any amount)

Operator table

32

3, 2

2, 2

1, 2

4, 2

0, 2

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Empty2

Empty5

2to5

5to2

5to2part

Water jug state space

33

3, 2

2, 2

1, 2

4, 2

0, 2

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Water jug solution

34

CLASS EXERCISE

•  Representing a Sudoku puzzle as a search space
•  What are the states?

•  What are the operators?

•  What are the constraints
(on operator application)?
•  What is the description

of the goal state?

•  Let's try it!

3

1

3

2

35

Formalizing Search III

•  A solution is a sequence of operators that is
associated with a path in a state space from a start
node to a goal node.

•  The cost of a solution is the sum of the arc costs on
the solution path.
•  If all arcs have the same (unit) cost, then the solution cost

is just the length of the solution (number of steps / state
transitions)

36

7

Formalizing Search IV

•  State-space search: searching through a state space
for a solution by making explicit a sufficient
portion of an implicit state-space graph to find a
goal node
•  Initially V={S}, where S is the start node

•  When S is expanded, its successors are generated; those
nodes are added to V and the arcs are added to E
•  This process continues until a goal node is found

•  It isn’t usually practical to represent entire space

37

Formalizing Search V

•  Each node implicitly or explicitly represents a
partial solution path (and its cost) from start node
to given node.
•  In general, from a node there are many possible paths (and

therefore solutions) that have this partial path as a prefix

38

State-Space Search Algorithm
function	general-search	(problem,	QUEUEING-FUNCTION)	
;;	problem	describes	start	state,	operators,	goal	test,	
;;				and	operator	costs	
;;	queueing-function	is	a	comparator	function	that		
;;				ranks	two	states	
;;	returns	either	a	goal	node	or	failure	
	
nodes	=	MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))	
		loop	
					if	EMPTY(nodes)	then	return	"failure"	
					node	=	REMOVE-FRONT(nodes)	
					if	problem.GOAL-TEST(node.STATE)	succeeds	
								then	return	node	
					nodes	=	QUEUEING-FUNCTION(nodes,	EXPAND(node,	
													problem.OPERATORS))	
	end	
					;;	Note:	The	goal	test	is	NOT	done	when	nodes	are	generated	
					;;	Note:	This	algorithm	does	not	detect	loops	

39

A1 A2

A3 A6 A7

Generation vs. Expansion

•  Selecting a state means making that node current

•  Expanding the current state means applying every
legal action to the current state

•  Which generates a new set of nodes

40 R&N pg. 68, 80

Key Procedures

•  EXPAND	
•  Generate all successor

nodes of a given node
•  “What nodes can I reach from here

(by taking what actions)?”

•  GOAL-TEST	
•  Test if state satisfies

goal conditions

•  QUEUEING-FUNCTION	
•  Used to maintain a ranked list of nodes that are candidates

for expansion
•  “What should I explore next?”

41

Algorithm Bookkeeping

•  Typical node data structure includes:
•  State at this node

•  Parent node

•  Operator applied to get to this node

•  Depth of this node
•  That is, number of operator applications since initial state

•  Cost of the path
•  Sum of each operator application so far

42

8

Some Issues

•  Search process constructs a search tree, where:
•  Root is the initial state and

•  Leaf nodes are nodes that are either:
•  Not yet expanded (i.e., they are in the list “nodes”) or

•  Have no successors (i.e., they're “dead ends”, because no operators
can be applied, but they are not goals)

•  Search tree may be infinite
•  Even for small search space

•  How?

43

Some Issues

•  Return a path or a node depending on problem
•  In 8-queens return a node

•  8-puzzle return a path

•  What about Sheep & Wolves?

•  Changing definition of Queueing-Function à
different search strategies
•  How do you choose what to expand next?

44

Evaluating Search Strategies

•  Completeness:
•  Guarantees finding a solution if one exists

•  Time complexity:
•  How long (worst or average case) does it take to find a solution?
•  Usually measured in number of states visited/nodes expanded

•  Space complexity:
•  How much space is used by the algorithm?
•  Usually measured in maximum size of the “nodes” list during search

•  Optimality / Admissibility
•  If a solution is found, is it guaranteed to be optimal (the solution with

minimum cost)?

45

