Today's Class

- The last little bit of PL and FOL
- Axioms and Theorems
- Sufficient and Necessary
- Logical Agents

Reflex

- Model-Based
- Goal-Based
- Inference!
- How do we use any of this?

Axioms, Definitions and Theorems

More on Definitions

- Examples: define father(x, y) by parent($\mathrm{x}, \mathrm{y})$ and male(x)

Axioms: facts and rules that attempt to capture all of the (important) facts and concepts about a domain
parent(x, y) is a necessary (but not sufficient) description of father(x, y)

- father $(x, y) \rightarrow \operatorname{parent}(x, y)$

Mathematicians don't want any unnecessary (dependent) axioms -ones parent $(x, y)^{\wedge} \operatorname{male}(x) \wedge \operatorname{age}(x, 35)$ is a sufficient (but not necessary) description of father (x, y) :
father $(x, y) \leftarrow \operatorname{parent}(x, y) \wedge \operatorname{male}(x) \wedge \operatorname{age}(x, 35)$

- A definition of a predicate is of the form " $\mathrm{p}(\mathrm{X}) \leftrightarrow \ldots$..." and can $\operatorname{arent}(x, y)^{\wedge} \operatorname{male}(x)$ is a necessary and sufficient be decomposed into two parts description of father (x, y)
$\operatorname{parent}(\mathrm{x}, \mathrm{y})^{\wedge} \operatorname{male}(\mathrm{x}) \leftrightarrow \operatorname{father}(\mathrm{x}, \mathrm{y})$
Sufficient description " $\mathrm{p}(\mathrm{x}) \leftarrow \ldots$ "
Some concepts don't have complete definitions (e.g., person(x))

Higher-Order Logics

- FOL only allows to quantify over variables, and variables can only range over objects.
- HOL allows us to quantify over relations
- Example: (quantify over functions)
"two functions are equal iff they produce the same value for all arguments"
$\forall f \forall g(f=g) \leftrightarrow(\forall x f(x)=g(x))$
- Example: (quantify over predicates)
$\forall \mathrm{r} \operatorname{transitive}(\mathrm{r}) \rightarrow(\forall \mathrm{xyz}) \mathrm{r}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{r}(\mathrm{y}, \mathrm{z}) \rightarrow \mathrm{r}(\mathrm{x}, \mathrm{z}))$

Expressing Uniqueness

- Sometimes we want to say that there is a single, unique object that satisfies a certain condition
- "There exists a unique x such that $\operatorname{king}(\mathrm{x})$ is true"
$\exists x \operatorname{king}(\mathrm{x}) \wedge \forall \mathrm{y}(\operatorname{king}(\mathrm{y}) \rightarrow \mathrm{x}=\mathrm{y})$
- $\exists \mathrm{x}$ king(x$) \wedge \neg \exists \mathrm{y}(\operatorname{king}(\mathrm{y}) \wedge \mathrm{x} \neq \mathrm{y})$
- \exists ! x king (x)
- "Every country has exactly one ruler"
- $\forall c$ country $(\mathrm{c}) \rightarrow \exists!$ r ruler(c,r)
- Iota operator: " $\mathrm{x} \mathrm{P}(\mathrm{x})$ " means "the unique x such that $\mathrm{p}(\mathrm{x})$ is true"
"The unique ruler of Freedonia is dead"
- dead(x x ruler(freedonia, x$)$)

Logical Agents for Wumpus World

Three (non-exclusive) agent architectures:

- Reflex agents
- Have rules that classify situations, specifying how to react to each possible situation
- Model-based agents
- Construct an internal model of their world

Goal-based agents

- Form goals and try to achieve them

A Typical Wumpus World

- The agent always starts in the field [1,1].
- The task of the agent is to find the gold, return to the field $[1,1]$ and climb out of the cave.

A Simple Reflex Agent

- Some difficulties:
- Climb?
- There is no percept that indicates the agent should climb out position and holding gold are not part of the percept sequence
- Loops?
- The percept will be repeated when you return to a square, which should cause the same response (unless we maintain some internal model of the world)

A Simple Reflex Agent

- Rules to map percepts into observations:
$\forall \mathrm{b}, \mathrm{g}, \mathrm{u}, \mathrm{c}, \mathrm{t} \operatorname{Percept}([$ Stench, $\mathrm{b}, \mathrm{g}, \mathrm{u}, \mathrm{c}], \mathrm{t}) \rightarrow \operatorname{Stench}(\mathrm{t})$
$\forall \mathrm{s}, \mathrm{g}, \mathrm{u}, \mathrm{c}, \mathrm{t} \operatorname{Percept}([\mathrm{s}, \operatorname{Breeze}, \mathrm{g}, \mathrm{u}, \mathrm{c}], \mathrm{t}) \rightarrow \operatorname{Breeze}(\mathrm{t})$
$\forall \mathrm{s}, \mathrm{b}, \mathrm{u}, \mathrm{c}, \mathrm{t} \operatorname{Percept}([\mathrm{s}, \mathrm{b}, \mathrm{Glitter}, \mathrm{u}, \mathrm{c}], \mathrm{t}) \rightarrow \operatorname{AtGold}(\mathrm{t})$
- Rules to select an action given observations:
$\forall \mathrm{t}$ AtGold(t) \rightarrow Action(Grab, t$)$

Representing Change

- Representing change in the world in logic can be tricky.
- One way is just to change the KB Add and delete sentences from the KB to reflect changes - How do we remember the past, or reason about changes?
- Situation calculus is another way
- A situation is a snapshot of the world at some instant in time
- When the agent performs an action A in situation S 1 , the action A in situation S 1 , the
result is a new situation S .

Situation Calculus

- A situation is:

- A snapshot of the world
- At an interval of time
- During which nothing changes
- Every true or false statement is made wrt. a situation - Add situation variables to every predicate.
- at(Agent, 1,1) becomes at(Agent, 1,1,s0): $\operatorname{at}($ Agent $, 1,1)$ is true in situation (i.e., state) s0.

Situation Calculus

- Alternatively, add a special $2^{\text {nd }}$-order predicate, holds(f,s), that means "f is true in situation s." E.g., holds(at(Agent, 1, 1),s0)
- Or: add a new function, result(\mathbf{a}, \mathbf{s}), that maps a situation s into a new situation as a result of performing action a. For example, result(forward, s) is a function that returns the successor state (situation) to s
- Example: The action agent-walks-to-location-y could be represented by
$(\forall \mathrm{x})(\forall \mathrm{y})(\forall \mathrm{s})(\operatorname{at}($ Agent, $\mathrm{x}, \mathrm{s}) \wedge \neg \operatorname{onbox}(\mathrm{s})) \rightarrow \operatorname{at}($ Agent,y,result(walk $(\mathrm{y}), \mathrm{s}))$

Situations Summary

- Representing a dynamic world

- Situations ($\mathrm{s}_{0} \ldots \mathrm{~s}_{\mathrm{n}}$): the world in situation $0-\mathrm{n}$ Teaching(DrM, $\left.\mathbf{s}_{0}\right)$ - today, $10: 10$, whenNotSick, ...
- Add 'situation' argument to statements AtGold($\mathrm{t}, \mathrm{s}_{0}$)
- Or, add a 'holds' predicate that says 'sentence is true in this situation'

$$
\text { holds }\left(\operatorname{At}[2,1], \mathrm{s}_{1}\right)
$$

Or, add a result(action, situation) function that takes an action and situation, and returns a new situation results(Action(goNorth), s_{0}) $\rightarrow \mathrm{s}_{1}$

Deducing Hidden Properties

- From the perceptual information we obtain in situations, we can infer properties of locations

$$
l=\text { location, } s=\text { situation }
$$

$\forall 1, \mathrm{~s}$ at(Agent,1,s) $\wedge \operatorname{Breeze}(\mathrm{s}) \rightarrow \operatorname{Breezy}(1)$
$\forall 1, \mathrm{~s}$ at $($ Agent, $1, \mathrm{~s}) \wedge \operatorname{Stench}(\mathrm{s}) \rightarrow$ Smelly (1)

- Neither Breezy nor Smelly need situation arguments because pits and Wumpuses do not move around

Deducing Hidden Properties II

- We need to write some rules that relate various aspects of a single world state (as opposed to across states)
- There are two main kinds of such rules:
- Causal rules reflect assumed direction of causality:
($\forall 11,12, s) \operatorname{At}($ Wumpus, 11, s $) \wedge \operatorname{Adjacent}(11,12) \rightarrow \operatorname{Smelly}(12)$ $(\forall 11,12, \mathrm{~s}) \mathrm{At}(\mathrm{Pit}, 11, \mathrm{~s}) \wedge$ Adjacent(11,12) $\rightarrow \operatorname{Breezy}(12)$
- Systems that reason with causal rules are called modelbased reasoning systems

Deducing Hidden Properties II

- We need to write some rules that relate various aspects of a single world state (as opposed to across states)
- There are two main kinds of such rules:

Diagnostic rules infer the presence of hidden properties directly from the percept-derived information. We have already seen two:
$(\forall 1, \mathrm{~s}) \operatorname{At}($ Agent, $1, \mathrm{~s}) \wedge \operatorname{Breeze}(\mathrm{s}) \rightarrow \operatorname{Breezy}(\mathrm{l})$
$(\forall \mathrm{l}, \mathrm{s}) \operatorname{At}($ Agent $\mathrm{l}, \mathrm{s}) \wedge \operatorname{Stench}(\mathrm{s}) \rightarrow \operatorname{Smelly}(\mathrm{l})$

Frames: A Data Structure

- A frame divides knowledge into substructures by representing "stereotypical situations."

```
|Slots rillers
M
author Girratano
year :1998
lol
```

- Situations can be visual scenes, structures of physical objects,
- Useful for representing commonsense knowledge.

Representing Change: The Frame Problem

- Frame axioms: If property x doesn't change as a result of applying action a in state s, then it stays the same

On (x, z, s) ^Clear (x, s) \rightarrow
On (x, table, Result(Move(x, table), s)) ^
\neg On(x, z, Result (Move (x, table), s))

- On ($\mathrm{y}, \mathrm{z}, \mathrm{s}$) $\wedge \mathrm{y} \neq \mathrm{x} \rightarrow \mathrm{On}(\mathrm{y}, \mathrm{z}$, Result (Move (x, table), s$)$)
- The proliferation of frame axioms becomes very cumbersome in complex domains

The Frame Problem II

Successor-state axiom: General statement that characterizes every way in which a particular predicate can become true:
Either it can be made true, or it can already be true and not be changed:
On (x, table, Result $(\mathrm{a}, \mathrm{s})) \leftrightarrow$
$[\operatorname{On}(x, z, s) \wedge \operatorname{Clear}(x, s) \wedge a=\operatorname{Move}(x$, table $)]$
[On (x, table, s) $\wedge \mathrm{a} \neq \operatorname{Move}(\mathrm{x}, \mathrm{z})$]

- In complex worlds with longer chains of action, even these are too cumbersome

Planning systems use special-purpose inference to reason about the expected state of the world at any point in time during a multi-step plan

Qualification Problem

- Qualification problem:
- How can you possibly characterize every single effect of an action, or every single exception that might occur?
When I put my bread into the toaster, and push the button, it will become toasted after two minutes, unless...
- The toaster is broken, or..
- The power is out, or...
- I blow a fuse, or..
- A neutron bomb explodes nearby and fries all electrical components, or..
- A meteor strikes the earth, and the world we know it ceases to exist, or...

Knowledge Engineering!

- Modeling the "right" conditions and the "right" effects at the "right" level of abstraction is very difficult
- Knowledge engineering (creating and maintaining knowledge bases for intelligent reasoning) is a field
- Many researchers hope that automated knowledge acquisition and machine learning tools can fill the gap:
Our intelligent systems should be able to learn about the conditions and effects, just like we do.
Our intelligent systems should be able to learn when to pay attention to, or reason about, certain aspects of processes, depending on the context.

Ramification Problem

- How do you describe every effect of every action?

When I put my bread into the toaster, and push the button, the bread will become toasted after two minutes, and..
The crumbs that fall off the bread onto the bottom of the toaster over tray will also become toasted, and.

Some of the aforementioned crumbs will become burnt, and

- The outside molecules of the bread will become "toasted," and..
- The inside molecules of the bread will remain more "breadlike," and..

The toasting process will release a small amount of humidity into the air because of evaporation, and

- The heating elements will become a tiny fraction more likely to burn out the next time I use the toaster, and..
- The electricity meter in the house will move up slightly, and...

Preferences Among Actions

- A problem with the Wumpus world knowledge base: It's hard to decide which action is best!
Ex: to decide between a forward and a grab, axioms describing when it is okay to move would have to mention glitter.
- This is not modular
- We can solve this problem by separating facts about actions from facts about goals.
- This way our agent can be reprogrammed just by asking it to achieve different goals.

Preferences Among Actions

- The first step is to describe the desirability of actions independent of each other.
- In doing this we will use a simple scale: actions can be Great, Good, Medium, Risky, or Deadly.
- Obviously, the agent should always do the best action it can find:
($\forall \mathrm{a}, \mathrm{s}$) Great $(\mathrm{a}, \mathrm{s}) \rightarrow \operatorname{Action}(\mathrm{a}, \mathrm{s})$
$(\forall \mathrm{a}, \mathrm{s}) \operatorname{Good}(\mathrm{a}, \mathrm{s}) \wedge \neg(\mathrm{Gb}) \operatorname{Great}(\mathrm{b}, \mathrm{s}) \rightarrow$ Action($\mathrm{a}, \mathrm{s})$
$(\forall \mathrm{a}, \mathrm{s}) \operatorname{Medium}(\mathrm{a}, \mathrm{s}) \wedge(\neg(\exists \mathrm{b}) \operatorname{Great}(\mathrm{b}, \mathrm{s}) \vee \operatorname{Good}(\mathrm{b}, \mathrm{s})) \rightarrow \operatorname{Action}(\mathrm{a}, \mathrm{s})$

Preferences Among Actions

- We use this action quality scale in the following way.
- Until it finds the gold, the basic strategy for our agent is: Great actions include picking up the gold when found and climbing out of the cave with the gold.
Good actions include moving to a square that's OK and hasn't been visited yet.
Medium actions include moving to a square that is OK and has already been visited.
Risky actions include moving to a square that is not known to be deadly or OK.
Deadly actions are moving into a square that is known to have a pit or a Wumpus.

Goal-Based Agents

- Once the gold is found, it is necessary to change strategies. So now we need a new set of action values
- We could encode this as a rule: - $(\forall \mathrm{s})$ Holding(Gold,s) \rightarrow GoalLocation([1,1]),s)
- We must now decide how the agent will work out a sequence of actions to accomplish the goal.
- Three possible approaches are:

Inference: good versus wasteful solutions

- Search: make a problem with operators and set of states

Planning: coming soon!

Model Checking

- Given KB, does sentence S hold?

Quick review: What's a KB? What's a sentence?

- Basically generate and test:
- Generate all the possible models
- Consider the models M in which KB is TRUE
- If $\forall \mathrm{M} \mathrm{S}$, then S is provably true What does model mean?
- If $\forall M \neg S$, then S is provably false

Otherwise ($\exists \mathrm{M} 1 \mathrm{~S} \wedge \exists \mathrm{M} 2 \neg \mathrm{~S}$): S is satisfiable but neither provably true or provably false

Efficient Model Checking

- Davis-Putnam algorithm (DPLL): Generate-and-test model checking with:
Early termination (short-circuiting of disjunction and conjunction) Pure symbol heuristic: Any symbol that only appears negated or Pure symbol heuristic: Any symbol that only ap
unnegated must be FALSE/TRUE respectively.
- Can "conditionalize" based on instantiations already produced

Unit clause heuristic: Any symbol that appears in a clause by itself can immediately be set to TRUE or FALSE

- WALKSAT: Local search for satisfiability:
- Pick a symbol to flip (toggle TRUE/FALSE), either using min-
conflicts or choosing randomly
- ...or you can use any local or global search algorithm!

Reminder: Inference Rules for FOL

- Inference rules for propositional logic apply to FOL
- Modus Ponens, And-Introduction, And-Elimination, ...
- New (sound) inference rules for use with quantifiers:
- Universal elimination
- Existential introduction
- Existential elimination
- Generalized Modus Ponens (GMP)

Automating FOL Inference with Generalized Modus Ponens

Automated Inference for FOL

- Automated inference using FOL is harder than PL
- Variables can take on an infinite number of possible values
- From their domains, anyway
- This is a reason to do careful KR!
- So, potentially infinite ways to apply Universal Elimination
- Godel's Completeness Theorem says that FOL entailment is only semidecidable*
- If a sentence is true given a set of axioms, can prove it
- If the sentence is false, then there is no guarantee that a procedure will ever determine this
Inference may never halt
*The "halting problem"

Generalized Modus Ponens (GMP)

- Apply modus ponens reasoning to generalized rules
- Combines And-Introduction, UniversalElimination, and Modus Ponens
- From $P(c)$ and $Q(c)$ and $(\forall x)(P(x) \wedge Q(x)) \rightarrow R(x)$ derive $R(c)$
- General case: Given
- atomic sentences $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{N}}$
- implication sentence $\left(Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{N}\right) \rightarrow R$
- $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathrm{N}}$ and R are atomic sentences
substitution $\operatorname{subst}\left(\theta, P_{i}\right)=\operatorname{subst}\left(\theta, \mathrm{Q}_{\mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{~N}$
Derive new sentence: $\operatorname{subst}(\theta, \mathbf{R})$

Generalized Modus Ponens (GMP)

- Derive new sentence: $\operatorname{subst}(\theta, \mathbf{R})$
- Substitutions
- subst (θ, α) denotes the result of applying a set of substitutions, defined by θ, to the sentence α
- A substitution list $\theta=\left\{\mathrm{v}_{1} / \mathrm{t}_{1}, \mathrm{v}_{2} / \mathrm{t}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} / \mathrm{t}_{\mathrm{n}}\right\}$ means to replace all occurrences of variable symbol v_{i} by term t_{i}
- Substitutions are made in left-to-right order in the list
subst(\{x/IceCream, $\mathrm{y} /$ Ziggy $\}$, eats($\mathrm{y}, \mathrm{x})$) $=$ eats(Ziggy, IceCream)

Horn Clauses

- A Horn clause is a sentence of the form:
$(\forall x) P_{1}(x) \wedge P_{2}(x) \wedge \ldots \wedge P_{n}(x) \rightarrow Q(x)$
where:
- there are 0 or more P_{i} and 0 or 1 Qs
- the $\mathrm{P}_{\mathrm{i}} \mathrm{s}$ and Q are positive (non-negated) literals
- Equivalently: $P_{1}(x) \vee P_{2}(x) \ldots \vee P_{n}(x)$ where the P_{i} are all atomic and at most one of them is positive
- Horn clauses represent a subset of the set of sentences representable in FOL

Horn Clauses II

- Special cases
- $P_{1} \wedge P_{2} \wedge \ldots P_{n} \rightarrow Q$
- $P_{1} \wedge P_{2} \wedge \ldots P_{n} \rightarrow$ false
- true $\rightarrow \mathrm{Q}$
- These are not Horn clauses:
- $p(a) \vee q(a)$
- $(P \wedge Q) \rightarrow(R \vee S)$

Forward Chaining

- Proofs start with the given axioms/premises in KB, deriving new sentences using GMP until the goal/ query sentence is derived
- This defines a forward-chaining inference procedure because it moves "forward" from the KB to the goal [eventually]
- Inference using GMP is complete for KBs containing only Horn clauses

Backward Chaining

Backward Chaining Example

- Backward-chaining deduction using GMP

Complete for KBs containing only Horn clauses.

- KB:
- allergies $(\mathrm{X}) \rightarrow$ sneeze (X)

| - Proofs: Avoid loops |
| :--- | :--- |
| Is new subgoal already | on goal stack?

- $\operatorname{cat}(\mathrm{Y}) \wedge$ allergic-to-cats $(\mathrm{X}) \rightarrow$ allergies (X)
- Start with the goal query

Find rules with that conclusion

Avoid repeated work: has subgoal already been proved true already failed?
cat(Felix)

- allergic-to-cats(Lise)
- Goal:
- Prove each of the antecedents in the implication
- Keep going until you reach premises!

Backward Chaining Algorithm

function Back-Chain($K B, q$) returns a set of substitutions
Back-Chain-List($K B,[q],\{ \})$
function BACK-Chain-List (KB, qlist, θ) returns a set of substitutions
inputs: $K B$, a knowledge base
qlist, a list of conjuncts forming a query (θ already applied)
θ, the current substitution
static: answers, a set of substitutions, initially empty
if q list is empty then return $\{\theta\}$
$q \leftarrow$ First (q list)
for each q_{i}^{\prime} in $K B$ such that $\theta_{i} \leftarrow \mathrm{UNIFY}\left(q, q_{i}^{\prime}\right)$ succeeds do
Add Compose $\left(\theta, \theta_{i}\right)$ to answers
end
for each sentence $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q_{i}^{\prime}\right)$ in $K B$ such that $\theta_{2} \leftarrow \operatorname{UNIFY}\left(q, q_{i}^{\prime}\right)$ succeeds do
answers $\leftarrow \operatorname{Back}-\operatorname{ChaIN}-\operatorname{List}\left(K B, \operatorname{SUBST}\left(\theta_{i},\left[p_{1} \ldots p_{n}\right]\right), \operatorname{Compos} \mathrm{E}\left(\theta, \theta_{i}\right)\right) \cup$ answers
end
return the union of BACK-Chain-List (KB, ReST (qlist), θ) for each $\theta \in$ answers

Forward vs. Backward Chaining

- FC is data-driven
- Automatic, unconscious processing
- E.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving

Where are my keys? How do I get to my next class?

- Complexity of BC can be much less than linear in the size of the KB

Completeness of GMP

- GMP (using forward or backward chaining) is complete for KBs that contain only Horn clauses
- It is not complete for simple KBs that contain non-Horn clauses
- The following entail that $\mathrm{S}(\mathrm{A})$ is true:
$(\forall x) P(x) \rightarrow Q(x)$
($\forall \mathrm{x}) \rightarrow \mathrm{P}(\mathrm{x}) \rightarrow \mathrm{R}(\mathrm{x})$
$(\forall \mathrm{X}) \mathrm{Q}(\mathrm{x}) \rightarrow \mathrm{S}(\mathrm{x})$
$(\forall \mathrm{x}) \mathrm{R}(\mathrm{x}) \rightarrow \mathrm{S}(\mathrm{x})$
- If we want to conclude $S(A)$, with GMP we cannot, since the second one is not a Horn clause
- It is equivalent to $P(x) \vee R(x)$

