
12/4/18

1

First-Order Logic &
Inference
Ch. 8.1–8.3, 9

Material from Dr. Marie desJardin, Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer

Today’s Class

•  The last little bit of PL and FOL
•  Axioms and Theorems
•  Sufficient and Necessary

•  Logical Agents
•  Reflex
•  Model-Based
•  Goal-Based

•  Inference!
•  How do we use any of this?

Axioms, Definitions and Theorems

•  Axioms: facts and rules that attempt to capture all of the
(important) facts and concepts about a domain

•  Axioms can be used to prove theorems
•  Mathematicians don’t want any unnecessary (dependent) axioms –ones

that can be derived from other axioms
•  Dependent axioms can make reasoning faster, however
•  Choosing a good set of axioms for a domain is a design problem!

•  A definition of a predicate is of the form “p(X) ↔ …” and can
be decomposed into two parts
•  Necessary description: “p(x) → …”
•  Sufficient description “p(x) ← …”
•  Some concepts don’t have complete definitions (e.g., person(x))

•  Examples: define father(x, y) by parent(x, y) and male(x)
•  parent(x, y) is a necessary (but not sufficient) description of

father(x, y)
•  father(x, y) → parent(x, y)

•  parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not
necessary) description of father(x, y):
 father(x, y) ← parent(x, y) ^ male(x) ^ age(x, 35)
•  parent(x, y) ^ male(x) is a necessary and sufficient

description of father(x, y)
 parent(x, y) ^ male(x) ↔ father(x, y)

More on Definitions

•  FOL only allows to quantify over variables, and variables can
only range over objects.

•  HOL allows us to quantify over relations

•  Example: (quantify over functions)
•  “two functions are equal iff they produce the same value for all

arguments”
•  ∀f ∀g (f = g) ↔ (∀x f(x) = g(x))

•  Example: (quantify over predicates)
•  ∀r transitive(r) → (∀xyz) r(x,y) ∧ r(y,z) → r(x,z))

•  More expressive, but undecidable.

Higher-Order Logics Expressing Uniqueness
•  Sometimes we want to say that there is a single, unique object that

satisfies a certain condition

•  “There exists a unique x such that king(x) is true”
•  ∃x king(x) ∧ ∀y (king(y) → x=y)
•  ∃x king(x) ∧ ¬∃y (king(y) ∧ x≠y)
•  ∃! x king(x)

•  “Every country has exactly one ruler”
•  ∀c country(c) → ∃! r ruler(c,r)

•  Iota operator: “ι x P(x)” means “the unique x such that p(x) is true”
•  “The unique ruler of Freedonia is dead”
•  dead(ι x ruler(freedonia,x))

12/4/18

2

Logical Agents
Logical Agents for Wumpus World

Three (non-exclusive) agent architectures:
• Reflex agents
•  Have rules that classify situations, specifying how to react

to each possible situation
• Model-based agents
•  Construct an internal model of their world
• Goal-based agents
•  Form goals and try to achieve them

A Typical Wumpus World

• The agent
always starts in
the field [1,1].

•  The task of the
agent is to find
the gold, return
to the field [1,1]
and climb out of
the cave.

A Simple Reflex Agent

•  Rules to map percepts into observations:
∀b,g,u,c,t Percept([Stench, b, g, u, c], t) → Stench(t)
∀s,g,u,c,t Percept([s, Breeze, g, u, c], t) → Breeze(t)
∀s,b,u,c,t Percept([s, b, Glitter, u, c], t) → AtGold(t)

•  Rules to select an action given observations:
∀t AtGold(t) → Action(Grab, t)

A Simple Reflex Agent

•  Some difficulties:

•  Climb?
•  There is no percept that indicates the agent should climb out –

position and holding gold are not part of the percept sequence

•  Loops?
•  The percept will be repeated when you return to a square,

which should cause the same response (unless we maintain
some internal model of the world)

KB-Agents Summary

•  Logical agents
•  Reflex: rules map directly from percepts à beliefs or percepts
à actions

 ∀b,g,u,c,t Percept([Stench, b, g, u, c], t) → Stench(t)
∀t AtGold(t) → Action(Grab, t)

•  Model-based: construct a model (set of t/f beliefs about
sentences) as they learn; map from models à actions

 Action(Grab, t) → HaveGold(t)
HaveGold(t) → Action(RetraceSteps, t)

•  Goal-based: form goals, then try to accomplish them
•  Encoded as a rule:

(∀s) Holding(Gold,s) → GoalLocation([1,1],s)

Wumpus percepts:

[Stench, Breeze, Glitter, Bump, Scream]

12/4/18

3

Representing Change

•  Representing change in the world in logic can be tricky.

•  One way is just to change the KB
•  Add and delete sentences from the KB to reflect changes
•  How do we remember the past, or reason about changes?

•  Situation calculus is another way

•  A situation is a snapshot of the world
at some instant in time

•  When the agent performs an
action A in situation S1, the
result is a new situation S2.

s2

Situations
•  Situations over time.
•  (We would not

have this level
of full know-
ledge.)

s2

Situation Calculus

•  A situation is:
•  A snapshot of the world
•  At an interval of time
•  During which nothing changes

•  Every true or false statement is made wrt. a situation
•  Add situation variables to every predicate.
•  at(Agent,1,1) becomes at(Agent,1,1,s0):

at(Agent,1,1) is true in situation (i.e., state) s0.

Situation Calculus

•  Alternatively, add a special 2nd-order predicate, holds(f,s), that
means “f is true in situation s.” E.g., holds(at(Agent,1,1),s0)

•  Or: add a new function, result(a,s), that maps a situation s into
a new situation as a result of performing action a. For example,
result(forward, s) is a function that returns the successor state
(situation) to s

•  Example: The action agent-walks-to-location-y could be
represented by

(∀x)(∀y)(∀s) (at(Agent,x,s) ∧ ¬onbox(s)) → at(Agent,y,result(walk(y),s))

Situations Summary

•  Representing a dynamic world
•  Situations (s0…sn): the world in situation 0-n

Teaching(DrM,s0) —	today,10:10,whenNotSick,	…	
•  Add ‘situation’ argument to statements

AtGold(t,s0)
•  Or, add a ‘holds’ predicate that says ‘sentence is true in

this situation’
holds(At[2,1], s1)

•  Or, add a result(action, situation) function that takes an
action and situation, and returns a new situation

results(Action(goNorth), s0) à s1

s2

Deducing Hidden Properties

•  From the perceptual information we obtain in
situations, we can infer properties of locations

 l = location, s = situation
∀l,s at(Agent,l,s) ∧ Breeze(s) → Breezy(l)
∀l,s at(Agent,l,s) ∧ Stench(s) → Smelly(l)

•  Neither Breezy nor Smelly need situation arguments
because pits and Wumpuses do not move around

12/4/18

4

Deducing Hidden Properties II

•  We need to write some rules that relate various aspects
of a single world state (as opposed to across states)

•  There are two main kinds of such rules:
• Causal rules reflect assumed direction of causality:

(∀l1,l2,s) At(Wumpus,l1,s) ∧ Adjacent(l1,l2) → Smelly(l2)
(∀ l1,l2,s) At(Pit,l1,s) ∧ Adjacent(l1,l2) → Breezy(l2)

•  Systems that reason with causal rules are called model-
based reasoning systems

Deducing Hidden Properties II

•  We need to write some rules that relate various aspects
of a single world state (as opposed to across states)

•  There are two main kinds of such rules:

Deducing Hidden Properties II

•  We need to write some rules that relate various aspects
of a single world state (as opposed to across states)

•  There are two main kinds of such rules:
• Diagnostic rules infer the presence of hidden

properties directly from the percept-derived
information. We have already seen two:
(∀ l,s) At(Agent,l,s) ∧ Breeze(s) → Breezy(l)
(∀ l,s) At(Agent,l,s) ∧ Stench(s) → Smelly(l)

Frames: A Data Structure

•  A frame divides knowledge
into substructures by
representing “stereotypical
situations.”

•  Situations can be visual
scenes, structures of
physical objects,

•  Useful for representing
commonsense knowledge.

intelligence.worldofcomputing.net/knowledge-representation/frames.html#.WCHhCNxBo8A

Representing Change:
The Frame Problem

•  Frame axioms: If property x doesn’t change as a
result of applying action a in state s, then it stays the
same.
•  On (x, z, s) ∧ Clear (x, s) →

 On (x, table, Result(Move(x, table), s)) ∧
 ¬On(x, z, Result (Move (x, table), s))

•  On (y, z, s) ∧ y≠ x → On (y, z, Result (Move (x, table), s))
•  The proliferation of frame axioms becomes very cumbersome

in complex domains

The Frame Problem II

•  Successor-state axiom: General statement that characterizes
every way in which a particular predicate can become true:
•  Either it can be made true, or it can already be true and not be

changed:
•  On (x, table, Result(a,s)) ↔

 [On (x, z, s) ∧ Clear (x, s) ∧ a = Move(x, table)] v
 [On (x, table, s) ∧ a ≠ Move (x, z)]

•  In complex worlds with longer chains of action, even these are
too cumbersome
•  Planning systems use special-purpose inference to reason about the

expected state of the world at any point in time during a multi-step plan

12/4/18

5

Qualification Problem

•  Qualification problem:
•  How can you possibly characterize every single effect of an

action, or every single exception that might occur?
•  When I put my bread into the toaster, and push the button, it

will become toasted after two minutes, unless…
•  The toaster is broken, or…
•  The power is out, or…
•  I blow a fuse, or…
•  A neutron bomb explodes nearby and fries all electrical components,

or…
•  A meteor strikes the earth, and the world we know it ceases to exist,

or…

Ramification Problem
•  How do you describe every effect of every action?
•  When I put my bread into the toaster, and push the button, the bread will

become toasted after two minutes, and…
•  The crumbs that fall off the bread onto the bottom of the toaster over tray will

also become toasted, and…
•  Some of the aforementioned crumbs will become burnt, and…
•  The outside molecules of the bread will become “toasted,” and…
•  The inside molecules of the bread will remain more “breadlike,” and…
•  The toasting process will release a small amount of humidity into the air because

of evaporation, and…
•  The heating elements will become a tiny fraction more likely to burn out the

next time I use the toaster, and…
•  The electricity meter in the house will move up slightly, and…

Knowledge Engineering!

•  Modeling the “right” conditions and the “right” effects at
the “right” level of abstraction is very difficult

•  Knowledge engineering (creating and maintaining
knowledge bases for intelligent reasoning) is a field

•  Many researchers hope that automated knowledge
acquisition and machine learning tools can fill the gap:
•  Our intelligent systems should be able to learn about the conditions

and effects, just like we do.
•  Our intelligent systems should be able to learn when to pay

attention to, or reason about, certain aspects of processes,
depending on the context.

Preferences Among Actions

•  A problem with the Wumpus world knowledge base: It’s
hard to decide which action is best!
•  Ex: to decide between a forward and a grab, axioms describing

when it is okay to move would have to mention glitter.

•  This is not modular!

•  We can solve this problem by separating facts about
actions from facts about goals.

•  This way our agent can be reprogrammed just by asking
it to achieve different goals.

Preferences Among Actions

•  The first step is to describe the desirability of actions
independent of each other.

•  In doing this we will use a simple scale: actions can be
Great, Good, Medium, Risky, or Deadly.

•  Obviously, the agent should always do the best action it
can find:
(∀a,s) Great(a,s) → Action(a,s)
(∀a,s) Good(a,s) ∧ ¬(∃b) Great(b,s) → Action(a,s)
(∀a,s) Medium(a,s) ∧ (¬(∃b) Great(b,s) ∨ Good(b,s)) → Action(a,s)
 ...

Preferences Among Actions

•  We use this action quality scale in the following way.

•  Until it finds the gold, the basic strategy for our agent is:
•  Great actions include picking up the gold when found and climbing

out of the cave with the gold.
•  Good actions include moving to a square that’s OK and hasn't been

visited yet.
•  Medium actions include moving to a square that is OK and has

already been visited.
•  Risky actions include moving to a square that is not known to be

deadly or OK.
•  Deadly actions are moving into a square that is known to have a pit

or a Wumpus.

12/4/18

6

Goal-Based Agents

•  Once the gold is found, it is necessary to change strategies.
So now we need a new set of action values.

•  We could encode this as a rule:
•  (∀s) Holding(Gold,s) → GoalLocation([1,1]),s)

•  We must now decide how the agent will work out a
sequence of actions to accomplish the goal.

•  Three possible approaches are:
•  Inference: good versus wasteful solutions
•  Search: make a problem with operators and set of states
•  Planning: coming soon!

Chapter 9

Logical
Inference

Model Checking

•  Given KB, does sentence S hold?

•  Basically generate and test:
•  Generate all the possible models
•  Consider the models M in which KB is TRUE
•  If ∀M S , then S is provably true
•  If ∀M ¬S, then S is provably false
•  Otherwise (∃M1 S ∧ ∃M2 ¬S): S is satisfiable but neither

provably true or provably false

Quick review: What’s a KB? What’s a sentence?

What does model mean?

Efficient Model Checking

•  Davis-Putnam algorithm (DPLL): Generate-and-test model
checking with:
•  Early termination (short-circuiting of disjunction and conjunction)
•  Pure symbol heuristic: Any symbol that only appears negated or

unnegated must be FALSE/TRUE respectively.
•  Can “conditionalize” based on instantiations already produced

•  Unit clause heuristic: Any symbol that appears in a clause by itself can
immediately be set to TRUE or FALSE

•  WALKSAT: Local search for satisfiability:
•  Pick a symbol to flip (toggle TRUE/FALSE), either using min-

conflicts or choosing randomly

•  …or you can use any local or global search algorithm!

Reminder: Inference Rules for FOL

•  Inference rules for propositional logic apply to FOL
•  Modus Ponens, And-Introduction, And-Elimination, …

•  New (sound) inference rules for use with quantifiers:
•  Universal elimination
•  Existential introduction

•  Existential elimination

•  Generalized Modus Ponens (GMP)

Automating FOL Inference
with Generalized Modus

Ponens

12/4/18

7

Automated Inference for FOL

•  Automated inference using FOL is harder than PL
•  Variables can take on an infinite number of possible values
•  From their domains, anyway

•  This is a reason to do careful KR!

•  So, potentially infinite ways to apply Universal Elimination

•  Godel’s Completeness Theorem says that FOL
entailment is only semidecidable*
•  If a sentence is true given a set of axioms, can prove it
•  If the sentence is false, then there is no guarantee that a

procedure will ever determine this
•  Inference may never halt

*The “halting problem”

Generalized Modus Ponens (GMP)

•  Apply modus ponens reasoning to generalized rules

•  Combines And-Introduction, Universal-
Elimination, and Modus Ponens
•  From P(c) and Q(c) and (∀x)(P(x) ∧ Q(x)) → R(x) derive R(c)

•  General case: Given
•  atomic sentences P1, P2, ..., PN

•  implication sentence (Q1 ∧ Q2 ∧ ... ∧ QN) → R
•  Q1, ..., QN and R are atomic sentences

•  substitution subst(θ, Pi) = subst(θ, Qi) for i=1,...,N
•  Derive new sentence: subst(θ, R)

Generalized Modus Ponens (GMP)

•  Derive new sentence: subst(θ, R)

•  Substitutions
•  subst(θ, α) denotes the result of applying a set of

substitutions, defined by θ, to the sentence α
•  A substitution list θ = {v1/t1, v2/t2, ..., vn/tn} means to

replace all occurrences of variable symbol vi by term ti
•  Substitutions are made in left-to-right order in the list
•  subst({x/IceCream, y/Ziggy}, eats(y,x)) = eats(Ziggy,

IceCream)

Horn Clauses

•  A Horn clause is a sentence of the form:
 (∀x) P1(x) ∧ P2(x) ∧ ... ∧ Pn(x) → Q(x)

where:
•  there are 0 or more Pis and 0 or 1 Qs
•  the Pis and Q are positive (non-negated) literals

•  Equivalently: P1(x) ∨ P2(x) … ∨ Pn(x) where the Pi
are all atomic and at most one of them is positive

•  Horn clauses represent a subset of the set of
sentences representable in FOL

Horn Clauses II

•  Special cases
•  P1 ∧ P2 ∧ … Pn → Q

•  P1 ∧ P2 ∧ … Pn → false

•  true → Q

•  These are not Horn clauses:
•  p(a) ∨ q(a)

•  (P ∧ Q) → (R ∨ S)

Forward Chaining

•  Proofs start with the given axioms/premises in KB,
deriving new sentences using GMP until the goal/
query sentence is derived

•  This defines a forward-chaining inference
procedure because it moves “forward” from the KB
to the goal [eventually]

•  Inference using GMP is complete for KBs
containing only Horn clauses

12/4/18

8

Forward Chaining Example

•  KB:
•  allergies(X) → sneeze(X)

•  cat(Y) ∧ allergic-to-cats(X) → allergies(X)

•  cat(Felix)

•  allergic-to-cats(Lise)

•  Goal:
•  sneeze(Lise)

Inference

sneeze(Lise) ß infer truth of

•  Forward Chaining: apply rules

cat(Y) ∧ allergic-cats(X) → allergies(X) ∧ cat(Felix)
 →
cat(Felix) ∧ allergic-cats(X) → allergies(X) ∧ allergic-cats(Lise)
 →
allergies(Lise) ∧ allergies(X) → sneeze(X)
 →
sneeze(Lise) ✓

Knowledge Base
1. Allergies lead to sneezing.

 allergies(X) → sneeze(X)
2. Cats cause allergies if
allergic to cats.

 cat(Y) ∧ allergic-cats(X)
 → allergies(X)
3. Felix is a cat.

 cat(Felix)
4. Lise is allergic to cats.

 allergic-cats(Lise)
variable binding

(query)

add new
sentence
to KB

Backward Chaining

•  Backward-chaining deduction using GMP
•  Complete for KBs containing only Horn clauses.

•  Proofs:
•  Start with the goal query

•  Find rules with that
conclusion

•  Prove each of the antecedents in the implication

•  Keep going until you reach premises!

Avoid loops�
Is new subgoal already �
on goal stack?�

Avoid repeated work: has subgoal �
already been proved true�
already failed?

Backward Chaining Example

•  KB:
•  allergies(X) → sneeze(X)

•  cat(Y) ∧ allergic-to-cats(X) → allergies(X)

•  cat(Felix)

•  allergic-to-cats(Lise)

•  Goal:
•  sneeze(Lise)

Inference

sneeze(Lise) ß query

•  Backward Chaining: apply rules
that end with the goal

allergies(X) → sneeze(X) + sneeze(Lise)
 new query: allergies(Lise)?

cat(Y) ∧ allergic-cats(X) → allergies(X) + allergies(Lise)
 new query: cat(Y) ∧ allergic-cats(Lise)?

cat(Felix) + cat(Y) ∧ allergic-cats(Lise)
 new sentence: cat(Felix) ∧ allergic-cats(Lise) ✓

Knowledge Base
1. Allergies lead to sneezing.

 allergies(X) → sneeze(X)
2. Cats cause allergies if
allergic to cats.

 cat(Y) ∧ allergic-cats(X)
 → allergies(X)
3. Felix is a cat.

 cat(Felix)
4. Lise is allergic to cats.

 allergic-cats(Lise)

variable binding

Backward Chaining Algorithm

12/4/18

9

Forward vs. Backward Chaining

•  FC is data-driven
•  Automatic, unconscious processing
•  E.g., object recognition, routine decisions
•  May do lots of work that is irrelevant to the goal

•  BC is goal-driven, appropriate for problem-solving
•  Where are my keys? How do I get to my next class?
•  Complexity of BC can be much less than linear in the size

of the KB

Completeness of GMP

•  GMP (using forward or backward chaining) is complete for
KBs that contain only Horn clauses

•  It is not complete for simple KBs that contain non-Horn
clauses

•  The following entail that S(A) is true:
(∀x) P(x) → Q(x)
(∀x) ¬P(x) → R(x)
(∀x) Q(x) → S(x)
(∀x) R(x) → S(x)

•  If we want to conclude S(A), with GMP we cannot, since
the second one is not a Horn clause

•  It is equivalent to P(x) ∨ R(x)

