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First-Order Logic & 
Inference 
Ch. 8.1–8.3, 9  

Material from Dr. Marie desJardin, Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer  

Today’s Class 

•  The last little bit of  PL and FOL 
•  Axioms and Theorems 
•  Sufficient and Necessary 

•  Logical Agents 
•  Reflex 
•  Model-Based 
•  Goal-Based 

•  Inference!  
•  How do we use any of  this? 

Axioms, Definitions and Theorems 

•  Axioms: facts and rules that attempt to capture all of the 
(important) facts and concepts about a domain 

•  Axioms can be used to prove theorems 
•  Mathematicians don’t want any unnecessary (dependent) axioms –ones 

that can be derived from other axioms 
•  Dependent axioms can make reasoning faster, however 
•  Choosing a good set of axioms for a domain is a design problem! 

•  A definition of a predicate is of the form “p(X) ↔ …” and can 
be decomposed into two parts 
•  Necessary description: “p(x) → …”  
•  Sufficient description “p(x) ← …” 
•  Some concepts don’t have complete definitions (e.g., person(x)) 

•  Examples: define father(x, y) by parent(x, y) and male(x) 
•  parent(x, y) is a necessary (but not sufficient) description of  

father(x, y) 
•  father(x, y) → parent(x, y) 

•  parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not 
necessary) description of father(x, y): 
       father(x, y) ← parent(x, y) ^ male(x) ^ age(x, 35)  
•  parent(x, y) ^ male(x) is a necessary and sufficient 

description of father(x, y)  
      parent(x, y) ^ male(x) ↔ father(x, y) 

 

More on Definitions 

•  FOL only allows to quantify over variables, and variables can 
only range over objects.  

•  HOL allows us to quantify over relations 

•  Example: (quantify over functions) 
•  “two functions are equal iff they produce the same value for all 

arguments” 
•  ∀f ∀g (f = g) ↔ (∀x f(x) = g(x)) 

•  Example: (quantify over predicates) 
•  ∀r transitive( r ) → (∀xyz) r(x,y) ∧ r(y,z) → r(x,z))  

•  More expressive, but undecidable.  
 

Higher-Order Logics Expressing Uniqueness 
•  Sometimes we want to say that there is a single, unique object that 

satisfies a certain condition 

•  “There exists a unique x such that king(x) is true”  
•  ∃x king(x) ∧ ∀y (king(y) → x=y) 
•  ∃x king(x) ∧ ¬∃y (king(y) ∧ x≠y) 
•  ∃! x king(x)  

•  “Every country has exactly one ruler” 
•  ∀c country(c) → ∃! r ruler(c,r)  

•  Iota operator: “ι x P(x)” means “the unique x such that p(x) is true” 
•  “The unique ruler of Freedonia is dead” 
•  dead(ι x ruler(freedonia,x)) 
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Logical Agents 
Logical Agents for Wumpus World 

Three (non-exclusive) agent architectures: 
• Reflex agents 
•  Have rules that classify situations, specifying how to react 

to each possible situation  
• Model-based agents 
•  Construct an internal model of their world  
• Goal-based agents 
•  Form goals and try to achieve them 

A Typical Wumpus World  

• The agent 
always starts in 
the field [1,1].  

•   The task of  the 
agent is to find 
the gold, return 
to the field [1,1] 
and climb out of  
the cave.  

A Simple Reflex Agent 

•  Rules to map percepts into observations: 
∀b,g,u,c,t Percept([Stench, b, g, u, c], t) → Stench(t) 
∀s,g,u,c,t Percept([s, Breeze, g, u, c], t) → Breeze(t) 
∀s,b,u,c,t Percept([s, b, Glitter, u, c], t) → AtGold(t) 

•  Rules to select an action given observations: 
∀t AtGold(t) → Action(Grab, t) 

A Simple Reflex Agent 

•  Some difficulties:  

•  Climb? 
•  There is no percept that indicates the agent should climb out – 

position and holding gold are not part of the percept sequence 

•  Loops? 
•  The percept will be repeated when you return to a square, 

which should cause the same response (unless we maintain 
some internal model of the world) 

KB-Agents Summary 

•  Logical agents 
•  Reflex: rules map directly from percepts à beliefs or percepts 
à actions 

 ∀b,g,u,c,t Percept([Stench, b, g, u, c], t) → Stench(t)
∀t AtGold(t) → Action(Grab, t)

•  Model-based: construct a model (set of  t/f  beliefs about 
sentences) as they learn; map from models à actions

 Action(Grab, t) → HaveGold(t)
HaveGold(t) → Action(RetraceSteps, t)

•  Goal-based: form goals, then try to accomplish them 
•  Encoded as a rule:  

(∀s) Holding(Gold,s) → GoalLocation([1,1],s)

Wumpus percepts:

[Stench, Breeze, Glitter, Bump, Scream] 
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Representing Change 

•  Representing change in the world in logic can be tricky. 

•  One way is just to change the KB 
•  Add and delete sentences from the KB to reflect changes 
•  How do we remember the past, or reason about changes? 

•  Situation calculus is another way 

•  A situation is a snapshot of the world  
at some instant in time 

•  When the agent performs an  
action A in situation S1, the 
result is a new situation S2. 

s2

Situations 
•  Situations over time. 
•  (We would not 

have this level 
of  full know- 
ledge.) 

s2

Situation Calculus 

•  A situation is: 
•  A snapshot of the world 
•  At an interval of time  
•  During which nothing changes  

•  Every true or false statement is made wrt. a situation  
•  Add situation variables to every predicate. 
•  at(Agent,1,1) becomes at(Agent,1,1,s0):  

at(Agent,1,1) is true in situation (i.e., state) s0. 

Situation Calculus 

•  Alternatively, add a special 2nd-order predicate, holds(f,s), that 
means “f is true in situation s.” E.g., holds(at(Agent,1,1),s0)  

•  Or: add a new function, result(a,s), that maps a situation s into 
a new situation as a result of performing action a. For example, 
result(forward, s) is a function that returns the successor state 
(situation) to s  

•  Example: The action agent-walks-to-location-y could be 
represented by 

(∀x)(∀y)(∀s) (at(Agent,x,s) ∧ ¬onbox(s)) → at(Agent,y,result(walk(y),s))  

Situations Summary 

•  Representing a dynamic world 
•  Situations (s0…sn): the world in situation 0-n 

Teaching(DrM,s0) —	today,10:10,whenNotSick,	…	
•  Add ‘situation’ argument to statements 

AtGold(t,s0) 
•  Or, add a ‘holds’ predicate that says ‘sentence is true in 

this situation’ 
holds(At[2,1], s1) 

•  Or, add a result(action, situation) function that takes an 
action and situation, and returns a new situation 

results(Action(goNorth), s0) à s1 

s2

Deducing Hidden Properties 

•  From the perceptual information we obtain in 
situations, we can infer properties of locations  

  l = location, s = situation  
∀l,s at(Agent,l,s) ∧ Breeze(s) → Breezy(l) 
∀l,s at(Agent,l,s) ∧ Stench(s) → Smelly(l)  

•  Neither Breezy nor Smelly need situation arguments 
because pits and Wumpuses do not move around 
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Deducing Hidden Properties II 

•  We need to write some rules that relate various aspects 
of a single world state (as opposed to across states) 

•  There are two main kinds of such rules:  
• Causal rules reflect assumed direction of causality: 

(∀l1,l2,s) At(Wumpus,l1,s) ∧ Adjacent(l1,l2) → Smelly(l2)  
(∀ l1,l2,s) At(Pit,l1,s) ∧ Adjacent(l1,l2) → Breezy(l2)  

•  Systems that reason with causal rules are called model-
based reasoning systems 

Deducing Hidden Properties II 

•  We need to write some rules that relate various aspects 
of a single world state (as opposed to across states) 

•  There are two main kinds of such rules:  

Deducing Hidden Properties II 

•  We need to write some rules that relate various aspects 
of a single world state (as opposed to across states) 

•  There are two main kinds of such rules:  
• Diagnostic rules infer the presence of hidden 

properties directly from the percept-derived 
information. We have already seen two: 
(∀ l,s) At(Agent,l,s) ∧ Breeze(s) → Breezy(l)  
(∀ l,s) At(Agent,l,s) ∧ Stench(s) → Smelly(l)  

Frames: A Data Structure 

•  A frame divides knowledge 
into substructures by 
representing “stereotypical 
situations.” 

•  Situations can be visual 
scenes, structures of   
physical objects,  

•  Useful for representing 
commonsense knowledge. 

intelligence.worldofcomputing.net/knowledge-representation/frames.html#.WCHhCNxBo8A  

Representing Change: 
The Frame Problem 

•  Frame axioms: If property x doesn’t change as a 
result of applying action a in state s, then it stays the 
same. 
•  On (x, z, s) ∧ Clear (x, s) →  

 On (x, table, Result(Move(x, table), s)) ∧  
 ¬On(x, z, Result (Move (x, table), s)) 

•  On (y, z, s) ∧ y≠ x → On (y, z, Result (Move (x, table), s)) 
•  The proliferation of frame axioms becomes very cumbersome 

in complex domains 

The Frame Problem II 

•  Successor-state axiom: General statement that characterizes 
every way in which a particular predicate can become true: 
•  Either it can be made true, or it can already be true and not be 

changed: 
•  On (x, table, Result(a,s)) ↔  

 [On (x, z, s) ∧ Clear (x, s) ∧ a = Move(x, table)] v 
 [On (x, table, s) ∧ a ≠ Move (x, z)] 

•  In complex worlds with longer chains of action, even these are 
too cumbersome 
•  Planning systems use special-purpose inference to reason about the 

expected state of the world at any point in time during a multi-step plan 
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Qualification Problem 

•  Qualification problem: 
•  How can you possibly characterize every single effect of an 

action, or every single exception that might occur? 
•  When I put my bread into the toaster, and push the button, it 

will become toasted after two minutes, unless… 
•  The toaster is broken, or… 
•  The power is out, or… 
•  I blow a fuse, or… 
•  A neutron bomb explodes nearby and fries all electrical components, 

or… 
•  A meteor strikes the earth, and the world we know it ceases to exist, 

or… 

Ramification Problem 
•  How do you describe every effect of every action? 
•  When I put my bread into the toaster, and push the button, the bread will 

become toasted after two minutes, and… 
•  The crumbs that fall off the bread onto the bottom of the toaster over tray will 

also become toasted, and… 
•  Some of the aforementioned crumbs will become burnt, and… 
•  The outside molecules of the bread will become “toasted,” and… 
•  The inside molecules of the bread will remain more “breadlike,” and… 
•  The toasting process will release a small amount of humidity into the air because 

of evaporation, and… 
•  The heating elements will become a tiny fraction more likely to burn out the 

next time I use the toaster, and… 
•  The electricity meter in the house will move up slightly, and… 

Knowledge Engineering! 

•  Modeling the “right” conditions and the “right” effects at 
the “right” level of abstraction is very difficult 

•  Knowledge engineering (creating and maintaining 
knowledge bases for intelligent reasoning) is a field  

•  Many researchers hope that automated knowledge 
acquisition and machine learning tools can fill the gap: 
•  Our intelligent systems should be able to learn about the conditions 

and effects, just like we do. 
•  Our intelligent systems should be able to learn when to pay 

attention to, or reason about, certain aspects of processes, 
depending on the context. 

Preferences Among Actions 

•  A problem with the Wumpus world knowledge base: It’s 
hard to decide which action is best! 
•  Ex: to decide between a forward and a grab, axioms describing 

when it is okay to move would have to mention glitter.  

•  This is not modular!  

•  We can solve this problem by separating facts about 
actions from facts about goals. 

•  This way our agent can be reprogrammed just by asking 
it to achieve different goals.  

Preferences Among Actions 

•  The first step is to describe the desirability of actions 
independent of each other.  

•  In doing this we will use a simple scale: actions can be 
Great, Good, Medium, Risky, or Deadly.  

•  Obviously, the agent should always do the best action it 
can find:  
(∀a,s) Great(a,s) → Action(a,s)  
(∀a,s) Good(a,s) ∧ ¬(∃b) Great(b,s)  → Action(a,s)  
(∀a,s) Medium(a,s) ∧ (¬(∃b) Great(b,s) ∨ Good(b,s)) → Action(a,s)  
     ...  

Preferences Among Actions 

•  We use this action quality scale in the following way.  

•  Until it finds the gold, the basic strategy for our agent is:  
•  Great actions include picking up the gold when found and climbing 

out of the cave with the gold.  
•  Good actions include moving to a square that’s OK and hasn't been 

visited yet.  
•  Medium actions include moving to a square that is OK and has 

already been visited.  
•  Risky actions include moving to a square that is not known to be 

deadly or OK.  
•  Deadly actions are moving into a square that is known to have a pit 

or a Wumpus.  
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Goal-Based Agents 

•  Once the gold is found, it is necessary to change strategies.  
So now we need a new set of action values.  

•  We could encode this as a rule:  
•  (∀s) Holding(Gold,s) → GoalLocation([1,1]),s) 

•  We must now decide how the agent will work out a 
sequence of actions to accomplish the goal.  

•  Three possible approaches are: 
•  Inference: good versus wasteful solutions 
•  Search: make a problem with operators and set of states 
•  Planning: coming soon! 

Chapter 9 

Logical 
Inference 

Model Checking 

•  Given KB, does sentence S hold? 

•  Basically generate and test:   
•  Generate all the possible models 
•  Consider the models M in which KB is TRUE 
•  If  ∀M S , then S is provably true 
•  If  ∀M ¬S, then S is provably false 
•  Otherwise (∃M1 S ∧ ∃M2 ¬S): S is satisfiable but neither 

provably true or provably false 

Quick review:  What’s a KB? What’s a sentence?

What does model mean?

Efficient Model Checking 

•  Davis-Putnam algorithm (DPLL): Generate-and-test model 
checking with: 
•  Early termination (short-circuiting of  disjunction and conjunction) 
•  Pure symbol heuristic: Any symbol that only appears negated or 

unnegated must be FALSE/TRUE respectively. 
•  Can “conditionalize” based on instantiations already produced 

•  Unit clause heuristic: Any symbol that appears in a clause by itself  can 
immediately be set to TRUE or FALSE 

•  WALKSAT: Local search for satisfiability:  
•  Pick a symbol to flip (toggle TRUE/FALSE), either using min-

conflicts or choosing randomly 

•  …or you can use any local or global search algorithm! 

Reminder: Inference Rules for FOL 

•  Inference rules for propositional logic apply to FOL 
•  Modus Ponens, And-Introduction, And-Elimination, … 

•  New (sound) inference rules for use with quantifiers:  
•  Universal elimination 
•  Existential introduction 

•  Existential elimination 

•  Generalized Modus Ponens (GMP) 

Automating FOL Inference  
with Generalized Modus 

Ponens 
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Automated Inference for FOL 

•  Automated inference using FOL is harder than PL 
•  Variables can take on an infinite number of  possible values  
•  From their domains, anyway 

•  This is a reason to do careful KR! 

•  So, potentially infinite ways to apply Universal Elimination  

•  Godel’s Completeness Theorem says that FOL 
entailment is only semidecidable* 
•  If  a sentence is true given a set of  axioms, can prove it 
•  If  the sentence is false, then there is no guarantee that a 

procedure will ever determine this 
•  Inference may never halt 

*The “halting problem”

Generalized Modus Ponens (GMP) 

•  Apply modus ponens reasoning to generalized rules 

•  Combines And-Introduction, Universal-
Elimination, and Modus Ponens  
•  From P(c) and  Q(c) and (∀x)(P(x) ∧ Q(x)) → R(x) derive R(c)  

•  General case: Given 
•  atomic sentences P1, P2, ..., PN 

•  implication sentence (Q1 ∧ Q2 ∧ ... ∧ QN) → R 
•  Q1, ..., QN and R are atomic sentences  

•  substitution subst(θ, Pi) = subst(θ, Qi) for i=1,...,N 
•  Derive new sentence: subst(θ, R) 

Generalized Modus Ponens (GMP) 

•  Derive new sentence: subst(θ, R)   

•  Substitutions 
•  subst(θ, α) denotes the result of  applying a set of 

substitutions, defined by θ, to the sentence α 
•  A substitution list θ = {v1/t1, v2/t2, ..., vn/tn} means to 

replace all occurrences of  variable symbol vi by term ti 
•  Substitutions are made in left-to-right order in the list 
•  subst({x/IceCream, y/Ziggy}, eats(y,x)) = eats(Ziggy, 

IceCream)  

Horn Clauses 

•  A Horn clause is a sentence of  the form: 
  (∀x) P1(x) ∧ P2(x) ∧ ... ∧ Pn(x) → Q(x)  

where:  
•  there are 0 or more Pis and 0 or 1 Qs 
•  the Pis and Q are positive (non-negated) literals 

•  Equivalently: P1(x) ∨ P2(x) … ∨ Pn(x) where the Pi 
are all atomic and at most one of  them is positive 

•  Horn clauses represent a subset of  the set of  
sentences representable  in FOL 

Horn Clauses II 

•  Special cases 
•  P1 ∧ P2 ∧ … Pn → Q 

•  P1 ∧ P2 ∧ … Pn → false 

•  true → Q 

•  These are not Horn clauses: 
•  p(a) ∨ q(a) 

•  (P ∧ Q) → (R ∨ S) 

Forward Chaining 

•  Proofs start with the given axioms/premises in KB, 
deriving new sentences using GMP until the goal/
query sentence is derived 

•  This defines a forward-chaining inference 
procedure because it moves “forward” from the KB 
to the goal [eventually] 

•  Inference using GMP is complete for KBs 
containing only Horn clauses 
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Forward Chaining Example 

•  KB:   
•  allergies(X) → sneeze(X) 

•  cat(Y) ∧ allergic-to-cats(X) → allergies(X) 

•  cat(Felix) 

•  allergic-to-cats(Lise) 

•  Goal: 
•  sneeze(Lise) 

Inference 

sneeze(Lise) ß infer truth of

•  Forward Chaining: apply rules  
 
 
cat(Y) ∧ allergic-cats(X) → allergies(X) ∧ cat(Felix)  
   →
cat(Felix) ∧ allergic-cats(X) → allergies(X) ∧ allergic-cats(Lise) 
   →
allergies(Lise) ∧ allergies(X) → sneeze(X) 
   →
sneeze(Lise)  ✓
 

Knowledge Base
1. Allergies lead to sneezing.

 allergies(X) → sneeze(X)
2. Cats cause allergies if 
allergic to cats.

 cat(Y) ∧ allergic-cats(X) 
       → allergies(X) 
3. Felix is a cat.

 cat(Felix) 
4. Lise is allergic to cats.

 allergic-cats(Lise) 
variable binding

(query)

add new 
sentence 
to KB

Backward Chaining 

•  Backward-chaining deduction using GMP  
•  Complete for KBs containing only Horn clauses. 

•  Proofs: 
•  Start with the goal query 

•  Find rules with that 
conclusion 

•  Prove each of  the antecedents in the implication 

•  Keep going until you reach premises! 

Avoid loops�
Is new subgoal already �
on goal stack?�

Avoid repeated work: has subgoal �
already been proved true�
already failed?

Backward Chaining Example 

•  KB:   
•  allergies(X) → sneeze(X) 

•  cat(Y) ∧ allergic-to-cats(X) → allergies(X) 

•  cat(Felix) 

•  allergic-to-cats(Lise) 

•  Goal: 
•  sneeze(Lise) 

Inference 

sneeze(Lise) ß query

•  Backward Chaining: apply rules 
that end with the goal  

allergies(X) → sneeze(X)  +  sneeze(Lise) 
 new query: allergies(Lise)? 

cat(Y) ∧ allergic-cats(X) → allergies(X)  +  allergies(Lise) 
   new query: cat(Y) ∧ allergic-cats(Lise)? 

cat(Felix)  +  cat(Y) ∧ allergic-cats(Lise) 
   new sentence: cat(Felix) ∧ allergic-cats(Lise)   ✓

Knowledge Base
1. Allergies lead to sneezing.

 allergies(X) → sneeze(X)
2. Cats cause allergies if 
allergic to cats.

 cat(Y) ∧ allergic-cats(X) 
       → allergies(X) 
3. Felix is a cat.

 cat(Felix) 
4. Lise is allergic to cats.

 allergic-cats(Lise) 

variable binding

Backward Chaining Algorithm 
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Forward vs. Backward Chaining 

•  FC is data-driven   
•  Automatic, unconscious processing 
•  E.g., object recognition, routine decisions 
•  May do lots of  work that is irrelevant to the goal 

•  BC is goal-driven, appropriate for problem-solving 
•  Where are my keys?  How do I get to my next class? 
•  Complexity of  BC can be much less than linear in the size 

of  the KB 

Completeness of  GMP 

•  GMP (using forward or backward chaining) is complete for 
KBs that contain only Horn clauses 

•  It is not complete for simple KBs that contain non-Horn 
clauses 

•  The following entail that S(A) is true: 
(∀x) P(x) → Q(x)
(∀x) ¬P(x) → R(x)
(∀x) Q(x) → S(x)
(∀x) R(x) → S(x)

•  If  we want to conclude S(A), with GMP we cannot, since 
the second one is not a Horn clause 

•  It is equivalent to P(x) ∨ R(x) 


