

Today's Class

- Last time: 转

Moral: never say things like "the schedule won't change again" out loud

- Bayesian learning to be rescheduled
- This time:
- A few notes on HW4
- Propositional logic and formal representations

A Few Notes on HW4

- Agent does not know coordinates of goal!

Designing a Heuristic

- Easiest way: play!
- Searching for goal, not just for a path to a known spot
- Beam search = greedy search with limited frontier
- Greedy search explores "best thing on frontier" next
- "Best" given by a heuristic: heuristic(state) \rightarrow "goodness"
- Designing a good heuristic is key
- For this problem, it will not be a simple heuristic
- What factors play into this decision? Distance, terrain, ..?

Designing a Heuristic

- Easiest way: play!
- Which way?
- Why?

Designing a Heuristic

- Easiest way: play!
- Choice: south

Why: heading towards largest contiguous unexplored area

Last Tuesday: KB Agents

- Knowledge-based agents

- Agents have knowledge about the world, own state, etc.
- Knowledge is stored in a Knowledge Base (KB)

Formally represented statements

- If it's something the agent knows, it's in the KB
- Add: New discoveries, new sensor data, new conclusions
- Delete: Old (discovered to be outdated) facts
- Agents can reason over knowledge in the KB
- But how is it represented and reasoned over?

Designing a Heuristic

- Easiest way: play!
- What are we taking into account?
 All images from Dream Quest by Peter Whalen

Logic Roadmap

- Propositional logic
- Problems with propositional logic
- First-order logic
- Properties, relations, functions, quantifiers, ..
- Terms, sentences, wffs, axioms, theories, proofs, ...
- Extensions to first-order logic
- Logical agents
- Reflex agents
- Representing change: situation calculus, frame problem
- Preferences on actions
- Goal-based agents

Big Ideas in Logic

- Logic is a great knowledge representation language for many AI problems
- Propositional logic: simple foundation, fine for many AI problems
- First order logic (FOL): much more expressive KR language, more commonly used in AI
- Many variations on classical logics are used: Horn logic, higher order logic, three-valued logic, probabilistic logics, etc.

Propositional Logic Syntax

- Logical constants: true, false
- Propositional symbols: P, Q, S, ... (atomic sentences)
- Parentheses: (...)
- Sentences are built with connectives:

\wedge...and	[conjunction]
v ...or	[disjunction]
\Rightarrow...implies	[implication / conditional]
\Leftrightarrow..is equivalent	[biconditional]
\checkmark...not	[negation]

- Literal: atomic sentence or negated atomic sentence

PL Sentences

- A sentence (or well formed formula) is:
- Any symbol is a sentence
\cdot If \mathbf{S} is a sentence, then $\neg \mathbf{S}$ is a sentence
\cdot If \mathbf{S} is a sentence, then (\mathbf{S}) is a sentence
\cdot If \mathbf{S} and \mathbf{T} are sentences, then so are $(\mathbf{S} \vee \mathbf{T}),(\mathbf{S} \wedge$ \mathbf{T}), ($\mathbf{S} \rightarrow \mathbf{T}$), and ($\mathbf{S} \leftrightarrow \mathbf{T}$)
- A sentence is created by any (finite) number of applications of these rules

Some Terms

- The meaning, or semantics, of a sentence determines its interpretation
- Given the truth values of all symbols in a sentence, it can be evaluated to determine its truth value (True or False)
- A model for a KB is a possible world-an assignment of truth values to propositional symbols that makes each sentence in KB True
- E.g.: it is both hot and humid.

Propositional Logic (PL)

- A simple language useful for showing key ideas and definitions
- User defines a set of propositional symbols - E.g., P and Q
- User defines the semantics (meaning) of each propositional symbol:
- $\mathrm{P}=$ "It's hot"
- $\mathrm{Q}=$ "It's humid"

Examples of PL Sentences

- $(P \wedge Q) \rightarrow R$
"If it is hot and humid, then it is raining"
- $\mathrm{Q} \rightarrow \mathrm{P}$
"If it is humid, then it is hot"
- Q
"It is humid."
- We're free to choose better symbols, e.g.:
$\mathrm{Ho}=$ "It is hot"
$\mathrm{Hu}=$ "It is humid"
$\mathrm{R}=$ "It is raining"

Model for a KB		
- Let the KB be $[\mathrm{P} \wedge \mathrm{Q} \rightarrow \mathrm{R}, \mathrm{Q} \rightarrow \mathrm{P}]$	PQR	\{T/F\}
- What are the possible models?	FFF	
- Consider all possible assignments	FFT	
of $\{\mathrm{T} \mid \mathrm{F}\}$ to P, Q and R and check	FTF	
truth tables	FTT	
P. it's hot	TFF	
P: it's hot	TFT	
Q: it's humid	TTF	
R: it's raining	TTT	

More Terms

- Valid sentence or tautology: True under all interpretations, no matter the semantics or what the world is actually like.
- "It's raining or it's not raining."
- Inconsistent sentence or contradiction: False under all interpretations. The world is never like what it describes. - "It's raining and it's not raining."
- P entails $\mathbf{Q}(P \vDash Q)$: whenever P is True, so is Q. In other words, all models of P are also models of Q .

Truth Tables

- Truth tables are used to define logical connectives
- And to determine when a complex sentence is true given the values of the symbols in it
Truth tables for the five logical connectives

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	Fulse	False	True	False	False
True	True	Fulse	Tnue	Tnue	True	True

Example of a truth table used for a complex sentence

P	H	$P \vee H$	$(P \vee H) \wedge \neg H$	$((P \vee H) \wedge \neg H) \Rightarrow P$ P
False	False	Filse	Fulse	True
Fulse	True	True	Fulse	True
True	Fulse	True	True	True
True	True	True	Fulse	True

- \rightarrow is a logical connective
- So $P \rightarrow Q$ is a logical sentence and has a truth value, i.e., is either true or false
- If we add this sentence to a KB , it can be used by an inference rule, Modes Ponens, to derive/ infer/prove Q if P is also in the KB
- Given a KB where $\mathrm{P}=$ True and $\mathrm{Q}=$ True, we can also derive/infer/prove that $\mathrm{P} \rightarrow \mathrm{Q}$ is True

$$
\mathrm{P} \rightarrow \mathrm{Q}
$$

- When is $P \rightarrow Q$ true? Check all that apply
$\square \mathrm{P}=\mathrm{Q}=$ true
$\square \mathrm{P}=\mathrm{Q}=$ false
$\square \mathrm{P}=$ true, $\mathrm{Q}=$ false
$\square \mathrm{P}=$ false, $\mathrm{Q}=$ true

$$
\mathrm{P} \rightarrow \mathrm{Q}
$$

- When is $P \rightarrow Q$ true? Check all that apply $\checkmark \mathrm{P}=\mathrm{Q}=$ true
$\triangle \mathrm{P}=\mathrm{Q}=$ false
$\square \mathrm{P}=$ true, $\mathrm{Q}=$ false
$\checkmark \mathrm{P}=$ false, $\mathrm{Q}=$ true
- We can get this from the truth table for \rightarrow
- In FOL, it's hard to prove a conditional true - Consider proving prime $(\mathrm{x}) \rightarrow \operatorname{odd}(\mathrm{x})$

Inference Rules

- Logical inference creates new sentences that logically follow from a set of sentences (the KB)
- An inference rule is sound if every sentence produced when operating on a KB logically follows from the KB
- I.e., inference rule does not create contradictions
- An inference rule is complete if it can produce every expression that logically follows from (is entailed by) the KB
- Note the analogy to complete search algorithms

Sound Rules of Inference

- Here are some examples of sound rules of inference
- A rule is sound if its conclusion is true when the premise is true
- Each can be shown to be sound using a truth table

RULE	PREMISE	CONCLUSION
Modus Ponens	$\mathrm{A}, \mathrm{A} \rightarrow \mathrm{B}$	B
And Introduction	A, B	$\mathrm{A} \wedge \mathrm{B}$
And Elimination	$\mathrm{A} \wedge \mathrm{B}$	A
Double Negation	$\neg \neg \mathrm{A}$	A
Unit Resolution	$\mathrm{A} \vee \mathrm{B}, \neg \mathrm{B}$	A
Resolution	$\mathrm{A} \vee \mathbf{B}, \neg \mathbf{B} \vee \mathbf{C}$	$\mathbf{A} \vee \mathrm{C}$

Resolution

- Resolution is an rule producing a new clause implied by two clauses containing complementary literals
Literal: atomic symbol or its negation, i.e., $\mathrm{P}, \sim \mathrm{P}$
- Amazingly, this is the only interference rule needed to build a sound \& complete theorem prover
- Based on proof by contradiction and usually called resolution refutation

The resolution rule was discovered by Alan

Resolution

- A KB is a set of sentences all of which are true, i.e., a conjunction of sentences
- To use resolution, put KB into conjunctive normal form (CNF) where each is a disjunction of literals (positive or negative atoms)
- Every KB can be put into CNF
- Rewrite sentences using standard tautologies
- $\mathrm{P} \rightarrow \mathrm{Q} \equiv \neg \mathrm{Pv} \mathrm{Q}$

Resolution Example	
- KB: $[\mathrm{P} \rightarrow \mathrm{Q}, \mathrm{Q} \rightarrow \mathrm{R} \wedge \mathrm{S}]$ - KB: $[\mathrm{P} \rightarrow \mathrm{Q}, \mathrm{Q} \rightarrow \mathrm{R}, \mathrm{Q} \rightarrow \mathrm{S}]$	Tautologies $(A \rightarrow B) \leftrightarrow(-\operatorname{AvB})$ $(\operatorname{Av}(B \wedge C)) \leftrightarrow(\operatorname{AvB}) \wedge(A v C)$
- KB in CNF: $[\neg \mathrm{PvQ}, \neg \mathrm{QvR}$	QvS]
- Resolve $\mathrm{KB}[0]$ and $\mathrm{KB}[1]$ p $\neg \mathrm{P} \vee \mathrm{R}$ (i.e., $P \rightarrow R$)	
- Resolve KB[0] and KB[2] $\neg \operatorname{PvS}$ (i.e., $P \rightarrow S$)	cing:
- New KB: $[\neg \mathrm{PvQ}, \neg \mathrm{QvR}$,	, $\neg \mathrm{Pv} \mathrm{R}, \neg \mathrm{Pv} \mathrm{S}]$

Proving Things			
- Proof: a sequence of sentences, where each is a premise (i.e., a given) or is derived from earlier sentences in the proof by an inference rule - Last sentence is the theorem (aka goal or query) that we want to prove			
1	Hu	premise	It's humid
2	$\mathrm{Hu} \rightarrow \mathrm{Ho}$	premise	If it's humid, it's hot
3	Ho	modus ponens (1,2)	It's hot
4	$(\mathrm{Ho} \mathrm{\wedge Hu}) \rightarrow \mathrm{R}$	premise	If it's hot and humid, it's raining
5	Но^Hu	and introduction	It is hot and humid
6	R	modus ponens (4,5)	It is raining

Horn sentences

- A Horn sentence or Horn clause has the form: $\mathrm{P} 1 \wedge \mathrm{P} 2 \wedge \mathrm{P} 3 \ldots \wedge \mathrm{Pn} \rightarrow \mathrm{Qm} \quad$ where $n>=0, \min \{0,1\}$
- Note: a conjunction of 0 or more symbols to left of \rightarrow and 0-1 symbols to right
- Special cases:
- $\mathrm{n}=0, \mathrm{~m}=1: \mathbf{P} \quad$ (assert P is true)
- $\mathrm{n}>0, \mathrm{~m}=0: \mathrm{P} \wedge \mathrm{Q} \rightarrow$ (constraint: both P and Q can't be true)
- $\mathrm{n}=0, \mathrm{~m}=0$: (well, there is nothing there!)
- Put in CNF: each sentence is a disjunction of literals with at most one non-negative literal $\neg \mathrm{P} 1 \vee \neg \mathrm{P} 2 \vee \neg \mathrm{P} 3 \ldots \vee \neg \mathrm{Pn} \vee \mathrm{Q}$

Significance of Horn Logic

- We can also have horn sentences in FOL
- Reasoning with horn clauses is much simpler - Satisfiability of propositional KB (i.e., finding values for a symbols that will make it true) is NP complete
- Restricting KB to horn sentences, satisfiability is in P
- FOL Horn sentences are the basis for many rulebased languages
- Horn logic can't handle negation and disjunctions (in general)

Propositional Logic

- Advantages
- Simple KR language good for many problems
- Lays foundation for higher logics (e.g., FOL)
- Reasoning is decidable, though NP complete; efficient techniques exist for many problems
- Disadvantages
- Not expressive enough for most problems
- Even when it is, it can be very "un-concise"

Propositional Logic is a Weak Language

- Hard to identify individuals (e.g., Mary, 3)
- Can't directly talk about properties of individuals or relations between individuals (e.g., "Bill is tall")
- Generalizations, patterns, regularities can't easily be represented (e.g., "all triangles have 3 sides")
- First-Order Logic (abbreviated FOL) is expressive enough to concisely represent this kind of information
- FOL adds relations, variables, and quantifiers, e.g., - "Every elephant is gray": $\forall \mathrm{x}($ elephant $(\mathrm{x}) \rightarrow \operatorname{gray}(\mathrm{x}))$
- "There is a white alligator": $\exists \mathrm{x}$ (alligator $(\mathrm{X})^{\wedge}$ white (X))

Example

- Consider the problem of representing the following information:
- Every person is mortal.
- Confucius is a person.
- Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

Example II

- In PL we have to create propositional symbols to stand for all or part of each sentence. For example, we might have:
$\mathrm{P}=$ "person"; $\mathrm{Q}=$ "mortal"; $\mathrm{R}=$ "Confucius"
- so the above 3 sentences are represented as:

$$
\mathrm{P} \rightarrow \mathrm{Q} ; \mathrm{R} \rightarrow \mathrm{P} ; \mathrm{R} \rightarrow \mathrm{Q}
$$

- Although the third sentence is entailed by the first two, we needed an explicit symbol, R , to represent an individual, Confucius, who is a member of the classes "person" and "mortal
- To represent other individuals we must introduce separate symbols for each one, with some way to represent the fact that all individuals who are "people" are also "mortal"

The "Hunt the Wumpus" Agent

- Some atomic propositions: S12 $=$ There is a stench in cell $(1,2)$ B34 $=$ There is a breeze in cell $(3,4)$ W13 = The Wumpus is in cell $(1,3)$ W13 = The Wumpus is in cell $(1$,
V11 $=$ We have visited cell $(1,1)$ V11 = We have visited cel
OK11 = Cell $(1,1)$ is safe
- Some rules
(R1) \neg S11 $\rightarrow \neg$ W11 $\wedge \neg \mathrm{W} 12 \wedge \neg \mathrm{~W} 21$
(R2) \neg S21 $\rightarrow \neg \mathrm{W} 11 \wedge \neg \mathrm{~W} 21 \wedge \neg \mathrm{~W} 22 \wedge \neg \mathrm{~W} 31$
(R3) \neg S12 $\rightarrow \neg \mathrm{W} 11 \wedge \neg \mathrm{~W} 12 \wedge \neg \mathrm{~W} 22 \wedge \neg \mathrm{~W} 13$
(R4) $\mathrm{S} 12 \rightarrow \mathrm{~W} 13 \vee \mathrm{~W} 12 \vee \mathrm{~W} 22 \vee \mathrm{~W} 11$
- Lack of variables forces similar rules for each cell

(R1) \neg S11 $\rightarrow-$ W11 $\wedge \neg W 12 \wedge \neg W 21$
Proving WT13 $\begin{aligned} & (R 2) ~ \neg s 21 \rightarrow-W 11 \wedge \neg W 21 \wedge \neg W 22 \wedge \neg W 31 \\ & (R 3) \neg s 12 \rightarrow-W 11 \wedge \neg W 12 \wedge \neg W 22 \wedge \neg W 13\end{aligned}$ (R4) S12 \rightarrow W13 \vee W12 \vee W22 \vee W11

- Apply MP with \neg S11 and R1

\neg W11 \neg W12 $\wedge \neg \mathrm{W} 21$

- Apply And-Elimination to this, yielding three sentences:
\rightarrow W11, ᄀ W12, ᄀ W21
- Apply MP to \sim S21 and R2, then apply And-Elimination:
\rightarrow W22, - W21, - W31
- Apply MP to S12 and R4 to obtain

W13 v W12 v W22 v W1

- Apply Unit Resolution on (W13 $\vee \mathrm{W} 12 \vee \mathrm{~W} 22 \vee \mathrm{~W} 11$) and $\neg \mathrm{W} 11$:

W 13 v W 12 v W 22

- Apply Unit Resolution with (W13 $\vee \mathrm{W} 12 \vee \mathrm{~W} 22$) and $\neg \mathrm{W} 22$

W13 v W12

- Apply UR with $(\mathrm{W} 13 \vee \mathrm{~W} 12)$ and $\neg \mathrm{W} 12$:

QED ${ }^{\text {W1 }}$

Propositional Wumpus Problems

- Lack of variables prevents stating more general rules
- $\forall \mathrm{x}, \mathrm{y} V(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{OK}(\mathrm{x}, \mathrm{y})$
- $\forall \mathrm{x}, \mathrm{y} \mathrm{S}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{W}(\mathrm{x}-1, \mathrm{y}) \vee \mathrm{W}(\mathrm{x}+1, \mathrm{y}) \ldots$
- Change of the KB over time is difficult to represent
- In classical logic, a fact is true or false for all time
- A standard technique is to index dynamic facts with the time when they're true
- A(1,1, to)
- So we have a separate KB for every time point $\cdot($

Prop. Logic Summary

- Inference: the process of deriving new sentences from old

Sound inference derives true conclusions given true premises
Complete inference derives all true conclusions from a set of premises

- A valid sentence is true in all worlds under all interpretations
- If an implication sentence can be shown to be valid, then-given its premise-its consequent can be derived
- Different logics make different commitments about what the world is made of and what kind of beliefs we can have regarding the fact
- Propositional logic commits only to the existence of facts that may or may not be the case in the world being represented

Simple syntax and semantics suffice to illustrate the process of inference
Propositional logic quickly becomes impractical, even for very small worlds
First-Order Logic
(Ch. 8.1-8.3, 9)

Saterail f foom DK. Marie destarditin, Some material adopped from notes by Addras Geyers Schula and Chuck Dyer
2rer

Bookkeeping

- Midterms returned today
- HW4 due 11/7 @ 11:59

Chapter 8

First-Order Logic

First-order logic (FOL) models the world in terms of

Objects, which are things with individual identities
Properties of objects that distinguish them from other objects
Relations that hold among sets of objects
Functions, which are a subset of relations where there is only one "value" for any given "input"

- Examples:

Objects: Students, lectures, companies, cars ...
Relations: Brother-of, bigger-than, outside, part-of, has-color occurs-after, owns, visits, precedes,
Properties: blue, oval, even, large, ..
Functions: father-of, best-friend, second-half, one-more-than .

Sentences: Terms and Atoms

- A term (denoting a real-world individual) is:
- A constant symbol: John, or
- A variable symbol: x, or
- An n-place function of n terms
x and $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ are terms, where each x_{i} is a term
is-a(John, Professor)
- A term with no variables is a ground term.
- An atomic sentence is an n-place predicate of n terms

Has a truth value (t or f)

Sentences: Terms and Atoms

- A complex sentence is formed from atomic sentences connected by the logical connectives:
$\neg \mathrm{P}, \mathrm{P} \vee \mathrm{Q}, \mathrm{P} \wedge \mathrm{Q}, \mathrm{P} \rightarrow \mathrm{Q}, \mathrm{P} \leftrightarrow \mathrm{Q}$ where P and Q are sentences
has-a(x, Bachelors) \wedge is-a(x, human)
does NOT SAY everyone with a bachelors' is human What DOES it say?
has-a(John, Bachelors) ^ is-a(John, human) has-a(Mary, Bachelors) ^ is-a(Mary, human)

Quantifiers

- Universal quantification

- $\forall \mathrm{x} \mathrm{P}(\mathrm{x})$ means that P holds for all values of x in its domain
- States universal truths
E.g.: $\forall x \operatorname{dolphin}(x) \rightarrow \operatorname{mammal}(x)$
- Existential quantification
$\exists \mathrm{x} P(\mathrm{x})$ means that P holds for some value of x in the domain associated with that variable
- Makes a statement about some object without naming it
E.g., $\exists x$ mammal $(x) \wedge \operatorname{lays-eggs}(x)$

Sentences: Quantification

- Quantified sentences adds quantifiers \forall and \exists
$\forall x$ has-a(x, Bachelors) \rightarrow is-a(x, human)
$\exists x$ has-a(x, Bachelors)
$\forall x \exists y \operatorname{Loves}(x, y)$
Everyone who has a bachelors' is human.
There exists some who has a bachelors'.
Everybody loves somebody.

Quantifiers: Uses

- Universal quantifiers often used with "implies" to form "rules":
- $(\forall \mathrm{x})$ student $(\mathrm{x}) \rightarrow \operatorname{smart}(\mathrm{x})$
- "All students are smart"
- Universal quantification rarely* used to make blanket statements about every individual in the world:
- ($\forall x)$ student $(x) \wedge$ smart(x)
- "Everyone in the world is a student and is smart"

Quantifiers: Uses
- Universal quantifiers often used with "implies" to
form "rules":
•($\forall \mathrm{x})$ student $(\mathrm{x}) \rightarrow$ smart(x$)$
. "All students are smart"
- Universal quantification rarely* used to make blanket
statements about every individual in the world:
•($\forall \mathrm{x})$ student $(\mathrm{x}) \wedge$ smart(x$)$
•"Everyone in the world is a student and is smart"
*Deliberately, anyway

Sentences: Well-Formedness

- A well-formed formula (wff) is a sentence containing no "free" variables. That is, all variables are "bound" by universal or existential quantifiers.
- $(\forall x) \mathrm{P}(x, y)$ has x bound as a universally quantified variable, but y is free.

Quantifiers: Uses

- Existential quantifiers are usually used with "and" to specify a list of properties about an individual:
($\exists \mathrm{x}$) student $(\mathrm{x}) \wedge \operatorname{smart}(\mathrm{x})$
"There is a student who is smart"
- A common mistake is to represent this English sentence as the FOL sentence:

$$
(\exists \mathrm{x}) \operatorname{student}(\mathrm{x}) \rightarrow \operatorname{smart}(\mathrm{x})
$$

- But what happens when there is a person who is not a student?

Quantifier Scope

- Switching the order of universal quantifiers does not change the meaning:
- $(\forall x)(\forall y) P(x, y) \leftrightarrow(\forall y)(\forall x) P(x, y)$
- Similarly, you can switch the order of existential quantifiers:
- $(\exists x)(\exists y) P(x, y) \leftrightarrow(\exists y)(\exists x) P(x, y)$
- Switching the order of universals and existentials does change meaning:
- Everyone likes someone: $(\forall \mathrm{x})(\exists \mathrm{y})$ likes($\mathrm{x}, \mathrm{y})$
- Someone is liked by everyone: $(\exists y)(\forall x)$ likes($x, y)$

Quantified Inference Rules
 - Universal instantiation
 - $\forall \mathrm{x} P(\mathrm{x}) \therefore \mathrm{P}(\mathrm{A})$
 - Universal generalization
 - $\mathrm{P}(\mathrm{A}) \wedge \mathrm{P}(\mathrm{B}) \ldots . \therefore \forall \mathrm{P}(\mathrm{x})$
 - Existential instantiation
 $\therefore \exists \mathrm{x}(\mathrm{x}) \therefore \mathrm{P}(\mathrm{F}) \quad \leftarrow$ skolem constant F
 - Existential generalization
 - $\mathrm{P}(\mathrm{A}) \therefore \exists \mathrm{x}$ P(x)

[^0]
Connections between For All and Exists

We can relate sentences involving \forall and \exists using De Morgan's laws:
$(\forall \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \leftrightarrow \neg(\exists \mathrm{x}) \mathrm{P}(\mathrm{x})$
$\neg(\forall x) P \leftrightarrow(\exists x) \neg P(x)$
$(\forall x) \mathrm{P}(\mathrm{x}) \leftrightarrow \neg(\exists \mathrm{x}) \neg \mathrm{P}(\mathrm{x})$
$(\exists \mathrm{x}) \mathrm{P}(\mathrm{x}) \leftrightarrow \neg(\forall \mathrm{x}) \neg \mathrm{P}(\mathrm{x})$

Universal Instantiation (a.k.a. Universal Elimination)

- If $(\forall x) \mathrm{P}(\mathrm{x})$ is true, then $\mathrm{P}(\mathrm{C})$ is true, where C is any constant in the domain of x
- Example:
$(\forall x)$ eats(Ziggy, $x) \Rightarrow$ eats(Ziggy, IceCream)
- The variable symbol can be replaced by any ground term, i.e., any constant symbol or function symbol applied to ground terms only

Existential Generalization (a.k.a. Existential Introduction)

- If $P(c)$ is true, then $(\exists x) P(x)$ is inferred.
- Example
eats(Ziggy, IceCream) $\Rightarrow(\exists \mathrm{x})$ eats(Ziggy, x$)$
- All instances of the given constant symbol are replaced by the new variable symbol
- Note that the variable symbol cannot already exist anywhere in the expression

Translating English to FOL

Every gardener likes the sun.

$\forall x$ gardener $(\mathrm{x}) \rightarrow$ likes(x, Sun)
You can fool some of the people all of the time. $\exists \mathrm{x} \forall \mathrm{t}$ person $(\mathrm{x}) \wedge \operatorname{time}(\mathrm{t}) \rightarrow \operatorname{can}-\operatorname{fool}(\mathrm{x}, \mathrm{t})$
You can fool all of the people some of the time.
$\forall \mathrm{x} \exists \mathrm{t}(\operatorname{person}(\mathrm{x}) \rightarrow \operatorname{time}(\mathrm{t}) \wedge \operatorname{can}-\operatorname{fool}(\mathrm{x}, \mathrm{t})) \rightleftharpoons$ Equivalent
$\forall \mathrm{x}($ person $(\mathrm{x}) \rightarrow \exists \mathrm{t}($ time $(\mathrm{t}) \wedge \operatorname{can}-\mathrm{fool}(\mathrm{x}, \mathrm{t})) \longleftarrow$ Equivalen
All purple mushrooms are poisonous.
$\forall x(\operatorname{mushroom}(\mathrm{x}) \wedge$ purple $(\mathrm{x})) \rightarrow$ poisonous (x)

Translating English to FOL

No purple mushroom is poisonous.

$\neg \exists \mathrm{x}$ purple $(\mathrm{x}) \wedge$ mushroom $(\mathrm{x}) \wedge$ poisonous (x)
$\forall \mathrm{x}(\operatorname{mushroom}(\mathrm{x}) \wedge$ purple $(\mathrm{x})) \rightarrow \neg$ poisonous $(\mathrm{x}) \rightleftharpoons$ Equivalent
There are exactly two purple mushrooms.
$\exists \mathrm{x} \exists \mathrm{y}$ mushroom $(\mathrm{x}) \wedge$ purple $(\mathrm{x}) \wedge$ mushroom $(\mathrm{y}) \wedge$ purple $(\mathrm{y}) \wedge \neg(\mathrm{x}=\mathrm{y}) \wedge \forall \mathrm{z}$ (mushroom $(\mathrm{z}) \wedge$ purple $(\mathrm{z})) \rightarrow((\mathrm{x}=\mathrm{z}) \vee(\mathrm{y}=\mathrm{z}))$

Clinton is not tall
\neg tall(Clinton)
X is above Y iff X is on directly on top of Y or there is a pile of one or more other objects directly on top of one another starting with X and ending with Y.
$\forall \mathrm{x} \forall \mathrm{y}$ above $(\mathrm{x}, \mathrm{y}) \leftrightarrow(\mathrm{on}(\mathrm{x}, \mathrm{y}) \vee \exists \mathrm{z}(\mathrm{on}(\mathrm{x}, \mathrm{z}) \wedge \operatorname{above}(\mathrm{z}, \mathrm{y})))$

Semantics of FOL

- Domain M: the set of all objects in the world (of interest)

- Interpretation I:

Assign each constant to an object in M
Define each function of n arguments as a mapping $M^{n}=>M$
Define each predicate of n arguments as a mapping $\mathrm{M}^{\mathrm{n}}=>\{\mathrm{T}, \mathrm{F}\}$
Therefore, every ground predicate with any instantiation will have a truth Therefore, every ground predicate with any instantiation will have a truth
value
In general there is an infinite number of interpretations because $|M|$ is infinite

- Define logical connectives: $\sim, \wedge, v,=>,<\Rightarrow>$ as in PL
- Define semantics of $(\forall x)$ and $(\exists x)$
$(\forall x) P(x)$ is true iff $P(x)$ is true under all interpretations
($\exists \mathrm{x}) \mathrm{P}(\mathrm{x})$ is true iff $\mathrm{P}(\mathrm{x})$ is true under some interpretation

Axioms, Definitions and Theorems

- Axioms: facts and rules that attempt to capture all of the (important) facts and concepts about a domain
- Axioms can be used to prove theorems

Mathematicians don't want any unnecessary (dependent) axioms -ones that can be derived from other axioms

- Dependent axioms can make reasoning faster, however

Choosing a good set of axioms for a domain is a design problem!

- A definition of a predicate is of the form " $\mathrm{p}(\mathrm{X}) \leftrightarrow$..." and can be decomposed into two parts
Necessary description: "p(x) \rightarrow..."
Sufficient description "p $(\mathrm{x}) \leftarrow \ldots$ "
Some concepts don't have complete definitions (e.g., person(x))

More on Definitions

- Examples: define father(x, y) by parent(x, y) and male(x)
- parent(x, y) is a necessary (but not sufficient) description of father(x, y)
- father $(x, y) \rightarrow \operatorname{parent}(x, y)$
parent $(x, y)^{\wedge} \operatorname{male}(x)^{\wedge}$ age $(x, 35)$ is a sufficient (but not necessary) description of father(x, y):
father $(\mathrm{x}, \mathrm{y}) \leftarrow \operatorname{parent}(\mathrm{x}, \mathrm{y})^{\wedge} \operatorname{male}(\mathrm{x})^{\wedge} \operatorname{age}(\mathrm{x}, 35)$
$\quad \operatorname{parent}(\mathrm{x}, \mathrm{y})^{\wedge} \operatorname{male}(\mathrm{x})$ is a necessary and sufficient description of father(x, y)
$\operatorname{parent}(\mathrm{x}, \mathrm{y})^{\wedge} \operatorname{male}(\mathrm{x}) \leftrightarrow$ father (x, y)

Higher-Order Logics

Expressing Uniqueness

- Sometimes we want to say that there is a single, unique object that satisfies a certain condition only range over objects.
- HOL allows us to quantify over relations
- "There exists a unique x such that king(x) is true"
$\exists \mathrm{x} \operatorname{king}(\mathrm{x}) \wedge \forall \mathrm{y}(\operatorname{king}(\mathrm{y}) \rightarrow \mathrm{x}=\mathrm{y})$
$\exists \mathrm{x}$ king $(\mathrm{x}) \wedge \neg \exists \mathrm{y}$ (king(y) $\wedge \mathrm{x} \neq \mathrm{y})$
Example: (quantify over functions)
- $3!x$ king (x)
"two functions are equal iff they produce the same value for all arguments"
$\forall f \forall g(f=g) \leftrightarrow(\forall x f(x)=g(x))$
- Example: (quantify over predicates) - $\forall \mathrm{r} \operatorname{transitive}(\mathrm{r}) \rightarrow(\forall \mathrm{xyz}) \mathrm{r}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{r}(\mathrm{y}, \mathrm{z}) \rightarrow \mathrm{r}(\mathrm{x}, \mathrm{z}))$
- "Every country has exactly one ruler" $\forall c$ country $(\mathrm{c}) \rightarrow \exists$! r ruler(c,r)
- Iota operator: " $\mathrm{x} \mathrm{P}(\mathrm{x})$ " means "the unique x such that $\mathrm{p}(\mathrm{x})$ is true" "The unique ruler of Freedonia is dead"
- dead(x ruler(freedonia,X))

[^0]: ## Existential Instantiation
 (a.k.a. Existential Elimination)

 - Variable is replaced by a brand-new constant
 - I.e., not occurring in the KB
 - From ($\exists \mathrm{x}$) $\mathrm{P}(\mathrm{x})$ infer $\mathrm{P}(\mathrm{c})$
 - Example:
 - $(\exists x)$ eats(Ziggy, x$) \rightarrow$ eats(Ziggy, Stuff)
 - "Skolemization"
 - Stuff is a skolem constant
 - Easier than manipulating the existential quantifier

