
11/21/18 

1 

Propositional and  
First-Order Logic 
Chapter 7.4–7.8, 8.1–8.3, 8.5 

Material from Dr. Marie 
desJardin, and Dr. Tim 

Oates, Some material adopted 
from notes by Andreas Geyer-

Schulz and Chuck Dyer  

Today’s Class 

•  Last time:  
•  Moral: never say things like “the schedule won’t change 

again” out loud 

•  Bayesian learning to be rescheduled 

•  This time:  
•  A few notes on HW4 

•  Propositional logic and formal representations 

A Few Notes on HW4 

•  Agent does not know coordinates of  goal! 
•  Searching for goal, not just for a path to a known spot 

•  Beam search = greedy search with limited frontier 
•  Greedy search explores “best thing on frontier” next 
•  “Best” given by a heuristic: heuristic(state) à “goodness” 

•  Designing a good heuristic is key 
•  For this problem, it will not be a simple heuristic 

•  What factors play into this decision? Distance, terrain, ..? 

Designing a Heuristic 

•  Easiest way: play! 

Designing a Heuristic 

•  Easiest way: play! 
•  Which way? 

•  Why? 

All images from Dream Quest by Peter Whalen

Designing a Heuristic 

•  Easiest way: play! 
•  Choice: south 

•  Why: heading 
towards largest 
contiguous 
unexplored area 

All images from Dream Quest by Peter Whalen
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Designing a Heuristic 

•  Easiest way: play! 
•  South again 

•  Starting to regret 
leaving that one 
unexplored corner 
block 

•  Should have built 
that into heuristic 

All images from Dream Quest by Peter Whalen

Designing a Heuristic 

All images from Dream Quest by Peter Whalen

•  Easiest way: play! 

•  What are we 
taking into 
account? 

Last Tuesday: KB Agents 

•  Knowledge-based agents 
•  Agents have knowledge about the world, own state, etc. 

•  Knowledge is stored in a Knowledge Base (KB) 
•  Formally represented statements 
•  If  it’s something the agent knows, it’s in the KB 
•  Add: New discoveries, new sensor data, new conclusions 
•  Delete: Old (discovered to be outdated) facts 

•  Agents can reason over knowledge in the KB 

•  But how is it represented and reasoned over? 

Logic Roadmap 

•  Propositional logic 
•  Problems with propositional logic 

•  First-order logic 
•  Properties, relations, functions, quantifiers, … 
•  Terms, sentences, wffs, axioms, theories, proofs, … 
•  Extensions to first-order logic 

•  Logical agents 
•  Reflex agents 
•  Representing change: situation calculus, frame problem 
•  Preferences on actions 
•  Goal-based agents 

Chapter 7.4-7.8 
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Propositional Logic 
Big Ideas in Logic 

•  Logic is a great knowledge representation 
language for many AI problems 

•  Propositional logic: simple foundation, fine for 
many AI problems 

•  First order logic (FOL): much more expressive 
KR language, more commonly used in AI 

•  Many variations on classical logics are used: 
Horn logic, higher order logic, three-valued 
logic, probabilistic logics, etc. 

Material from Dr. Tim Oates 
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Propositional Logic Syntax 

• Logical constants: true, false  

•  Propositional symbols: P, Q, S, ...  (atomic sentences) 

•  Parentheses: ( … ) 

•  Sentences are built with connectives:  
 ∧ ...and   [conjunction] 
 ∨ ...or   [disjunction] 
 ⇒...implies  [implication / conditional] 
 ⇔..is equivalent  [biconditional] 
 ¬ ...not   [negation] 

• Literal: atomic sentence or negated atomic sentence 
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Propositional Logic (PL) 

•  A simple language useful for showing key ideas and 
definitions 

•  User defines a set of  propositional symbols 
•  E.g., P and Q 

•  User defines the semantics (meaning) of  each 
propositional symbol: 
•  P=“It’s  hot”  

•  Q=“It’s humid” 

15 

PL Sentences 

•  A sentence (or well formed formula) is:  
• Any symbol is a sentence 

•  If  S is a sentence, then ¬S is a sentence 
•  If  S is a sentence, then (S) is a sentence 

•  If  S and T are sentences, then so are (S ∨ T), (S ∧ 
T), (S → T), and (S ↔ T) 

• A sentence is created by any (finite) number of  
applications of  these rules 

Examples of  PL Sentences 

•  (P ∧ Q) → R  

 “If  it is hot and humid, then it is raining” 

•  Q → P 

 “If  it is humid, then it is hot” 

•  Q 

 “It is humid.” 

•  We’re free to choose better symbols, e.g.: 

 Ho = “It is hot” 

 Hu = “It is humid” 

 R = “It is raining” 
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Some Terms 

• The meaning, or semantics, of  a sentence determines 
its interpretation 

• Given the truth values of  all symbols in a sentence, it 
can be evaluated to determine its truth value (True or 
False) 

• A model for a KB is a possible world—an 
assignment of  truth values to propositional symbols 
that makes each sentence in KB True  
•  E.g.: it is both hot and humid. 
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Model for a KB 

•  Let the KB be [P∧Q→R, Q → P] 

•  What are the possible models?   

•  Consider all possible assignments 
of  {T|F} to P, Q and R and check 
truth tables 
  

PQR	 {T|F}	
FFF	 ✓	
FFT	 ✓	
FTF	 ✘	
FTT	 ✘	
TFF	 ✓	
TFT	 ✓	
TTF	 ✘	
TTT	 ✓	

P:	it's	hot	
Q:	it's	humid		
R:	it's	raining	
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Model for a KB 

•  Let the KB be [P∧Q→R, Q → P, Q] 

•  What are the possible models?   

•  Consider all possible assignments  
of  {T|F} to P, Q and R and check 
truth tables 
  
P:	it's	hot	
Q:	it's	humid		
R:	it's	raining	

PQR	 {T|F}	
FFF	 ✘	
FFT	 ✘	
FTF	 ✘	
FTT	 ✘	
TFF	 ✘	
TFT	 ✘	
TTF	 ✘	
TTT	 ✓	

• R	is	true	in	every	
model	of	the	KB	
• This	KB	entails	that	
R	is	True	

More Terms 

• Valid sentence or tautology: True under all 
interpretations, no matter the semantics or what the 
world is actually like.  
•  “It’s raining or it’s not raining.” 

•  Inconsistent sentence or contradiction: False under all 
interpretations. The world is never like what it describes. 
•  “It’s raining and it’s not raining.” 

•  P entails Q (P ⊨ Q): whenever P is True, so is Q. 
In other words, all models of  P are also models of  Q. 

21 

Truth Tables 

Truth	tables	for	the	five	logical	connec4ves	

Example	of	a	truth	table	used	for	a	complex	sentence	

•  Truth tables are used to define logical connectives 
•  And to determine when a complex sentence is true 

given the values of  the symbols in it 

On “implies”: P → Q 

•  → is a logical connective 

•  So P→ Q is a logical sentence and has a truth 
value, i.e., is either true or false 

•  If  we add this sentence to a KB, it can be used 
by an inference rule, Modes Ponens, to derive/
infer/prove Q if  P is also in the KB 

•  Given a KB where P=True and Q=True, we can 
also derive/infer/prove that P→Q is True 

P → Q 

•  When is P→Q true?  Check all that apply 
q  P=Q=true 
q  P=Q=false 
q  P=true, Q=false 
q  P=false, Q=true 

 

P → Q 

•  When is P→Q true?  Check all that apply 
q  P=Q=true 
q  P=Q=false 
q  P=true, Q=false 
q  P=false, Q=true 

•  We can get this from the truth table for → 

•  In FOL, it’s hard to prove a conditional true 
•  Consider proving prime(x) → odd(x) 

 

 

✔	

✔	
✔	
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Inference Rules 

• Logical inference creates new sentences that 
logically follow from a set of  sentences (the KB) 

• An inference rule is sound if  every sentence 
produced when operating on a KB logically follows 
from the KB 
•  I.e., inference rule does not create contradictions 

• An inference rule is complete if  it can produce every 
expression that logically follows from (is entailed by) 
the KB 
•  Note the analogy to complete search algorithms 

27 

Sound Rules of  Inference 

• Here are some examples of  sound rules of  inference 
•  A rule is sound if  its conclusion is true when the premise is true 

• Each can be shown to be sound using a truth table 
 

RULE    PREMISE   CONCLUSION 
Modus Ponens  A, A → B   B 
And Introduction  A, B    A ∧ B 
And Elimination  A ∧ B    A 
Double Negation  ¬¬A    A 
Unit Resolution  A ∨ B, ¬B   A 
Resolution   A ∨ B, ¬B ∨ C  A ∨ C 
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Resolution 

•  Resolution is an rule producing a new clause 
implied by two clauses containing complementary 
literals 
•  Literal: atomic symbol or its negation, i.e., P, ~P 

•  Amazingly, this is the only interference rule needed 
to build a sound & complete theorem prover 
•  Based on proof  by contradiction and usually called 

resolution refutation 
 

The resolution rule was discovered by Alan 
Robinson (CS, U. of  Syracuse) in the mid 1960s 

Resolution 

•  A KB is a set of  sentences all of  which are true, 
i.e., a conjunction of  sentences 

•  To use resolution, put KB into conjunctive normal 
form (CNF) where each is a disjunction of  
literals (positive or negative atoms) 

•  Every KB can be put into CNF 
•  Rewrite sentences using standard tautologies 
•  P→Q ≡ ¬P∨Q 

Resolution Example 

• KB: [P→Q , Q→R∧S] 

• KB: [P→Q , Q→R, Q→S ] 

• KB in CNF: [¬P∨Q , ¬Q∨R , ¬Q∨S] 

• Resolve KB[0] and KB[1]  producing:  
¬P∨R   (i.e., P→R) 

• Resolve KB[0] and KB[2]  producing:  

¬P∨S   (i.e., P→S) 

• New KB: [¬P∨Q , ¬Q∨R, ¬Q∨S, ¬P∨R, ¬P∨S] 

Tautologies	
	(A→B)	↔	(¬A∨B)	

(A∨(B∧C))		↔	(A∨B)∧(A∨C)		

Proving Things 

•  Proof: a sequence of  sentences, where each is a premise 
(i.e., a given) or is derived from earlier sentences in the 
proof  by an inference rule 

• Last sentence is the theorem (aka goal or query) that we 
want to prove 

1 Hu premise It’s humid
2 Hu→Ho premise If it’s humid, it’s hot
3 Ho modus ponens (1,2) It’s hot
4 (Ho∧Hu)→R premise If it’s hot and humid, it’s raining
5 Ho∧Hu and introduction It is hot and humid
6 R modus ponens (4,5) It is raining
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Horn sentences 

•  A Horn sentence or Horn clause has the form: 
P1 ∧ P2 ∧ P3 ... ∧ Pn  →  Qm   where n>=0, m in{0,1} 

•  Note: a conjunction of  0 or more symbols to left of  → 
and 0-1 symbols to right 

•  Special cases: 
•  n=0, m=1: P     (assert P is true) 
•  n>0, m=0: P∧Q →  (constraint: both P and Q can’t be true) 
•  n=0, m=0:      (well, there is nothing there!) 

•  Put in CNF: each sentence is a disjunction of  literals 
with at most one non-negative literal 
¬P1 ∨ ¬P2 ∨ ¬P3 ... ∨ ¬Pn ∨ Q 

(P	→	Q)		=	(¬P	∨	Q)	

Significance of  Horn Logic 

•  We can also have horn sentences in FOL 

•  Reasoning with horn clauses is much simpler 
•  Satisfiability of  propositional KB (i.e., finding values for a 

symbols that will make it true) is NP complete 
•  Restricting KB to horn sentences, satisfiability is in P 

•  FOL Horn sentences are the basis for many rule-
based languages 

•  Horn logic can’t handle negation and 
disjunctions (in general) 

Problems with 
Propositional Logic 

Propositional Logic 

•  Advantages 
• Simple KR language good for many problems 
• Lays foundation for higher logics (e.g., FOL) 
• Reasoning is decidable, though NP complete; 

efficient techniques exist for many problems 

•  Disadvantages 
• Not expressive enough for most problems 
• Even when it is, it can be very “un-concise” 

Propositional Logic is a Weak Language 

• Hard to identify individuals (e.g., Mary, 3) 

• Can’t directly talk about properties of  individuals or 
relations between individuals (e.g., “Bill is tall”) 

• Generalizations, patterns, regularities can’t easily be 
represented (e.g., “all triangles have 3 sides”) 

•  First-Order Logic (abbreviated FOL) is expressive 
enough to concisely represent this kind of  information 

•  FOL adds relations, variables, and quantifiers, e.g., 
• “Every elephant is gray”: ∀ x (elephant(x) → gray(x)) 
• “There is a white alligator”: ∃ x (alligator(X) ^ white(X)) 

41 

Example 

• Consider the problem of  representing the following 
information:  
•  Every person is mortal.  

•  Confucius is a person. 
•  Confucius is mortal.  

• How can these sentences be represented so that we 
can infer the third sentence from the first two?  

42 
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Example II 

•  In PL we have to create propositional symbols to stand for all or 
part of  each sentence. For example, we might have:  
  P = “person”; Q = “mortal”; R = “Confucius” 

•  so the above 3 sentences are represented as:  
  P → Q; R → P;  R → Q  

•  Although the third sentence is entailed by the first two, we needed 
an explicit symbol, R, to represent an individual, Confucius, who is 
a member of  the classes “person” and “mortal” 

•  To represent other individuals we must introduce separate symbols 
for each one, with some way to represent the fact that all 
individuals who are “people” are also “mortal” 
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The “Hunt the Wumpus” Agent 

•  Some atomic propositions: 
   S12 = There is a stench in cell (1,2) 
   B34 = There is a breeze in cell (3,4) 
   W13 = The Wumpus is in cell (1,3) 
   V11 = We have visited cell (1,1) 
   OK11 = Cell (1,1) is safe  
  … 

•  Some rules: 
   (R1) ¬S11 → ¬W11 ∧ ¬ W12 ∧ ¬ W21 
   (R2) ¬ S21 → ¬W11 ∧ ¬ W21 ∧ ¬ W22 ∧ ¬ W31 

     (R3) ¬ S12 → ¬W11 ∧ ¬ W12 ∧ ¬ W22 ∧ ¬ W13 
   (R4)    S12 → W13 ∨ W12 ∨ W22 ∨ W11 
  … 

• Lack of  variables forces similar rules for each cell 
 44 

•  Prove Wumpus is in (1,3) and 
there is a pit in (3,1)! 

•  If  there is no stench in a cell, 
then there is no wumpus in any 
adjacent cell 

•  If  there is a stench in a cell, then 
there is a wumpus in some 
adjacent cell 

•  If  there is no breeze in a cell, 
then there is no pit in any 
adjacent cell 

•  If  there is a breeze in a cell, then 
there is a pit in some adjacent 
cell 

•  If  a cell has been visited, it has 
neither a wumpus nor a pit 

•  FIRST write the propositional 
rules for the relevant cells 

•  NEXT write the proof steps 
and indicate what inference 
rules you used in each step 

V12 
S12 
-B12 

V22 
-S22 
-B22 

V11 
-S11 
-B11 

V21 
B21 
-S21 

INFERENCE 
RULES 

Modus Ponens   
 A, A → B 
 ergo B 

And Introduction   
 A, B 
 ergo A ∧ B 

And Elimination   
 A ∧ B 
 ergo A 

Double Negation   
¬¬A 
 ergo A 

Unit Resolution 
 A ∨ B, ¬B 
 ergo A 

Resolution   
 A ∨ B, ¬B ∨ C 
 ergo A ∨ C 

After 3rd move 

•  We can prove that the 
Wumpus is in (1,3)  
using these rules: 
(R1) ¬S11 → ¬W11 ∧ ¬W12 ∧ ¬W21 

(R2) ¬S21 → ¬W11 ∧ ¬W21 ∧ ¬W22 ∧ ¬W31 

(R3) ¬S12 → ¬W11 ∧ ¬W12 ∧ ¬W22 ∧ ¬W13 

(R4)    S12 → W13 ∨ W12 ∨ W22 ∨ W11 

See R&N section 7.5 

Proving W13 

•  Apply MP with ¬S11  and  R1:  
  ¬ W11 ∧ ¬ W12 ∧ ¬ W21  

•  Apply And-Elimination to this, yielding three sentences:  
  ¬ W11, ¬ W12, ¬ W21  

•  Apply MP to ~S21 and  R2, then apply And-Elimination:  
  ¬ W22, ¬ W21, ¬ W31  

•  Apply MP to S12 and  R4 to obtain:  
  W13 ∨ W12 ∨ W22 ∨ W11 

•  Apply Unit Resolution on  (W13 ∨ W12 ∨ W22 ∨ W11) and ¬W11:  
  W13 ∨ W12 ∨ W22 

•  Apply Unit Resolution with (W13 ∨ W12 ∨ W22) and ¬W22: 
  W13 ∨ W12 

•  Apply UR with (W13 ∨ W12) and ¬W12: 
  W13 

•  QED 

47 

(R1)	¬S11	→	¬W11	∧	¬W12	∧	¬	W21	
(R2)	¬	S21	→	¬W11	∧	¬W21	∧	¬	W22	∧	¬W31	
(R3)	¬	S12	→	¬W11	∧	¬W12	∧	¬	W22	∧	¬W13	
(R4)				S12	→	W13	∨	W12	∨	W22	∨	W11	

Propositional Wumpus Problems 

•  Lack of  variables prevents stating more general 
rules  
•  ∀ x, y V(x,y) → OK(x,y)  
•  ∀ x, y S(x,y) → W(x-1,y) ∨ W(x+1,y) … 

•  Change of  the KB over time is difficult to represent  
•  In classical logic, a fact is true or false for all time  
•  A standard technique is to index dynamic facts with the 

time when they’re true  
•  A(1, 1, t0) 

•  So we have a separate KB for every time point L 
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Prop. Logic Summary 

•  Inference: the process of  deriving new sentences from old 
•  Sound inference derives true conclusions given true premises 

•  Complete inference derives all true conclusions from a set of  premises 

•  A valid sentence is true in all worlds under all interpretations 

•  If  an implication sentence can be shown to be valid, then—given its 
premise—its consequent can be derived 

•  Different logics make different commitments about what the world is 
made of  and what kind of  beliefs we can have regarding the facts 

•  Propositional logic commits only to the existence of  facts that may or 
may not be the case in the world being represented  
•  Simple syntax and semantics suffice to illustrate the process of  inference 

•  Propositional logic quickly becomes impractical, even for very small worlds 

First-Order Logic 
(Ch. 8.1–8.3, 9 ) 

Material from Dr. Marie desJardin, Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer  

Bookkeeping 

•  Midterms returned today 

•  HW4 due 11/7 @ 11:59 

Chapter 8 

First-Order Logic 

Some material adopted from notes 
by Andreas Geyer-Schulz 

First-Order Logic 

•  First-order logic (FOL) models the world in terms of  
•  Objects, which are things with individual identities 
•  Properties of objects that distinguish them from other objects 
•  Relations that hold among sets of objects 
•  Functions, which are a subset of relations where there is only one 

“value” for any given “input” 

•  Examples:  
•  Objects: Students, lectures, companies, cars ...  
•  Relations: Brother-of, bigger-than, outside, part-of, has-color, 

occurs-after, owns, visits, precedes, ...  
•  Properties: blue, oval, even, large, ...  
•  Functions: father-of, best-friend, second-half, one-more-than ...  

Sentences: Terms and Atoms 

•  A term (denoting a real-world individual) is: 
•  A constant symbol: John, or 
•  A variable symbol: x, or 
•  An n-place function of n terms 

 x and f(x1, ..., xn) are terms, where each xi is a term 
 is-a(John, Professor) 

•  A term with no variables is a ground term. 

•  An atomic sentence is an n-place predicate of n terms 
•  Has a truth value (t or f) 
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Sentences: Terms and Atoms 

•  A complex sentence is formed from atomic sentences 
connected by the logical connectives: 
¬P, P∨Q, P∧Q, P→Q, P↔Q where P and Q are sentences 

       has-a(x, Bachelors) ∧ is-a(x, human) 

 

 

       has-a(John, Bachelors) ∧ is-a(John, human) 

       has-a(Mary, Bachelors) ∧ is-a(Mary, human) 

 

does NOT SAY everyone with a bachelors’ is human

What DOES it say?

Quantifiers 

•  Universal quantification  
•  ∀x P(x) means that P holds for all values of x in its domain 
•  States universal truths 
•  E.g.: ∀x dolphin(x) → mammal(x)  

•  Existential quantification  
•  ∃x P(x) means that P holds for some value of x in the domain 

associated with that variable 
•  Makes a statement about some object without naming it 
•  E.g., ∃x mammal(x) ∧ lays-eggs(x) 

Sentences: Quantification 

•  Quantified sentences adds quantifiers ∀ and ∃  

 ∀x has-a(x, Bachelors) → is-a(x, human) 

 ∃x has-a(x, Bachelors) 

 ∀x ∃y Loves(x, y) 

Everyone who has a bachelors’ is human.

There exists some who has a bachelors’.

Everybody loves somebody.

Sentences: Well-Formedness 

•  A well-formed formula (wff) is a sentence containing 
no “free” variables. That is, all variables are “bound” 
by universal or existential quantifiers.  

•  (∀x)P(x,y) has x bound as a universally quantified 
variable, but y is free.  

Quantifiers: Uses 

•  Universal quantifiers often used with “implies” to 
form “rules”: 
•  (∀x) student(x) → smart(x)  
•  “All students are smart” 

•  Universal quantification rarely* used to make blanket 
statements about every individual in the world:  
•  (∀x)student(x)∧smart(x)  
•  “Everyone in the world is a student and is smart”   
 

            *Deliberately, anyway 

Quantifiers: Uses 

•  Existential quantifiers are usually used with “and” to 
specify a list of properties about an individual: 
(∃x) student(x) ∧ smart(x)  
“There is a student who is smart” 

•  A common mistake is to represent this English 
sentence as the FOL sentence: 
(∃x) student(x) → smart(x)  
•  But what happens when there is a person who is not a 

student? 
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Quantifier Scope 

•  Switching the order of universal quantifiers does not 
change the meaning:  
•  (∀x)(∀y)P(x,y) ↔ (∀y)(∀x) P(x,y) 

•  Similarly, you can switch the order of existential 
quantifiers: 
•  (∃x)(∃y)P(x,y) ↔ (∃y)(∃x) P(x,y)  

•  Switching the order of universals and existentials does 
change meaning:  
•  Everyone likes someone: (∀x)(∃y) likes(x,y)  
•  Someone is liked by everyone: (∃y)(∀x) likes(x,y) 

Connections between For All and Exists 

We can relate sentences involving ∀ and ∃ using De 
Morgan’s laws: 

(∀x) ¬P(x) ↔ ¬(∃x) P(x) 
¬(∀x) P ↔ (∃x) ¬P(x) 
(∀x) P(x) ↔ ¬ (∃x) ¬P(x) 
(∃x) P(x) ↔ ¬(∀x) ¬P(x) 

Quantified Inference Rules 

•  Universal instantiation 
•  ∀x P(x) ∴ P(A) 

•  Universal generalization 
•  P(A) ∧ P(B) … ∴ ∀x P(x) 

•  Existential instantiation 
•  ∃x P(x) ∴P(F)       ← skolem constant F 

•  Existential generalization 
•  P(A) ∴ ∃x P(x) 

Universal Instantiation 
(a.k.a. Universal Elimination) 

•  If (∀x) P(x) is true, then P(C) is true, where C is any 
constant in the domain of x 

•  Example:  
(∀x) eats(Ziggy, x) ⇒ eats(Ziggy, IceCream) 

•  The variable symbol can be replaced by any ground 
term, i.e., any constant symbol or function symbol 
applied to ground terms only 

Existential Instantiation 
(a.k.a. Existential Elimination) 

•  Variable is replaced by a brand-new constant  
•  I.e., not occurring in the KB 

•  From (∃x) P(x) infer P(c) 
•  Example: 
•   (∃x) eats(Ziggy, x) → eats(Ziggy, Stuff) 

•  “Skolemization” 

•  Stuff is a skolem constant 

•  Easier than manipulating the existential quantifier 

Existential Generalization 
(a.k.a. Existential Introduction) 

•  If P(c) is true, then (∃x) P(x) is inferred.  

•  Example 
eats(Ziggy, IceCream) ⇒ (∃x) eats(Ziggy, x) 

•  All instances of the given constant symbol are replaced 
by the new variable symbol 

•  Note that the variable symbol cannot already exist 
anywhere in the expression 
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Translating English to FOL 

Every gardener likes the sun. 
∀x gardener(x) → likes(x,Sun)  

You can fool some of the people all of the time. 
∃x ∀t  person(x) ∧time(t) → can-fool(x,t) 

You can fool all of the people some of the time. 
∀x ∃t (person(x) → time(t) ∧can-fool(x,t)) 
∀x (person(x) → ∃t (time(t) ∧can-fool(x,t)) 

All purple mushrooms are poisonous. 
∀x (mushroom(x) ∧ purple(x)) → poisonous(x)  

Equivalent 

Translating English to FOL 
No purple mushroom is poisonous. 

¬∃x purple(x) ∧ mushroom(x) ∧ poisonous(x)  
∀x  (mushroom(x) ∧ purple(x)) → ¬poisonous(x)  

There are exactly two purple mushrooms. 
∃x ∃y mushroom(x) ∧ purple(x) ∧ mushroom(y) ∧ purple(y) ^ ¬(x=y) ∧ ∀z 

(mushroom(z) ∧ purple(z)) → ((x=z) ∨ (y=z))  

Clinton is not tall. 
¬tall(Clinton)  

X is above Y iff X is on directly on top of Y or there is a pile of one or more 
other objects directly on top of one another starting with X and ending 
with Y. 
∀x ∀y above(x,y) ↔ (on(x,y) ∨  ∃z (on(x,z) ∧ above(z,y)))  

 

Equivalent 

Semantics of FOL 

•  Domain M: the set of all objects in the world (of interest) 

•  Interpretation I: 
•  Assign each constant to an object in M 
•  Define each function of n arguments as a mapping Mn => M 
•  Define each predicate of n arguments as a mapping Mn => {T, F} 
•  Therefore, every ground predicate with any instantiation will have a truth 

value 
•  In general there is an infinite number of interpretations because |M| is infinite 

•  Define logical connectives:  ~, ^, v, =>, <=> as in PL 

•  Define semantics of (∀x) and (∃x) 
•  (∀x) P(x) is true iff P(x) is true under all interpretations  
•  (∃x) P(x) is true iff P(x) is true under some interpretation  

•  Model: an interpretation of a set of sentences such 
that every sentence is True 

•  A sentence is 
•  Satisfiable if it is true under some interpretation 
•  Valid if it is true under all possible interpretations 
•  Inconsistent if there does not exist any interpretation under 

which the sentence is true 
•  Logical consequence: S |= X if all models of S are 

also models of X 

Axioms, Definitions and Theorems 

•  Axioms: facts and rules that attempt to capture all of the 
(important) facts and concepts about a domain 

•  Axioms can be used to prove theorems 
•  Mathematicians don’t want any unnecessary (dependent) axioms –ones 

that can be derived from other axioms 
•  Dependent axioms can make reasoning faster, however 
•  Choosing a good set of axioms for a domain is a design problem! 

•  A definition of a predicate is of the form “p(X) ↔ …” and can 
be decomposed into two parts 
•  Necessary description: “p(x) → …”  
•  Sufficient description “p(x) ← …” 
•  Some concepts don’t have complete definitions (e.g., person(x)) 

More on Definitions 

•  Examples: define father(x, y) by parent(x, y) and male(x) 
•  parent(x, y) is a necessary (but not sufficient) description of  

father(x, y) 
•  father(x, y) → parent(x, y) 

•  parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not 
necessary) description of father(x, y): 
       father(x, y) ← parent(x, y) ^ male(x) ^ age(x, 35)  
•  parent(x, y) ^ male(x) is a necessary and sufficient 

description of father(x, y)  
      parent(x, y) ^ male(x) ↔ father(x, y) 
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•  FOL only allows to quantify over variables, and variables can 
only range over objects.  

•  HOL allows us to quantify over relations 

•  Example: (quantify over functions) 
•  “two functions are equal iff they produce the same value for all 

arguments” 
•  ∀f ∀g (f = g) ↔ (∀x f(x) = g(x)) 

•  Example: (quantify over predicates) 
•  ∀r transitive( r ) → (∀xyz) r(x,y) ∧ r(y,z) → r(x,z))  

•  More expressive, but undecidable.  
 

Higher-Order Logics Expressing Uniqueness 
•  Sometimes we want to say that there is a single, unique object that 

satisfies a certain condition 

•  “There exists a unique x such that king(x) is true”  
•  ∃x king(x) ∧ ∀y (king(y) → x=y) 
•  ∃x king(x) ∧ ¬∃y (king(y) ∧ x≠y) 
•  ∃! x king(x)  

•  “Every country has exactly one ruler” 
•  ∀c country(c) → ∃! r ruler(c,r)  

•  Iota operator: “ι x P(x)” means “the unique x such that p(x) is true” 
•  “The unique ruler of Freedonia is dead” 
•  dead(ι x ruler(freedonia,x)) 


