

Today's Class

- Last time: 🎇 🞇
- Moral: never say things like "the schedule won't change again" out loud
- Bayesian learning to be rescheduled
- This time:
- A few notes on HW4
- · Propositional logic and formal representations

A Few Notes on HW4

- Agent does not know coordinates of goal!
 Searching for goal, not just for a path to a known spot
- Beam search = greedy search with limited frontier
 Greedy search explores "best thing on frontier" next
 - "Best" given by a heuristic: heuristic(state) \rightarrow "goodness"
- Designing a good heuristic is key
 - For this problem, it will not be a simple heuristic
 - What factors play into this decision? Distance, terrain, ..?

Designing a Heuristic

• Easiest way: play!

Last Tuesday: KB Agents

- Knowledge-based agents • Agents have knowledge about the world, own state, etc.
- Knowledge is stored in a **Knowledge Base** (KB)
 - Formally represented statements
 - If it's something the agent knows, it's in the KB
 - · Add: New discoveries, new sensor data, new conclusions
 - Delete: Old (discovered to be outdated) facts
- · Agents can reason over knowledge in the KB
- · But how is it represented and reasoned over?

Logic Roadmap

- Propositional logic

 Problems with propositional logic
- First-order logic
- Properties, relations, functions, quantifiers, ...
- Terms, sentences, wffs, axioms, theories, proofs, ...
 Extensions to first-order logic
- Logical agents
 - Reflex agents

Goal-based agents

- Representing change: situation calculus, frame problem
- Preferences on actions

Big Ideas in Logic

- Logic is a great knowledge representation language for many AI problems
- **Propositional logic:** simple foundation, fine for many AI problems
- **First order logic** (FOL): much more expressive KR language, more commonly used in AI
- Many variations on classical logics are used: Horn logic, higher order logic, three-valued logic, probabilistic logics, etc.

- · Logical constants: true, false
- Propositional symbols: P, Q, S, ... (atomic sentences)
- Parentheses: (...)

Sentences	are	built	with	connectives:
-----------	-----	-------	------	--------------

and	[conjunction]	

- **v** ...or [disjunction] ⇒…implies
- [implication / conditional] ⇔..is equivalent [biconditional]
- **-** ...not [negation]
- · Literal: atomic sentence or negated atomic sentence 14

Propositional Logic (PL)

- A simple language useful for showing key ideas and definitions
- · User defines a set of propositional symbols • E.g., P and Q
- User defines the semantics (meaning) of each propositional symbol:
 - P="It's hot"
 - Q="It's humid"

PL Sentences

- A sentence (or well formed formula) is: • Any symbol is a sentence
- If **S** is a sentence, then **¬S** is a sentence
- If **S** is a sentence, then **(S)** is a sentence
- If **S** and **T** are sentences, then so are (**S** v **T**), (**S** A T), $(S \rightarrow T)$, and $(S \Leftrightarrow T)$
- A sentence is created by any (finite) number of applications of these rules

Examples of PL Sentences

- $(P \land Q) \rightarrow R$
 - "If it is hot and humid, then it is raining"
- $O \rightarrow P$
- "If it is humid, then it is hot"
- 0
- "It is humid." We're free to choose better symbols, e.g.:
 - Ho = "It is hot"
 - Hu = "It is humid"
 - R = "It is raining"

Some Terms

- The meaning, or **semantics**, of a sentence determines its interpretation
- Given the truth values of all symbols in a sentence, it can be evaluated to determine its truth value (True or False)
- A model for a KB is a possible world—an assignment of truth values to propositional symbols that makes each sentence in KB True
- E.g.: it is both hot and humid.

Model for a KB • Let the KB be $[P \land Q \rightarrow R, Q \rightarrow P]$ **PQR** $\{T|F\}$ • What are the possible models? FFF FFT Consider all possible assignments of $\{T | F\}$ to \hat{P}, Q and R and check FTF truth tables FTT TFF P: it's hot TFT Q: it's humid TTF R: it's raining TTT

On "implies": $P \rightarrow Q$

- \rightarrow is a logical connective
- So $P \rightarrow Q$ is a logical sentence and has a truth value, i.e., is either true or false
- If we add this sentence to a KB, it can be used by an inference rule, *Modes Ponens*, to derive/ infer/prove Q if P is also in the KB
- Given a KB where P=True and Q=True, we can also derive/infer/prove that $P \rightarrow Q$ is True

$P \rightarrow Q$

- When is $P \rightarrow Q$ true? Check all that apply
 - P=Q=true
 - □ P=Q=false
 - P=true, Q=falseP=false, Q=true

$\mathbf{P} \to \mathbf{Q}$

- When is $P \rightarrow Q$ true? Check all that apply
 - ✓ P=Q=true
 - ✓ P=Q=false
 - □ P=true, Q=false
 - ✓ P=false, Q=true
- We can get this from the truth table for \rightarrow
- In FOL, it's hard to prove a conditional true
 Consider proving prime(x) → odd(x)

Inference Rules

- Logical inference creates new sentences that logically follow from a set of sentences (the KB)
- An inference rule is **sound** if every sentence produced when operating *on* a KB logically follows *from* the KB
- I.e., inference rule does not create contradictions
- An inference rule is **complete** if it can produce every expression that logically follows from (is entailed by) the KB
- Note the analogy to complete search algorithms

Sound Rules of Inference

• Here are some examples of sound rules of inference • A rule is sound if its conclusion is true when the premise is true

• Each can be shown to be sound using a truth table

RULE	PREMISE	CONCLUSION
Modus Ponens	A, $A \rightarrow B$	В
And Introduction	A, B	Α∧Β
And Elimination	A∧B	А
Double Negation	$\neg \neg A$	А
Unit Resolution	A v B, ¬B	А
Resolution	A v B, ¬B v C	AvC

Resolution

- **Resolution** is an rule producing a new clause implied by two clauses containing complementary literals
 - Literal: atomic symbol or its negation, i.e., P, ~P
- Amazingly, this is the only interference rule needed to build a sound & complete theorem prover
 Based on proof by contradiction and usually called resolution refutation

The resolution rule was discovered by <u>Alan</u> <u>Robinson (</u>CS, U. of Syracuse) in the mid 1960s

Resolution

- A KB is a set of sentences all of which are true, i.e., a conjunction of sentences
- To use resolution, put KB into *conjunctive normal form* (CNF) where each is a disjunction of literals (positive or negative atoms)
- Every KB can be put into CNF • Rewrite sentences using standard tautologies • $P \rightarrow Q \equiv \neg P \lor Q$

100				
	Proving Things			
• Proof: a sequence of sentences, where each is a premise (i.e., a given) or is derived from earlier sentences in the proof by an inference rule				
• Last sentence is the theorem (aka goal or query) that we want to prove				
1	Hu	premise	It's humid	
2	Hu→Ho	premise	If it's humid, it's hot	
3	Но	modus ponens (1,2)	It's hot	
4	(Ho∧Hu)→R	premise	If it's hot and humid, it's raining	
5	Ho∧Hu	and introduction	It is hot and humid	
6	R	modus ponens (4,5)	It is raining	

Significance of Horn Logic We can also have horn sentences in FOL Reasoning with horn clauses is much simpler Satisfiability of propositional KB (i.e., finding values for a symbols that will make it true) is NP complete Restricting KB to horn sentences, satisfiability is in P FOL Horn contenance are the basis for menu rule

- FOL Horn sentences are the basis for many rulebased languages
- Horn logic can't handle negation and disjunctions (in general)

Propositional Logic

Advantages

- Simple KR language good for many problems
- Lays foundation for higher logics (e.g., FOL)
- Reasoning is decidable, though NP complete; efficient techniques exist for many problems

Disadvantages

- Not expressive enough for most problems
- Even when it is, it can be very "un-concise"

Propositional Logic is a Weak Language

- Hard to identify *individuals* (e.g., Mary, 3)
- Can't directly talk about properties of individuals or relations between individuals (e.g., "Bill is tall")
- Generalizations, patterns, regularities can't easily be represented (e.g., "all triangles have 3 sides")
- First-Order Logic (abbreviated FOL) is expressive enough to concisely represent this kind of information
- FOL adds relations, variables, and quantifiers, e.g.,
 "Every elephant is gray": ∀ x (elephant(x) → gray(x))
 "There is a white alligator": ∃ x (alligator(X) ^ white(X))

Example

- Consider the problem of representing the following information:
- Every person is mortal.
- Confucius is a person.
- Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

 Prove Wumpus is in (1,3) and there is a pit in (3,1)! If there is no stench in a cell, then there is no wumpus in any adjacent cell If there is a stench in a cell, then there is a wumpus in some 	INFERENCE RULES Modus Ponens A, $A \rightarrow B$ ergo B And Introduction A, B	$ \begin{array}{ c c c c c } \hline A & = Agent \\ \hline B & = Breeze \\ \hline G & = Glitter, Gold \\ \hline OK = Safe square \\ P & = Pit \\ S & = Stench \\ \end{array} $
 adjacent cell If there is no breeze in a cell, then there is no pit in any adjacent cell If there is a breeze in a cell, then 	ergo A ^ B And Elimination A ^ B ergo A Double Negation	V = Visited W = Wumpus
there is a pit in some adjacent cellIf a cell has been visited, it has neither a wumpus nor a pit	ergo A Unit Resolution A v B, \neg B ergo A	V12 V22 S12 -S22 -B12 -B22
 FIRST write the propositional rules for the relevant cells NEXT write the proof steps and indicate what inference rules you used in each step 	Resolution A v B, ¬B v C ergo A v C	V11 V21 -S11 B21 -B11 -S21

After 3 rd move	1,4 2,4	3,4	4,4	A = Agent B = Breaze G = Ghtter, Gold OK = Sale square
	1 3 W? 2 3	33	43	P = Pit S = Stench V = Visited W = Wumpus
• We can prove that the	A S OK	ок		
using these rules:	т.т 2.1 V ОК	в ^{3,1} р) V ОК	4.1	
$(R1) \neg S11 \rightarrow \neg W11 \land \neg W12 \land \neg W21$				
$(R2) \neg S21 \rightarrow \neg W11 \land \neg W21 \land \neg W22 \land \neg W31$				
$(R3) \neg S12 \rightarrow \neg W11 \land \neg W12 \land \neg W22 \land \neg W13$ $(R4) = S12 \Rightarrow W13 \lor W12 \lor W22 \lor W11$				
See R&N section 7.5	12 V VV2	22 V VV	11	

- A standard technique is to index dynamic facts with the time when they're true • A(1, 1. t0)
- So we have a separate KB for every time point 😕

Prop. Logic Summary

- · Inference: the process of deriving new sentences from old Sound inference derives true conclusions given true premises Complete inference derives all true conclusions from a set of premises
- · A valid sentence is true in all worlds under all interpretations
- · If an implication sentence can be shown to be valid, then-given its premise-its consequent can be derived
- · Different logics make different commitments about what the world is
- made of and what kind of beliefs we can have regarding the facts
- Propositional logic commits only to the existence of facts that may or may not be the case in the world being represented
 - Simple syntax and semantics suffice to illustrate the process of inference Propositional logic quickly becomes impractical, even for very small worlds

First-Order Logic (Ch. 8.1–8.3, 9)

Bookkeeping

- · Midterms returned today
- HW4 due 11/7 @ 11:59

First-Order Logic Chapter 8

First-Order Logic

- First-order logic (FOL) models the world in terms of Objects, which are things with individual identities
 - Properties of objects that distinguish them from other objects Relations that hold among sets of objects
 - Functions, which are a subset of relations where there is only one "value" for any given "input"
- Examples:
- Objects: Students, lectures, companies, cars ...
- Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
- Properties: blue, oval, even, large, ... Functions: father-of, best-friend, second-half, one-more-than

Sentences: Terms and Atoms

- A term (denoting a real-world individual) is:
 - · A constant symbol: John, or
 - A variable symbol: x, or
 - · An n-place function of n terms
 - x and $f(x_1, ..., x_n)$ are terms, where each x_i is a term is-a(John, Professor)
 - A term with no variables is a ground term.
- An atomic sentence is an n-place predicate of n terms • Has a truth value (*t* or *f*)

Quantifiers

Universal quantification

- $\forall x P(x)$ means that P holds for all values of x in its domain
- States universal truths
- E.g.: $\forall x \ dolphin(x) \rightarrow mammal(x)$

Existential quantification

- $\exists x P(x)$ means that P holds for **some** value of x in the domain associated with that variable
- · Makes a statement about some object without naming it
- E.g., $\exists x \ mammal(x) \land lays-eggs(x)$

Sentences: Quantification

• Quantified sentences adds quantifiers ∀ and ∃

 $\forall x \text{ has-a}(x, \text{ Bachelors}) \rightarrow is\text{-}a(x, \text{ human})$

 $\exists x has - a(x, Bachelors)$

 $\forall x \exists y Loves(x, y)$

Everyone who has a bachelors' is human.

There exists some who has a bachelors'.

Everybody loves somebody.

Sentences: Well-Formedness

- A well-formed formula (wff) is a sentence containing no "free" variables. That is, all variables are "bound" by universal or existential quantifiers.
- $(\forall x)P(x,y)$ has x bound as a universally quantified variable, but y is free.

Quantifiers: Uses

- Universal quantifiers **often** used with "implies" to form "rules":
 - $(\forall x)$ student $(x) \rightarrow$ smart(x)
 - "All students are smart"
- Universal quantification **rarely*** used to make blanket statements about every individual in the world:
 - $(\forall x)$ student $(x) \land$ smart(x)
 - · "Everyone in the world is a student and is smart"

*Deliberately, anyway

Quantifiers: Uses

Existential quantifiers are usually used with "and" to specify a list of properties about an individual:
 (∃x) student(x) ∧ smart(x)

"There is a student who is smart"

A common mistake is to represent this English sentence as the FOL sentence:
 (∃x) student(x) → smart(x)

But what happens when there is a person who is *not* a

student?

Quantifier Scope

- Switching the order of universal quantifiers *does not* change the meaning:
 (∀x)(∀y)P(x,y) ↔ (∀y)(∀x) P(x,y)
- Similarly, you can switch the order of existential quantifiers:
 (∃x)(∃y)P(x,y) ↔ (∃y)(∃x) P(x,y)
- Switching the order of universals and existentials does change meaning;
 - Everyone likes someone: $(\forall x)(\exists y)$ likes(x,y)
 - Someone is liked by everyone: $(\exists y)(\forall x)$ likes(x,y)

Connections between For All and Exists

We can relate sentences involving \forall and \exists using De Morgan's laws: $(\forall x) \neg P(x) \leftrightarrow \neg(\exists x) P(x)$ $\neg(\forall x) P \leftrightarrow (\exists x) \neg P(x)$ $(\forall x) P(x) \leftrightarrow \neg(\exists x) \neg P(x)$ $(\exists x) P(x) \leftrightarrow \neg(\forall x) \neg P(x)$

Quantified Inference Rules

← skolem constant F

- Universal instantiation
 ∀x P(x) ∴ P(A)
- Universal generalization
 P(A) ∧ P(B) ... ∴ ∀x P(x)
- Existential instantiation
 ∃x P(x) ∴ P(F)
- Existential generalization
 P(A) ∴ ∃x P(x)

Universal Instantiation (a.k.a. Universal Elimination)

- If (∀x) P(x) is true, then P(C) is true, where C is *any* constant in the domain of x
- Example: $(\forall x) \text{ eats}(\text{Ziggy}, x) \Rightarrow \text{ eats}(\text{Ziggy}, \text{ IceCream})$
- The variable symbol can be replaced by any ground term, i.e., any constant symbol or function symbol applied to ground terms only

Existential Instantiation (a.k.a. Existential Elimination)

- Variable is replaced by a **brand-new constant** • I.e., not occurring in the KB
- From (∃x) P(x) infer P(c)
 Example:
 - (∃x) eats(Ziggy, x) → eats(Ziggy, Stuff)
 "Skolemization"
- Stuff is a skolem constant
- · Easier than manipulating the existential quantifier

Existential Generalization (a.k.a. Existential Introduction)

- If P(c) is true, then $(\exists x) P(x)$ is inferred.
- Example
 - eats(Ziggy, IceCream) \Rightarrow ($\exists x$) eats(Ziggy, x)
- All instances of the given constant symbol are replaced by the new variable symbol
- Note that the variable symbol cannot already exist anywhere in the expression

Translating English to FOL

Every gardener likes the sun. $\forall x \text{ gardener}(x) \rightarrow \text{likes}(x, \text{Sun})$

- You can fool some of the people all of the time. $\exists x \forall t \text{ person}(x) \land time(t) \rightarrow can-fool(x,t)$
- You can fool all of the people some of the time. $\forall x \exists t (person(x) \rightarrow time(t) \land can-fool(x,t)) \longrightarrow Equivalent$ $\forall x (person(x) \rightarrow \exists t (time(t) \land can-fool(x,t)))$
- All purple mushrooms are poisonous. $\forall x (mushroom(x) \land purple(x)) \rightarrow poisonous(x)$

Translating English to FOL

No purple mushroom is poisonous.

 $\exists x \text{ purple}(x) \land \text{ mushroom}(x) \land \text{ poisonous}(x)$

There are exactly two purple mushrooms.

 $\exists x \exists y mushroom(x) \land purple(x) \land mushroom(y) \land purple(y) \land \neg(x=y) \land \forall z \ (mushroom(z) \land purple(z)) \rightarrow ((x=z) \lor (y=z))$

Clinton is not tall. ¬tall(Clinton)

- X is above Y iff X is on directly on top of Y or there is a pile of one or more other objects directly on top of one another starting with X and ending with Y.
- $\forall x \; \forall y \; above(x,y) \leftrightarrow (on(x,y) \; \lor \; \exists z \; (on(x,z) \; \land \; above(z,y)))$

Semantics of FOL

- Domain M: the set of all objects in the world (of interest)
- **Interpretation I:**
 - Assign each constant to an object in M
 - Define each function of n arguments as a mapping $M^n \Longrightarrow M$
 - Define each predicate of n arguments as a mapping $M^n \Longrightarrow \{T, F\}$ Therefore, every **ground predicate** with any instantiation will have a truth
 - In general there is an infinite number of interpretations because |M| is infinite
- **Define logical connectives:** ~, ^, v, =>, <=> as in PL
- Define semantics of $(\forall x)$ and $(\exists x)$
 - $(\forall x) P(x)$ is true iff P(x) is true under all interpretations $(\exists x) P(x)$ is true iff P(x) is true under some interpretation

- Model: an interpretation of a set of sentences such that every sentence is True
- A sentence is
- Satisfiable if it is true under some interpretation
- · Valid if it is true under all possible interpretations
- Inconsistent if there does not exist any interpretation under which the sentence is true
- **Logical consequence:** $S \models X$ if all models of S are also models of X

Axioms, Definitions and Theorems

- Axioms: facts and rules that attempt to capture all of the (important) facts and concepts about a domain
- Axioms can be used to prove theorems Mathematicians don't want any unnecessary (dependent) axioms -ones that can be derived from other axioms
 - Dependent axioms can make reasoning faster, however
 - Choosing a good set of axioms for a domain is a design problem!
- A **definition** of a predicate is of the form "p(X) \leftrightarrow ..." and can be decomposed into two parts
 - **Necessary** description: " $p(x) \rightarrow \dots$
 - Sufficient description " $p(x) \leftarrow$
 - Some concepts don't have complete definitions (e.g., person(x))

More on Definitions

- Examples: define father(x, y) by parent(x, y) and male(x) parent(x, y) is a necessary (but not sufficient) description of father(x, y)
 - * father(x, y) \rightarrow parent(x, y)
 - $parent(x, y) \wedge male(x) \wedge age(x, 35)$ is a sufficient (but not necessary) description of father(x, y):
- $father(x, y) \leftarrow parent(x, y) \land male(x) \land age(x, 35)$ parent(x, y) ^ male(x) is a necessary and sufficient
- description of father(x, y)
 - $parent(x, y) \land male(x) \leftrightarrow father(x, y)$

Higher-Order Logics

- FOL only allows to quantify over variables, and variables can
 only range over objects.
- · HOL allows us to quantify over relations
- Example: (quantify over functions)

 "two functions are equal iff they produce the same value for all arguments"
 ∀f ∀g (f = g) ⇔ (∀x f(x) = g(x)) •
- Example: (quantify over predicates)

•

- $\forall r \text{ transitive}(r) \rightarrow (\forall xyz) r(x,y) \land r(y,z) \rightarrow r(x,z))$
- · More expressive, but undecidable.

Expressing Uniqueness

- Sometimes we want to say that there is a single, unique object that satisfies a certain condition ٠
- . "There exists a unique x such that king(x) is true"
 - a like exists a unique x such that $\exists x \operatorname{king}(x) \land \forall y (\operatorname{king}(y) \rightarrow x=y)$ $\exists x \operatorname{king}(x) \land \neg \exists y (\operatorname{king}(y) \land x≠y)$ $\exists ! x \operatorname{king}(x)$
- "Every country has exactly one ruler"
- $\forall c \text{ country}(c) \rightarrow \exists! r \text{ ruler}(c,r)$
- Iota operator: "
u $x \ P(x)$ " means "the unique x such that
 p(x) is true" .
 - "The unique ruler of Freedonia is dead" dead(t x ruler(freedonia,x))