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Bayesian Learning 
(Ch. 20.1–20.2) 
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Quick Bookkeeping 

•  Today:  
•  Tail end of  machine learning (for now) 

•  Knowledge-based agents and knowledge representation 

•  Next time:  
•  Propositional logic 

•  Logical inference 

•  After that: planning, planning, more planning 
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Bayesian Learning 

•  Bayesian probability: the view of  probability as a 
measure of  belief, as opposed to being a frequency. 
•  Does not mean that past statistics are ignored 

•  Statistics of  what has happened in the past is the knowledge that 
is conditioned on and used to update belief. 

•  Models are mathematical formulations of  observed 
events 

•  Parameters are factors in the models affecting 
observations 

Mackworth & Poole Ch. 6 
www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english 

Naïve Bayes 

•  Make the simplest possible independence assumption: Each 
attribute is independent of  the values of  the other attributes, 
given the class variable 
•  In restaurants:  Cuisine is independent of  Patrons, given a decision to 

stay 

•  Embodied in a belief  network where: 
•  The features are the nodes 
•  Target variable (the classification) has no parents 
•  The classification is the only parent of  each input feature 

•  This requires: 
•  Probability distributions P(C) for target variable C 
•  P(Fi|C) for each input feature Fi 
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Bayesian Formulation 

•  For each example, predict C by conditioning on observed 
input features and by querying the classification 

•  The probability of  class C given F1, ..., Fn 
 p(C | F1, ..., Fn) = p(C) p(F1, ..., Fn | C) / P(F1, ..., Fn)

•  Denominator: normalizing constant to make probabilities 
sum to 1, which we call α

 p(C | F1, ..., Fn) = α p(C) p(F1, ..., Fn | C)

•  Denominator does not depend on class 

•  Therefore, not needed to determine the most likely class  
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Bayesian Formulation 

•  The probability of  class C given F1, ..., Fn 
 p(C | F1, ..., Fn) = p(C) p(F1, ..., Fn | C) / P(F1, ..., Fn)�

     = α p(C) p(F1, ..., Fn | C)

•  Assumption: each feature is conditionally independent 
of  the other features given C.  Then: 

 p(C | F1, ..., Fn)  = α p(C) Πi p(Fi | C) 

•  We can estimate each of  these conditional probabilities 
from the observed counts in the training data: 

 p(Fi | C)  = N(Fi ∧ C) / N(C)
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Bayesian Formulation 

•  Example: 

•  Given a data point with inputs F1=v1,...,Fk=vk: 

•  Use Bayes’ rule to compute posterior probability 
distribution of  the example’s classification, C:  

•  P(C | F1=v1,...,Fk=vk)      (P(F1=v1,...,Fk=vk| C) ×P(C)) 
      (P(F1=v1,...,Fk=vk))  
           (P(F1=v1|C)×···×P(Fk=vk| C)×P(C)) 
        ( ∑CP(F1=v1|C)×···×P(Fk=vk| C) ×P(C))  
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Naive Bayes: Example 

•  p(Wait | Cuisine, Patrons, Rainy?) �
 = α p(Cuisine ∧ Patrons ∧ Rainy? | Wait)�

= α p(Wait) p(Cuisine | Wait) p(Patrons | Wait) �
 p(Rainy? | Wait)

 naive Bayes assumption:  is it reasonable? 
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Naive Bayes: Analysis 

•  Easy to implement 

•  Outperforms many more complex algorithms 
•  Should almost always be used for baseline comparisons 

•  Works well when the independence assumption is appropriate 
•  Often appropriate for natural kinds: classes that exist because they are 

useful in distinguishing the objects that humans care about 

 But… 

•  Can’t capture interdependencies between variables (obviously) 

•  For that, we need Bayes nets! 
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Learning Bayesian 
Networks 
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Bayesian Learning: Bayes’ Rule 

•  New idea: Instead of  choosing the single most likely model 
or finding the set of  all models consistent with training data, 
compute the posterior probability of each model given the 
training examples 

•  Bayesian learning:  
Compute posterior probability distribution of  the 
class of  a new example, conditioned on its input 
features and all training examples 
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Bayesian Learning: Bayes’ Rule 

•  Given some model space (set of  hypotheses hi) and 
evidence (data D): 
•  P(hi|D) = α P(D|hi) P(hi) 

•  We assume observations are independent of  each other, 
given a model (hypothesis), so: 
•  P(hi|D) = α ∏j P(dj|hi) P(hi) 

•  To predict the value of  some unknown quantity C 
 (e.g., the class label for a future observation): 
•  P(C|D) =  ∑i P(C|D, hi) P(hi|D) = ∑i P(C|hi) P(hi|D) 

These are equal by our
independence assumption
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Example 

•  New example has inputs X=x and target features (class variables) Y  

•  e is the set of  training examples 

•  Goal: compute P(Y|X=x∧e) 

•  The probability distribution of  target variables given the inputs and the examples 

•  A model is assumed to have generated the examples; M is set of  models 

•  Then:         P(Y|x∧e)  = ∑m∈M P(Y ∧m |x∧e) 
   = ∑m∈M P(Y | m ∧x∧e) ×P(m|x∧e)  
   = ∑m∈M P(Y | m ∧x) ×P(m|e)  

•  Bayes’ rule: P(m|e) = (P(e|m)×P(m))/(P(e))  

•  So, weight of each model depends on how well it predicts the data and 
its prior probability 

13 Details: http://artint.info/html/ArtInt_196.html

Bayesian Learning, 3 Ways 

•  BMA (Bayesian Model Averaging) 
•  Don’t just choose one hypothesis; instead, make predictions based on 

the weighted average of  all hypotheses (or some set of  best hypotheses) 

•  MAP (Maximum A Posteriori) hypothesis 
•  Choose hypothesis with highest a posteriori probability, given data  
•  Maximize p(hi | D) 
•  Generally easier than Bayesian learning 
•  Closer to Bayesian prediction as more data arrives 

•  MLE (Maximum Likelihood Estimate) 
•  Assume all hypotheses are equally likely a priori; best hypothesis 

maximizes the likelihood (i.e., probability of  data given hypothesis) 
•  Maximize p(D | hi) 
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Bayesian Learning 

•  BMA (Bayesian Model Averaging) –  
average predictions of  hypotheses 

•  MAP (Maximum A Posteriori) hypothesis –  
Maximize p(hi | D) 

•  MLE (Maximum Likelihood Estimate) –  
Maximize p(D | hi) 

•  MDL (Minimum Description Length) principle:  Use 
some encoding to model the complexity of  the 
hypothesis, and the fit of  the data to the hypothesis, 
then minimize the overall description of  hi + D 
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Quick Review: Bayes Nets 

Qualitative part:  
statistical independence 
statements (causality!) 

•  Directed acyclic graph  
(DAG) 

•  Nodes - random 
variables of interest 
(exhaustive, mutually 
exclusive states) 

•  Edges - direct (causal) 
influence 

Slide © 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SRI International. All rights reserved. 

Quantitative part: 
Local probability 
models: set of 
conditional 
probability 
distributions. 
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Example: Coin Toss 

•  Models mathematically formulate observed events 

•  Parameters are factors in the models affecting 
outcomes 

•  Toin Coss Example 
•  Fairness of coin is the parameter, θ;  
•  Outcome of  the events is data, D 

•  E.g. heads = 72, tails = 28 

•  Given an outcome (D), what is the probability this coin is 
fair (θ=0.5)? 

•  Bayes’ rule: P(θ|D) = (P(D|θ) × P(θ))/P(D) 

www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english 

Example: Coin Toss 

•  Bayes : P(θ|D) = (P(D|θ) × P(θ))/P(D) 

•  P(θ) is the prior: the strength of  our belief  in the fairness of  coin 
before the toss 
•  Can have any degree of  fairness between 0 and 1 

•  P(D|θ) is the likelihood of observing this result given 
distribution for θ 
•  Probability of  observing that number of  heads in a particular number of  

flips, given a fair coin 

•  P(D) is evidence: the probability of  observed data 
•  Determined by summing (or integrating) across all possible values of  θ, 

weighted by how strongly we believe in those particular values of  θ 

•  P(θ|D) is the posterior: belief  of  our parameters after observing 
the evidence 

www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english 

The point: If we had multiple 
hypotheses about the fairness of the 
coin, but didn’t know for sure, then 

this tells us the probability of seeing a 
certain sequence of flips for each 

possible fairness.
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Learning Bayesian Networks  

•  Given training set 

•  Find B that best matches D 
•  model selection  

•  parameter estimation 
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Parameter Estimation 

•  Assume known structure 

•  Goal: estimate BN parameters q 
•  entries in local probability models, P(X | Parents(X)) 

•  A good parameterization q is likely to generate 
observed data: 

 

 

•  Maximum Likelihood Estimation (MLE) Principle:  
Choose q* to maximize L 

∏==
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i.i.d. samples
independent and identically distributed 
(i.i.d.) if each random variable has the 
same probability distribution as the 

others and all are mutually independent

Parameter Estimation II 

•  The likelihood decomposes according to the structure of  the 
network 
→ we get a separate estimation task for each parameter 

•  The MLE (maximum likelihood estimate) solution: 
•  for each value x of  a node X 
•  and each instantiation u of  Parents(X) 

•  Just need to collect the counts for every combination of  parents and 
children observed in the data 

•  MLE is equivalent to an assumption of  a uniform prior over 
parameter values 

)(
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Sufficient Statistics: Example 
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•  Why are the counts sufficient? 

Earthquake Burglary 

Alarm 

Moon-phase 

Light-level 

θ*
A | E, B = N(A, E, B) / N(E, B) 
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Model Selection 

Goal: Select the best network structure, given the data 

Input: 
•  Training data 

•  Scoring function 

Output: 
•  A network that maximizes the score 

• This is NP-hard! 
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Structure Selection: Scoring 

•  Bayesian: prior over parameters and structure 

•  Find balance between model complexity and fit to data 

•  Score (G:D) = log P(G|D) α log [P(D|G) P(G)] 

•  Marginal likelihood just comes from our parameter 
estimates 

•  Prior on structure can be any measure we want; 
typically a function of the network complexity 

Marginal likelihood Prior 
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Heuristic Search 
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Variations on a Theme 

•  Known structure, fully observable: only need to do 
parameter estimation 

•  Unknown structure, fully observable: do heuristic search 
through structure space, then parameter estimation 

•  Known structure, missing values: use expectation 
maximization (EM) to estimate parameters 

•  Known structure, hidden variables: apply adaptive 
probabilistic network (APN) techniques 

•  Unknown structure, hidden variables: too hard to solve! 

27 

Handling Missing Data 

•  Suppose that in some cases, we observe  
earthquake, alarm, light-level, and  
moon-phase, but not burglary 

•  Should we throw that data away?? 

•  Idea: Guess the missing values 
based on the other data 

Earthquake Burglary 

Alarm 

Moon-phase 

Light-level 
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EM (Expectation Maximization) 

•  Guess probabilities for nodes with missing values 
(e.g., based on other observations) 

•  Compute the probability distribution over the 
missing values, given our guess 

•  Update the probabilities based on the guessed 
values 

•  Repeat until convergence 
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EM Example 

•  Suppose we have observed Earthquake and Alarm but 
not Burglary for an observation on November 27 

•  We estimate the CPTs based on the rest of  the data 

•  We then estimate P(Burglary) for November 27 from 
those CPTs 

•  Now we recompute the  
CPTs as if  that estimated  
value had been observed 

•  Repeat until convergence! 

Earthquake Burglary 

Alarm 
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