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Bayesian Learning

Bayesian probability: the view of probability as a
measure of belief, as opposed to being a frequency.
« Does not mean that past statistics are ignored

- Statistics of what has happened in the past is the knowledge that
is conditioned on and used to update belief.

Models are mathematical formulations of observed
events

Parameters are factors in the models affecting
observations

Mackworth & Poole Ch. 6
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Bayesian Formulation

For each example, predict C by conditioning on observed
input features and by querying the classification

The probability of class C given F, ..., F,
p(CIF,..,F)=pC) pF,,..,F 1C)/PEF,,..F,)

Denominator: normalizing constant to make probabilities
sum to 1, which we call

p(CIF,,...,F)=ap(C) pF,,..F,1C)
Denominator does not depend on class

Therefore, not needed to determine the most likely class
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Quick Bookkeeping

* Today:

* Tail end of machine learning (for now)
+ Knowledge-based agents and knowledge representation

* Next time:

* Propositional logic
+ Logical inference

* After that: planning, planning, more planning

Naive Bayes

* Make the simplest possible independence assumption: Each

attribute is independent of the values of the other attributes,
given the class variable

« Inrestaurants: Cuisine is independent of Patrons, given a decision to
stay

« Embodied in a belief network where:

* The features are the nodes
« Target variable (the classification) has no parents
 The classification is the only parent of each input feature

+ This requires:

* Probability distributions P(C) for target variable C
< P(F,|C) for each input feature F;
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Bayesian Formulation

* The probability of class C given F, ..., F,

p(CI1F,, ... F,) =p(C) p(F,, ..., F, 1C) / P(F,, ..., F,)
=ap(C) p(Fy, .., F, 10)

» Assumption: each feature is conditionally independent

of the other features given C. Then:
p(CIF,,..,F) =ap(C) II p(F, 1 C)

* We can estimate each of these conditional probabilities

from the observed counts in the training data:
p(F;1C) =N(F, A C)/N(C)
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Bayesian Formulation

Example:
Given a data point with inputs F,=v,,...,F,=v,

Use Bayes’ rule to compute posterior probability
distribution of the example’s classification, C:

P(C | F=v,...F=v) - PE=v,...F=v| O *PC)
(PF=vy..., F=0y)
= _(PF=v,|Ox-XP(F,=v,| OXP(C))
(XPF=v,1O)xxPF=v,| C) xP(C))
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Naive Bayes: Analysis

Easy to implement

Outperforms many more complex algorithms
* Should almost always be used for baseline comparisons

‘Works well when the independence assumption is appropriate
- Often appropriate for natural kinds: classes that exist because they are
useful in distinguishing the objects that humans care about
But...

Can'’t capture interdependencies between variables (obviously)

For that, we need Bayes nets!

Bayesian Learning: Bayes’ Rule

* New idea: Instead of choosing the single most likely model
or finding the set of all models consistent with training data,
compute the posterior probability of each model given the
training examples

Bayesian learning:

Compute posterior probability distribution of the
class of a new example, conditioned on its input
features and all training examples

Naive Bayes: Example

* p(Wait | Cuisine, Patrons, Rainy?)
= a p(Cuisine A Patrons A Rainy? | Wait)
= o, p(Wait) p(Cuisine | Wait) p(Patrons | Wait)
p(Rainy? | Wait)

naive Bayes assumption: is it reasonable?

Learning Bayesian
Networks

Bayesian Learning: Bayes’ Rule

Given some model space (set of hypotheses h;) and
evidence (data D):
* P(h;| D) = o P(D | hy) P(hy)

‘We assume observations are independent of each other,
given a model (hypothesis), so:

* P(hy|D) = o [[; P(d; | by) P(hy)

To predict the value of some unknown quantity C
(e.g., the class label for a future observation):
* P(CID) = 3, P(CID, hy) P(h;| D) = 3; P(C|h;) P(h;| D)

These are equal by our
independence assumption
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Example

New example has inputs X=x and target features (class variables) ¥
e is the set of training examples
Goal: compute P(Y|X=xAe)
The probability distribution of target variables given the inputs and the examples
A model is assumed to have generated the examples; M is set of models

Then: P(Y|xAe) =3, e,y P(Y Am |xAe)
ZmeZ PY|m /\x/\z) xP(m|x/Ae)
=3, P(Y | m Ax) XP(m|e)
Bayes’ rule: P(m|e) = (P(e|m)xP(m))/(P(e)
So, weight of each model depends on how well it predicts the data and
its prior probability

Details: http://artint.info/html/Artint_1 96.html

Bayesian Learning

BMA (Bayesian Model Averaging) —
average predictions of hypotheses

MAP (Maximum A Posteriori) hypothesis —
Maximize p(h; | D)

MLE (Maximum Likelihood Estimate) —
Maximize p(D | ;)

MDL (Minimum Description Length) principle: Use
some encoding to model the complexity of the
hypothesis, and the fit of the data to the hypothesis,
then minimize the overall description of h;+ D

Example: Coin Toss

Models mathematically formulate observed events

Parameters are factors in the models affecting
outcomes

* Toin Coss Example

Fairness of coin is the parameter, 0 ;

Outcome of the events is data, D

« E.g. heads = 72, tails = 28

Given an outcome (D), what is the probability this coin is
fair (6 =0.5)?

Bayes’ rule: P(9 |D) = (P(D]| 6) x P(6))/P(D)

www.analyticsvidhya.com/blog/2016/06/baye: istics-beginner

« Directed acyclic graph

Bayesian Learning, 3 Ways

* BMA (Bayesian Model Averaging)

Don'’t just choose one hypothesis; instead, make predictions based on
the weighted average of all hypotheses (or some set of best hypotheses)

* MAP (Maximum A Posteriori) hypothesis
Choose hypothesis with highest a posteriori probability, given data
Maximize p(h; | D)
Generally easier than Bayesian learning
Closer to Bayesian prediction as more data arrives

* MLE (Maximum Likelihood Estimate)

Assume all hypotheses are equally likely a priori; best hypothesis
maximizes the likelihood (i.e., probability of data given hypothesis)

Maximize p(D | h)

Quick Review: Bayes Nets

Qualitative part:

statistical independence
statements (causality!) R4 |EB)
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(DAG)

Nodes - random
variables of interest

09 01

.01 0.9

(exhagsnve, mutually wantitative part:
exclusive states) Hcal probability
Edges - direct (causal) models: set of
influence conditional
probability
distributions.
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Example: Coin Toss

Bayes : P(6 |D) = (P(D| 6) x P(6))/P(D)
P8 f coi
béfor The point: If we had multiple ps ot com
Caf  hypotheses about the fairness of the
PMD]| coin, but didn’t know for sure, then

dl;trﬂ this tells us the probability of seeing a

flipy  certain sequence of flips for each

P(D) possible fairness.
Det hesof 6,
weighted by how strongly we believe in those particular values of 6

P(6 | D) is the posterior: belief of our parameters after observing

the evidence

wiww.analyticsvidhya.com/blog/2016/06/bay




Learning Bayesian Networks

* Given training set D = {x[1],..., x[M]}

» Find B that best matches D
model selection
parameter estimation

E(l BOI Al cl ' '
E[M] BIM] AIM] CIM]
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Parameter Estimation 11

* The likelihood decomposes according to the structure of the
network
— we get a separate estimation task for each parameter

* The MLE (maximum likelihood estimate) solution:
for each value x of a node X
and each instantiation u of Parents(X)
N(x,u) ™~ _ . -
:\" = (7’) sufficient statistics
N(u) —
Just need to collect the counts for every combination of parents and
children observed in the data

MLE is equivalent to an assumption of a uniform prior over
parameter values

Model Selection

Goal: Select the best network structure, given the data

Input:
Training data
Scoring function

Output:
A network that maximizes the score

¢ This is NP-hard!

Parameter Estimation

i.i.d. samples
independent and identically distributed
(i.i.d.) if each random variable has the

Assume known structure

. . same probability distribution as the
Goal: estimate BN para; others and all are mutually independent

entries in local probability n

A good parameterization q is likely to ge
observed data:

L(6: D)= P(D|8) = [ [ P(x{m]|6)

Maximum Likelihood Estimation (MLE) Principle:
Choose q" to maximize L

Sufficient Statistics: Example

Why are the counts sufficient?
Light-level

/

Earthquake Burglary
o - N(x,u)

N

0"s &5 = N(A, E, B)/ N(E, B)

Structure Selection: Scoring

Bayesian: prior over parameters and structure
Find balance between model complexity and fit to data

Marginal likelilood Prior

Score (G:D) = log P(G|D) a log [P(D|G) P(G)]

Marginal likelihood just comes from our parameter
estimates

Prior on structure can be any measure we want;
typically a function of the network complexity




Heuristic Search Variations on a Theme

Known structure, fully observable: only need to do
parameter estimation

O Unknown structure, fully observable: do heuristic search

H s through structure space, then parameter estimation

QE/'P‘ Known structure, missing values: use expectation
@0“°‘:0(ekP“a <O maximization (EM) to estimate parameters
D'

Known structure, hidden variables: apply adaptive
probabilistic network (APN) techniques

Unknown structure, hidden variables: too hard to solve!
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Handling Missing Data EM (Expectation Maximization)

Suppose that in some cases, we observe Guess probabilities for nodes with missing values
earthquake, alarm, light-level, and (e.g., based on other observations)

-phase, but not b
moon-phase, but not burglary Compute the probability distribution over the
/

Should we throw that data away?? missing values, given our guess

Idea: Guess the missing values Update the probabilities based on the guessed

based on the other data - values
Earthquake Burglary
Repeat until convergence

EM Example

Suppose we have observed Earthquake and Alarm but
not Burglary for an observation on November 27

‘We estimate the CPTs based on the rest of the data

‘We then estimate P(Burglary) for November 27 from
those CPTs

Now we recompute the
CPTs as if that estimated Eetiiitgpte Burglary

value had been observed

Repeat until convergence!
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