

Bayesian Learning

- Bayesian probability: the view of probability as a measure of belief, as opposed to being a frequency.
Does not mean that past statistics are ignored
- Statistics of what has happened in the past is the knowledge that is conditioned on and used to update belief.
- Models are mathematical formulations of observed events
- Parameters are factors in the models affecting observations

Bayesian Formulation

- For each example, predict \mathbf{C} by conditioning on observed input features and by querying the classification
- The probability of class C given $\mathrm{F}_{1}, \ldots, \mathrm{~F}_{\mathrm{n}}$

$$
\mathbf{p}\left(\mathbf{C} \mid \mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}}\right)=\mathbf{p}(\mathbf{C}) \mathbf{p}\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}} \mid \mathbf{C}\right) / \mathbf{P}\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}}\right)
$$

- Denominator: normalizing constant to make probabilities sum to 1 , which we call α

$$
p\left(C \mid F_{1}, \ldots, F_{n}\right)=\alpha p(C) p\left(F_{1}, \ldots, F_{n} \mid C\right)
$$

- Denominator does not depend on class
- Therefore, not needed to determine the most likely class

Quick Bookkeeping

- Today:
- Tail end of machine learning (for now)
- Knowledge-based agents and knowledge representation
- Next time:
- Propositional logic
- Logical inference
- After that: planning, planning, more planning

\square

Bayesian Formulation

- The probability of class C given $\mathrm{F}_{1}, \ldots, \mathrm{~F}_{\mathrm{n}}$

$$
\begin{gathered}
\mathbf{p}\left(\mathbf{C} \mid \mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}}\right)=\mathbf{p}(\mathbf{C}) \mathbf{p}\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}} \mid \mathbf{C}\right) / \mathbf{P}\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}}\right) \\
=\alpha \mathbf{p}(\mathbf{C}) \mathbf{p}\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}} \mid \mathbf{C}\right)
\end{gathered}
$$

- Assumption: each feature is conditionally independent of the other features given C . Then:

$$
\mathrm{p}\left(\mathrm{C} \mid \mathrm{F}_{1}, \ldots, \mathrm{~F}_{\mathrm{n}}\right)=\alpha \mathrm{p}(\mathrm{C}) \Pi_{\mathrm{i}} \mathrm{p}\left(\mathrm{~F}_{\mathrm{i}} \mid \mathrm{C}\right)
$$

- We can estimate each of these conditional probabilities from the observed counts in the training data: $\mathrm{p}\left(\mathrm{F}_{\mathrm{i}} \mid \mathrm{C}\right)=\mathrm{N}\left(\mathrm{F}_{\mathrm{i}} \wedge \mathrm{C}\right) / \mathrm{N}(\mathrm{C})$

Bayesian Formulation

- Example:
- Given a data point with inputs $F_{l}=v_{l}, \ldots, F_{k}=v_{k}$:
- Use Bayes' rule to compute posterior probability distribution of the example's classification, C :
- $P\left(C \mid F_{l}=v_{l}, \ldots, F_{k}=v_{k}\right)=\frac{\left(P\left(F_{l}=v_{l}, \ldots, F_{k}=v_{k} \mid C\right) \times P(C)\right)}{\left(P\left(F_{l}=v_{l}, \ldots, F_{k}=v_{k}\right)\right)}$ $=\frac{\left(P\left(F_{l}=v_{l} \mid C\right) \times \cdots \times P\left(F_{b}=v_{b} \mid C\right) \times P(C)\right)}{\left(\sum_{C} P\left(F_{l}=v_{l} \mid C\right) \times \cdots \times P\left(F_{k}=v_{k} \mid C\right) \times P(C)\right.}$
- Easy to implement
- Outperforms many more complex algorithms Should almost always be used for baseline comparisons
- Works well when the independence assumption is appropriate Often appropriate for natural kinds: classes that exist because they are useful in distinguishing the objects that humans care about

But...

- Can't capture interdependencies between variables (obviously)
- For that, we need Bayes nets!

Bayesian Learning: Bayes' Rule

- New idea: Instead of choosing the single most likely model or finding the set of all models consistent with training data, compute the posterior probability of each model given the training examples
- Bayesian learning:

Compute posterior probability distribution of the class of a new example, conditioned on its input features and all training examples

Naive Bayes: Analysis

Bayesian Learning: Bayes’ Rule

- Given some model space (set of hypotheses h_{i}) and evidence (data D):
- $\mathrm{P}\left(\mathrm{h}_{\mathrm{i}} \mid \mathrm{D}\right)=\alpha \mathrm{P}\left(\mathrm{D} \mid \mathrm{h}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{h}_{\mathrm{i}}\right)$
- We assume observations are independent of each other, given a model (hypothesis), so:
- $\mathrm{P}\left(\mathrm{h}_{\mathrm{i}} \mid \mathrm{D}\right)=\alpha \prod_{\mathrm{j}} \mathrm{P}\left(\mathrm{d}_{\mathrm{j}} \mid \mathrm{h}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{h}_{\mathrm{i}}\right)$
- To predict the value of some unknown quantity C (e.g., the class label for a future observation):
- $P(C \mid D)=\sum_{i} P\left(C \mid D, h_{i}\right) P\left(h_{i} \mid D\right)=\sum_{i} P\left(C \mid h_{i}\right) P\left(h_{i} \mid D\right)$

Example

- New example has inputs $X=x$ and target features (class variables) Y
- e is the set of training examples
- Goal: compute $\mathbf{P}(Y \mid X=x \wedge e)$

The probability distribution of target variables given the inputs and the examples

- A model is assumed to have generated the examples; M is set of models
- Then: $P(Y \mid x \wedge e)=\sum_{m \in M} P(Y \wedge m \mid x \wedge e)$
$=\sum_{m \in M} P(Y \mid m \wedge x \wedge e) \times P(m \mid x \wedge e)$
- Bayes' rule: $P(m \mid e)=(P(e \mid m) \times P(m)) /(P(e))$
- So, weight of each model depends on how well it predicts the data and its prior probability

Bayesian Learning

- BMA (Bayesian Model Averaging) average predictions of hypotheses
- MAP (Maximum A Posteriori) hypothesis Maximize $\mathrm{p}\left(\mathrm{h}_{\mathrm{i}} \mid \mathrm{D}\right)$
- MLE (Maximum Likelihood Estimate) Maximize $p\left(D \mid h_{i}\right)$
- MDL (Minimum Description Length) principle: Use some encoding to model the complexity of the hypothesis, and the fit of the data to the hypothesis, then minimize the overall description of $h_{i}+D$

Example: Coin Toss

- Models mathematically formulate observed events
- Parameters are factors in the models affecting outcomes
- Toin Coss Example

Fairness of coin is the parameter, θ;
Outcome of the events is data, D

- E.g. heads $=72$, tails $=28$

Given an outcome (D), what is the probability this coin is fair ($\theta=0.5$)?
Bayes' rule: $\mathrm{P}(\theta \mid \mathrm{D})=(\mathrm{P}(\mathrm{D} \mid \theta) \times \mathrm{P}(\theta)) / \mathrm{P}(\mathrm{D})$

Bayesian Learning, 3 Ways

- BMA (Bayesian Model Averaging)

Don't just choose one hypothesis; instead, make predictions based on the weighted average of all hypotheses (or some set of best hypotheses)

- MAP (Maximum A Posteriori) hypothesis

Choose hypothesis with highest a posteriori probability, given data
Maximize $\mathbf{p}\left(\mathbf{h}_{\mathrm{i}} \mid\right.$ D)

- Generally easier than Bayesian learning

Closer to Bayesian prediction as more data arrives

- MLE (Maximum Likelihood Estimate)

Assume all hypotheses are equally likely a priori; best hypothesis maximizes the likelihood (i.e., probability of data given hypothesis) Maximize $\mathbf{p}\left(\mathbf{D} \mid \mathbf{h}_{\mathbf{i}}\right)$

Parameter Estimation II

- The likelihood decomposes according to the structure of the network
\rightarrow we get a separate estimation task for each parameter
- The MLE (maximum likelihood estimate) solution:
- for each value x of a node X
- and each instantiation \boldsymbol{u} of $\operatorname{Parents}(X)$

$$
\theta_{\boldsymbol{x} \mid u}^{*}=\frac{\boldsymbol{N}(\boldsymbol{x}, \boldsymbol{u})}{\boldsymbol{N}(\boldsymbol{u})} \underbrace{\text { Jused to collect the counts for every combination of parents and }}_{\text {Susficient statistics }}
$$ children observed in the data

MLE is equivalent to an assumption of a uniform prior over parameter values

Model Selection

Goal: Select the best network structure, given the data
Input:

- Training data
- Scoring function

Output:

- A network that maximizes the score
- This is NP-hard!

Sufficient Statistics: Example

Structure Selection: Scoring

- Bayesian: prior over parameters and structure
- Find balance between model complexity and fit to data

- Marginal likelihood just comes from our parameter estimates
- Prior on structure can be any measure we want; typically a function of the network complexity

Variations on a Theme

- Known structure, fully observable: only need to do parameter estimation
- Unknown structure, fully observable: do heuristic search through structure space, then parameter estimation
- Known structure, missing values: use expectation maximization (EM) to estimate parameters
- Known structure, hidden variables: apply adaptive probabilistic network (APN) techniques
- Unknown structure, hidden variables: too hard to solve!

Handling Missing Data

- Suppose that in some cases, we observe earthquake, alarm, light-level, and moon-phase, but not burglary
- Should we throw that data away??
- Idea: Guess the missing values based on the other data

EM Example

- Suppose we have observed Earthquake and Alarm but not Burglary for an observation on November 27
- We estimate the CPTs based on the rest of the data
- We then estimate P (Burglary) for November 27 from those CPTs
- Now we recompute the CPTs as if that estimated value had been observed
- Repeat until convergence!

30

