


# Today's Class What's an agent? Definition of an agent Rationality and autonomy Types of agents Properties of environments







## 

## Human Sensors/Percepts, Actuators/Actions

- Sensors:
  - Eyes (vision), ears (hearing), skin (touch), tongue (gustation), nose (olfaction), neuromuscular system (proprioception),  $\dots$
- Percepts: "that which is perceive
- Actuators/effectors:
- Limbs, digits, eyes, tongue, ...

- At the lowest level electrical sign
  After preprocessing objects in the
  ...), auditory streams (pitch, loudn
  to be carefully defined
  - · Sometimes at different levels of abstraction!
- - · Lift a finger, turn left, walk, run, carry an object, ...

## E.g.: Automated Taxi

- Percepts: Video, sonar, speedometer, odometer, engine sensors, keyboard input, microphone, GPS, ...
- · Actions: Turn, accelerate, brake, speak, display, ...
- Goals: Maintain safety, reach destination, maximize profits (fuel, tire wear), obey laws, provide passenger
- Environment: U.S. urban streets, freeways, traffic, pedestrians, weather, customers, ...

Different aspects of driving may require different types of agent programs.

## Rationality

- An ideal rational agent, in every possible world state, does action(s) that maximize its expected performance
- The percept sequence (world state)
- Its knowledge (built-in and acquired)
- Rationality includes information gathering
  - If you don't know something, find out!
  - No "rational ignorance"
- Need a performance measure
- False alarm (false positive) and false dismissal (false negative) rates, speed, resources required, effect on environment, constraints met, user satisfaction, ...

## **PEAS**

- · Agents must have:
- Performance measure
- Environment
- Actuators
- Sensors
- Must first specify the setting for intelligent agent design

## **PEAS**

- Agent: Part-picking robot
- · Performance measure: Percentage of parts in correct bins
- Environment: Conveyor belt with parts, bins
- · Actuators: Jointed arm and hand
- · Sensors: Camera, joint angle sensors

## **PEAS**

- · Agent: Interactive English tutor
- · Performance measure: Maximize student's score on
- · Environment: Set of students
- Actuators: Screen display (exercises, suggestions, corrections)
- · Sensors: Keyboard

# PEAS: Setting · Specifying the setting · Consider designing an automated taxi driver: Performance measure? · Environment? Actuators? Sensors?

| PEAS                            |  |  |  |  |  |  |  |  |
|---------------------------------|--|--|--|--|--|--|--|--|
| Agent: Medical diagnosis system |  |  |  |  |  |  |  |  |
| Performance measure:            |  |  |  |  |  |  |  |  |
| • Environment:                  |  |  |  |  |  |  |  |  |
| Actuators:                      |  |  |  |  |  |  |  |  |
| Sensors:                        |  |  |  |  |  |  |  |  |
|                                 |  |  |  |  |  |  |  |  |

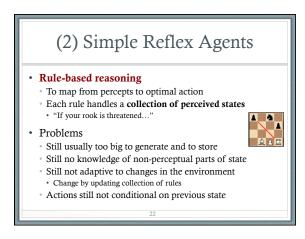
# Autonomy

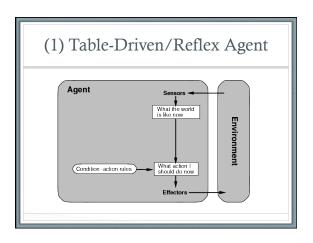
- · An autonomous system is one that:
  - · Determines its own behavior
  - · Not all its decisions are included in its design
- It is not autonomous if all decisions are made by its designer according to a priori decisions
- "Good" autonomous agents need:
  - Enough built-in knowledge to survive
  - · The ability to learn
- · In practice this can be a bit slippery

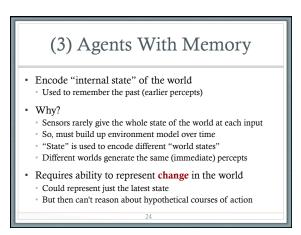
## Some Types of Agent

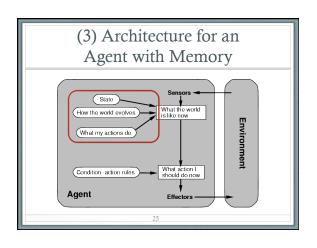
- 1. Table-driven agents
- Use a percept sequence/action table to find the next action
- Implemented by a (large) lookup table
- 2. Simple reflex agents
  - Based on condition-action rules
  - Implemented with a  ${\bf production~system}$
  - Stateless devices which do not have memory of past world states
- 3. Agents with memory
  - Have internal state
  - Used to keep track of past states of the world

# Some Types of Agent

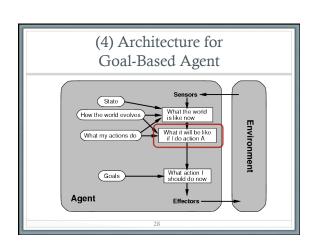

- 4. Agents with goals
  - · Have internal state information, plus...
  - · Goal information about desirable situations
  - · Agents of this kind can take future events into consideration
- 5. Utility-based agents
  - · Base their decisions on classic axiomatic utility theory
  - · In order to act rationally


# (1) Table-Driven Agents · Table lookup of: Percept-action pairs mapping

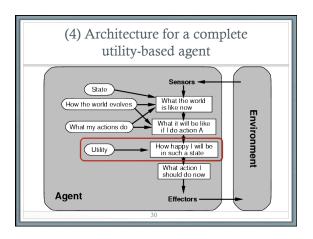

- Every possible perceived state ←→ optimal action for that state
- Problems:


  - **Too big** to generate and store
     Chess has about 10<sup>120</sup> states, for example
  - Don't know non-perceptual parts of state E.g., background knowledge
  - Not adaptive to changes in the environment
  - Must update entire table
  - No looping
  - · Can't condition actions on previous actions/states














# (5) Utility-Based Agents • How to choose from multiple alternatives? • What action is best? • What state is best? • Goals → crude distinction between "happy" / "unhappy" states • Often need a more general performance measure (how "happy"?) • Utility function gives success or happiness at a given state • Can compare choice between: • Conflicting goals • Likelihood of success • Importance of goal (if achievement is uncertain)



# Properties of Environments These should be familiar! • Fully observable/Partially observable • If an agent's sensors give it access to the complete state of the environment, the environment is fully observable • Such environments are convenient • No need to keep track of the changes in the environment • No need to guess or reason about non-observed things • Such environments are also rare in practice

# Properties of Environments • Deterministic/Stochastic. • An environment is deterministic if: • The next state of the environment is completely determined by • The current state of the environment • The action of the agent • In a stochastic environment, there are multiple, unpredictable outcomes.

In a fully observable, deterministic environment,

the agent has no uncertainty.

## Properties of Environments II

## · Episodic/Sequential.

- Episodic: subsequent episodes do not depend on what actions occurred in previous episodes.
- Sequential environment: Agent engages in a series of connected episodes.
- Such environments do not require the agent to plan ahead.

## Static/Dynamic

- A static environment does not change while the agent is thinking.
- $^{\circ}\,$  The passage of time as an agent deliberates is irrelevant.
- The agent doesn't need to observe the world during deliberation.

33

## Properties of Environments III

### Discrete/Continuous

- If the number of distinct percepts and actions is limited, the environment is discrete, otherwise it is continuous.
- A discrete agent:
  - Receives percepts describing the world one at a time
  - Maps this percept sequence to a sequence of discrete actions

## Single agent/Multi-agent

- Whether the environment contains other intelligent agents.
- In multi-agent environments, there are game-theoretic concerns (for either cooperative or competitive agents)
- · Single-agent environments are still more common.
- Social and economic systems get complexity from agent interactions.

34

# 

|                      | Fully observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|-------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                | Yes            | Yes       | Yes     | Yes       | Yes           |
| Backgammon           |                   |                |           |         |           |               |
| Taxi driving         |                   |                |           |         |           |               |
| Internet<br>shopping |                   |                |           |         |           |               |
| Medical<br>diagnosis |                   |                |           |         |           |               |

| Characteristics of Environments |                   |                |           |         |           |               |  |  |
|---------------------------------|-------------------|----------------|-----------|---------|-----------|---------------|--|--|
|                                 | Fully observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |  |  |
| Solitaire                       | No                | Yes            | Yes       | Yes     | Yes       | Yes           |  |  |
| Backgammon                      | Yes               | No             | No        | Yes     | Yes       | No            |  |  |
| Taxi driving                    |                   |                |           |         |           |               |  |  |
| Internet<br>shopping            |                   |                |           |         |           |               |  |  |
| Medical<br>diagnosis            |                   |                |           |         |           |               |  |  |
|                                 |                   | 37             | ,         |         |           |               |  |  |

|                      | Fully observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|-------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                | Yes            | Yes       | Yes     | Yes       | Yes           |
| Backgammon           | Yes               | No             | No        | Yes     | Yes       | No            |
| Taxi driving         | No                | No             | No        | No      | No        | No            |
| Internet<br>shopping |                   |                |           |         |           |               |
| Medical<br>diagnosis |                   |                |           |         |           |               |

| Characteristics of Environments |                   |                |           |         |           |               |  |  |
|---------------------------------|-------------------|----------------|-----------|---------|-----------|---------------|--|--|
|                                 | Fully observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |  |  |
| Solitaire                       | No                | Yes            | Yes       | Yes     | Yes       | Yes           |  |  |
| Backgammon                      | Yes               | No             | No        | Yes     | Yes       | No            |  |  |
| Taxi driving                    | No                | No             | No        | No      | No        | No            |  |  |
| Internet<br>shopping            | No                | No             | No        | No      | Yes       | No            |  |  |
| Medical<br>diagnosis            |                   |                |           |         |           |               |  |  |
|                                 |                   | 39             |           |         |           |               |  |  |

|                      | Fully observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|-------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                | Yes            | Yes       | Yes     | Yes       | Yes           |
| Backgammon           | Yes               | No             | No        | Yes     | Yes       | No            |
| Taxi driving         | No                | No             | No        | No      | No        | No            |
| Internet             | No                | No             | No        | No      | Yes       | No            |
| Medical<br>diagnosis | No                | No             | No        | No      | No        | Yes           |

## Characteristics of Environments

|                      | Fully observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|-------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                | Yes            | Yes       | Yes     | Yes       | Yes           |
| Backgammon           | Yes               | No             | No        | Yes     | Yes       | No            |
| Taxi driving         | No                | No             | No        | No      | No        | No            |
| Internet<br>shopping | No                | No             | No        | No      | Yes       | No            |
| Medical<br>diagnosis | No                | No             | No        | No      | No        | Yes           |

 $\rightarrow$  Lots of (most?) real-world domains fall into the hardest case!  $\leftarrow$ 

## Summary: Agents

- · An agent:
- Perceives and acts in an environment
- Has an architecture
- Is implemented by an agent program(s)
- An ideal agent:

  - Always chooses the "right" action

     Which is, that which maximizes its expected performance
  - · Given its percept sequence so far!
- An autonomous agent:
  - Uses its own experience to learn and make decisions
  - Not built-in knowledge, i.e., a priori world knowledge by the designer

# Summary: Agents

- Representing knowledge is important for successful agent design
  - Percepts, actions and their effects, constraints, ...
- The most challenging environments are:
  - Partially observable
  - Stochastic
- Sequential
- Dynamic
- Continuous
- · Contain multiple intelligent agents