

Questions?

- What's supervised learning?
 - What's classification? What's regression?
 - What's a hypothesis? What's a hypothesis space?
 - What are the training set and test set?
 - What is Ockham's razor?
- What's unsupervised learning?

What is Learning?

- "Learning denotes changes in a system that ... enable a system to do the same task more efficiently the next time." –Herbert Simon
- "Learning is constructing or modifying representations of what is being experienced."
 –Ryszard Michalski
- "Learning is making useful changes in our minds."
 Marvin Minsky

Why Learn?

- Discover previously-unknown new things or structure
 - Data mining, scientific discovery
- Fill in skeletal or incomplete domain knowledge
- · Build agents that can adapt to users or other agents
- Understand and improve efficiency of human learning
 - Use to improve methods for teaching and tutoring people (e.g., better computer-aided instruction)

Machine Leaning Successes

- Sentiment analysis
- Spam detection
- Machine translation
- Spoken language understanding
- Named entity detection
- · Self driving cars
- Motion recognition (Microsoft X-Box)
- Identifying paces in digital images
- Recommender systems (Netflix, Amazon)
- Credit card fraud detection

Some Terminology

The Big Idea: given some data, you learn a model of how the world works that lets you predict new data.

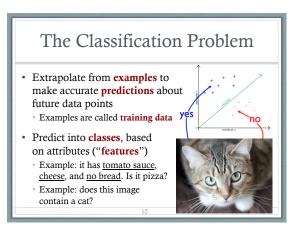
- Training Set: Data from which you learn initially.
- Model: What you learn. A "model" of how inputs are associated with outputs.
- Test set: New data you test your model against.
- **Corpus:** A body of data. (pl.: corpora)
- **Representation:** The computational expression of data

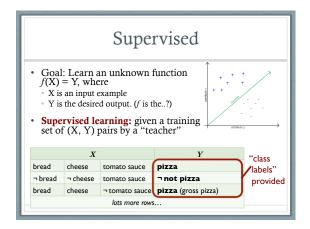
Major Paradigms of ML (1)

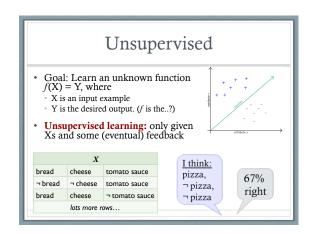
- **Rote learning**: 1-1 mapping from inputs to stored representation, learning by memorization, association-based storage & retrieval
- **Induction:** Use specific examples to reach general conclusions
- **Clustering**: Unsupervised discovery of natural groups in data

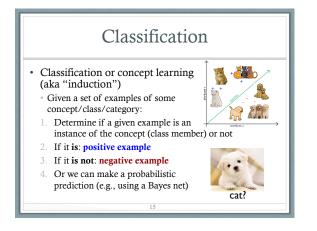
Major Paradigms of ML (2)

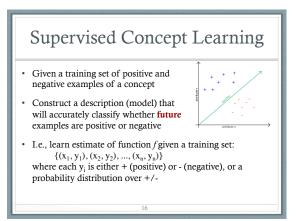
- **Analogy:** Find correspondences between different representations
- **Discovery**: Unsupervised, specific goal not given
- **Genetic algorithms:** *Evolutionary* search techniques, based on an analogy to *survival of the fittest*
- **Reinforcement:** Feedback (positive or negative reward) given at the end of a sequence of steps











	Machine Learr	ning Problems				
	Supervised Learning	Unsupervised Learning				
Discrete	classification or categorization	clustering				
Continuous	regression	dimensionality reduction				

Supervised Learning

- Given training examples of inputs & outputs, produce "correct" outputs for new inputs
- Two main scenarios:
- Classification: outputs typically labels (goodRisk/ badRisk, cat/notCat)
- Learn a decision boundary that separates classes
- Regression (aka "curve fitting" or "function approximation"): Learn a continuous input-output mapping from (possibly noisy) examples

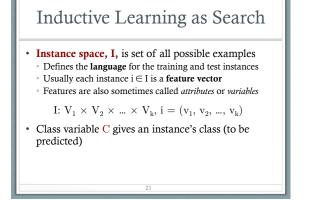
Unsupervised Learning

Given only *unlabeled* data as input, learn some sort of structure, e.g.:

- Cluster your Facebook friends based on similarity of posts and friends
- Find sets of words whose meanings are related (e.g., doctor, hospital)
- Induce N topics and the words that are common in documents that are about that topic

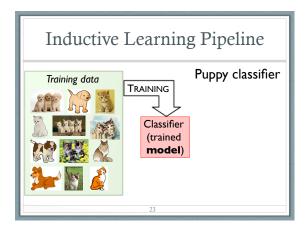
Inductive Learning Framework

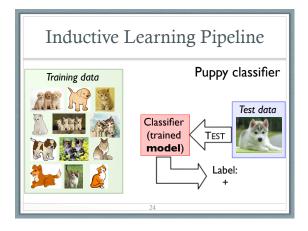
- Raw input data from sensors preprocessed to obtain feature vector, X, of relevant features for classifying examples
- * Each ${\bf X}$ is a list of (attribute, value) pairs
- *n* attributes (a.k.a. features): fixed, positive, and finite
- Features have fixed, finite number # of possible values
 Or continuous within some well-defined space, e.g., "age"
- Each example is a point in an *n*-dimensional feature space • X = [Person:Sue, EyeColor:Brown, Age:Young, Sex:Female]
 - X = [Cheese:f, Sauce:t, Bread:t] X = [Texture:Fuzzy, Ears:Pointy, Purrs:Yes, Legs:4]
 - $\mathbf{X} = [1exture:Fuzzy, Ears:Pointy, Purts: Yes, Legs:4]$

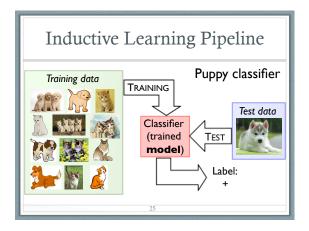


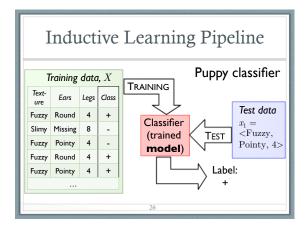
Inductive Learning as Search

- C gives an instance's class
- Model space M defines the possible classifiers • M: I \rightarrow C, M = {m₁, ... m_n} (possibly infinite)
- Model space is sometimes defined using same features as instance space (not always)
- Training data lets us search for a good (consistent, complete, simple) hypothesis in the model space
- The learned model is a *classifier*









Model Spaces (1)

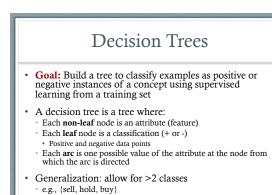
- Decision trees
 - Partition the instance space I into axis-parallel regions
 Labeled with class value
- Nearest-neighbor classifiers
 Partition the instance space I into regions defined by centroid instances (or cluster of k instances)
- Bayesian networks
- Probabilistic dependencies of class on attributes
- Naïve Bayes: special case of BNs where class \rightarrow each attribute

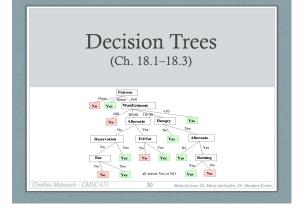
Model Spaces (2)

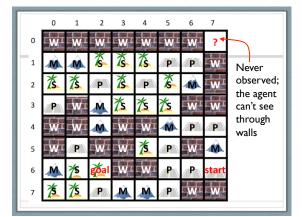
- Neural networks
 Nonlinear feed-forward functions of attribute values
- Support vector machines
 Find a separating plane in a high-dimensional feature space

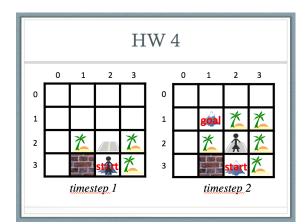
28

- Associative rules (feature values → class)
- · First-order logical rules









Decision Trees (DTs)

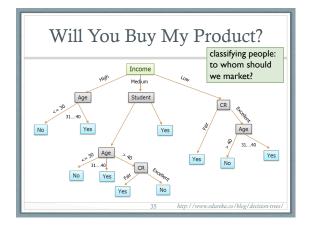
- A supervised learning method used for classification and regression
- Given a set of training tuples, learn model to predict one value from the others
 Learned value typically a class (e.g. goodRisk)
- Resulting model is simple to understand, interpret, visualize and apply

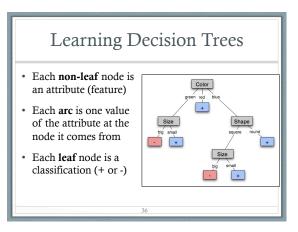
Decision Tree Induction

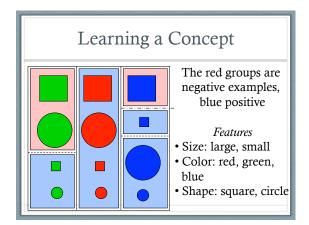
- The Big Idea: build a tree of decisions, each of which splits training data into smaller groups
 Very common machine learning technique!
- At each split, an attribute of the training data a **feature** is chosen to divide data into classes
- Goal: each leaf group in the tree consists entirely of one class

34

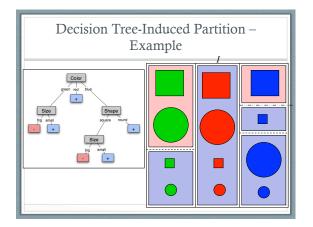
• Learning: creating that tree

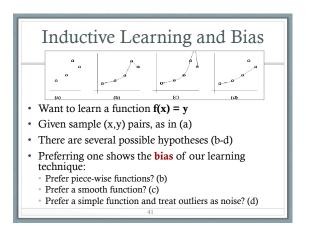






SizeColorShapeclassLargeGreenSquareNegativeLargeGreenCircleNegativeSmallGreenSquarePositiveSmallGreenCirclepositiveLargeRedSquarePositiveSmallRedSquarePositiveSmallRedCirclePositiveSmallRedCirclePositiveSmallRedCirclePositiveSmallRedSquareNegativeSmallBlueSquareNegativeLargeBlueSquarePositiveLargeBlueSquarePositive	Т	Training Data						
LargeGreenCircleNegativeSmallGreenSquarePositiveSmallGreenCirclepositiveLargeRedSquarePositiveLargeRedCirclePositiveSmallRedSquarePositiveSmallRedSquarePositiveLargeBlueSquareNegativeSmallBlueSquareNegativeSmallBlueSquarePositive	Size	Size Color Shape class						
SmallGreenSquarePositiveSmallGreenCirclepositiveLargeRedSquarePositiveLargeRedCirclePositiveSmallRedSquarePositiveSmallRedSquarePositiveLargeBlueSquareNegativeSmallBlueSquareNegative	Large	Green	Square	Negative				
SmallGreenCirclepositiveLargeRedSquarePositiveLargeRedCirclePositiveSmallRedSquarePositiveSmallRedCirclePositiveLargeBlueSquareNegativeSmallBlueSquarePositive	Large	Green	Circle	Negative				
LargeRedSquarePositiveLargeRedCirclePositiveSmallRedSquarePositiveSmallRedCirclePositiveLargeBlueSquareNegativeSmallBlueSquarePositive	Small	Green	Square	Positive				
LargeRedCirclePositiveSmallRedSquarePositiveSmallRedCirclePositiveLargeBlueSquareNegativeSmallBlueSquarePositive	Small	Green	Circle	positive				
SmallRedSquarePositiveSmallRedCirclePositiveLargeBlueSquareNegativeSmallBlueSquarePositive	Large	Red	Square	Positive				
SmallRedCirclePositiveLargeBlueSquareNegativeSmallBlueSquarePositive	Large	Red	Circle	Positive				
LargeBlueSquareNegativeSmallBlueSquarePositive	Small	Red	Square	Positive				
Small Blue Square Positive	Small	Red	Circle	Positive				
	Large	Blue	Square	Negative				
Large Blue Circle Positive	Small	Blue	Square	Positive				
	Large	Blue	Circle	Positive				
Small Blue Circle Positive	Small	Blue	Circle	Positive				





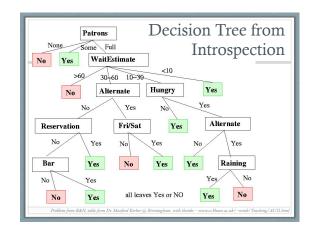
Preference Bias: Ockham's Razor

- A.k.a. Occam's Razor, Law of Economy, or Law of Parsimony
- Stated by William of Ockham (1285-1347/49):
 "Non sunt multiplicanda entia praeter necessitatem"
 "Entities are not to be multiplied beyond necessity"
- "The simplest consistent explanation is the best."
- · Smallest decision tree that correctly classifies all training examples
- · Finding the provably smallest decision tree is NP-hard!
- So, instead of constructing the absolute smallest tree consistent with the training examples, construct one that is "pretty small"

R&N's Restaurant Domain

- Model decision a patron makes when deciding whether to wait for a table
 - Two classes (outcomes): wait, leave
 - Ten attributes: Alternative available? ∃ Bar? Is it Friday? Hungry? How full is restaurant? How expensive? Is it raining? Do we have a reservation? What type of restaurant is it? What's purported waiting time?
- Training set of 12 examples
- ~ 7000 possible cases

Datum	Attributes									Outcom (Label)	
	altern- atives	bar	Friday	hungry	people	\$	rain	reser- vation	type	wait time	Wait?
X1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X ₃	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
X_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Yes
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X ₆	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No
X ₈	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
X ₉	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X ₁₀	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	0-30	No
X ₁₁	No	No	No	No	None	\$	No	No	Thai	0-10	No
X ₁₂	Yes	Yes	Yes	Yes	Full	s	No	No	Burger	30-60	Yes

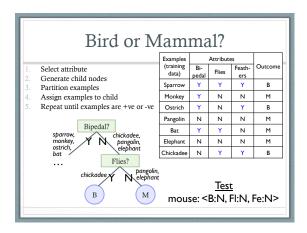


Issues

- It's like 20 questions:
- We can generate many decision trees depending on what attributes we ask about and in what order
- · How do we decide?
- What makes one decision tree better than another: number of nodes? number of leaves? maximum depth?

ID3/C4.5

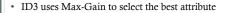
- A greedy algorithm for decision tree construction
 Ross Quinlan, 1987
- Construct decision tree top-down by recursively selecting the "best attribute" to use at current node
 - Select attribute for current node
- 2. Generate child nodes (one for each possible value of attribute)
- 3. Partition training data using attribute values
- 4. Assign subsets of examples to the appropriate child node
- Repeat for each child node until all examples associated with a node are either all positive or all negative

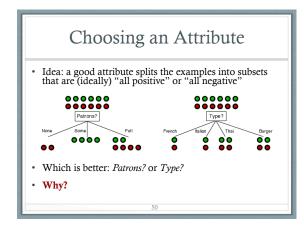


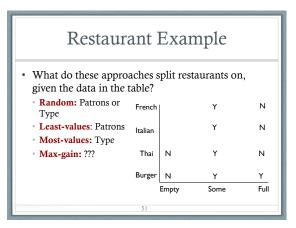
Choosing the Best Attribute

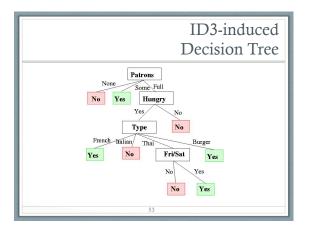
- Key problem: what attribute to split on?
- · Some possibilities are:
- Random: Select any attribute at random
- Least-Values: Choose attribute with smallest number of values
- Most-Values: Choose attribute with largest number of values
 Max-Gain: Choose attribute that has the largest expected information gain—the attribute that will result in the smallest expected size of the subtrees rooted at its children

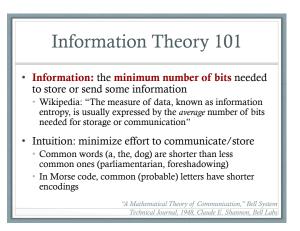
49

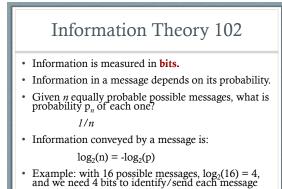












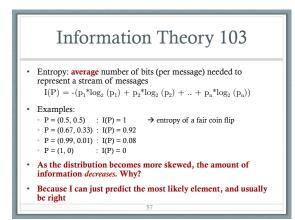
55

Information Theory 102.b

- Information conveyed by a message is $log_2(n) = -log_2(p)$
- Given a probability distribution for n messages: $P = (p_1, p_2 ... p_n) \label{eq:probability}$
- The information conveyed by that distribution is:

 $I(P) = \text{-}(p_1 * log_2(p_1) + p_2 * log_2(p_2) + .. + p_n * log_2(p_n))$

• This is the **entropy** of P.



- Entropy can be used to characterize the (im)purity of an arbitrary collection of examples
- Low entropy implies high homogeneity
 - Given a collection S (like the table of 12 examples for the restaurant domain), containing positive and negative examples of some target concept, the entropy of S relative to its Boolean classification is:

 $I(S) = -(p_{+}^{*}log_{2}(p_{+}) + p_{-}^{*}log_{2}(p_{-}))$

Entropy([6+, 6-]) = 1 \rightarrow entropy of the restaurant dataset Entropy([9+, 5-]) = 0.940

Information Gain

- **Information gain**: how much entropy decreases (homogeneity increases) when a dataset is split on an attribute.
 - $\,$ High homogeneity \rightarrow high likelihood samples will have the same class
- Constructing a decision tree is all about finding attribute that returns the highest information gain (i.e., the most homogeneous branches)

64

Information Gain, cont.

- Use to rank attributes and build DT (decision tree)!
- Choose nodes using attribute with greatest gain
 - \rightarrow means least information remaining after split
 - I.e., subsets are all as skewed as possible

• Why?

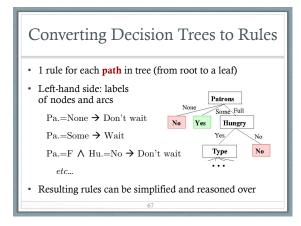
- Create small decision trees: predictions can be made with few attribute tests
- Try to find a minimal process that still captures the data (Occam's Razor)

65

How Well Does it Work?

At least as accurate as human experts (sometimes) • Diagnosing breast cancer: humans correct 65% of the time; decision tree classified 72% correct

- BP designed a decision tree for gas-oil separation for offshore oil platforms; replaced an earlier rule-based expert system
- Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example
- SKICAT (Sky Image Cataloging and Analysis Tool) used a DT to classify sky objects an order of magnitude fainter than was previously possible, with an accuracy of over 90%.



Extensions of the Decision Tree Learning Algorithm

- Using gain ratios
- Real-valued data
- · Noisy data and overfitting
- · Generation of rules
- Setting parameters
- Cross-validation for experimental validation of performance

C4.5 is a (more applicable) extension of ID3 that accounts for real-world problems: unavailable values, continuous attributes, pruning decision trees, rule derivation, ...

Real-Valued Data

- Select thresholds defining intervals so each becomes a discrete value of attribute
- Use heuristics, e.g. always divide into quartiles
- Use domain knowledge, e.g. divide age into infant (0-2), toddler (3-5), school-aged (5-8)
- Or treat this as another learning problem
 Try different ways to discretize continuous variable; see which yield better results w.r.t. some metric
 E.g., try midpoint between every pair of values

Summary: Decision Tree Learning

- One of the most widely used learning methods in practice
- Can out-perform human experts in many problems

70

• Weaknesses:

- Strengths:
- Stricture
 Fast
 Simple to implement
 Can convert to a set of easily interpretable rules
 Empirically valid in many commercial products
 Handles noisy data

- Univariate splits/Partitioning using only one attribute at a time (limits types of possible trees)
- Large trees hard to understand
 Requires fixed-length feature vectors
 Non-incremental (i.e., batch method)