Decision Making Under Uncertainty
 AI CLASS 10 (CH. 15.1-15.2.1, 16.1-16.3)

Introduction

- The world is not a well-defined place.
- Sources of uncertainty
- Uncertain inputs: What's the temperature?
- Uncertain (imprecise) definitions: Is Trump a good president?
- Uncertain (unobserved) states: What's the top card?
- There is uncertainty in inferences
- If I have a blistery, itchy rash and was gardening all weekend I probably have poison ivy

Reasoning Under Uncertainty

- People constantly make decisions anyhow.
- Very successfully!
- How?
- More formally: how do we reason under uncertainty with inexact knowledge?
- Step one: understanding what we know

Sources of Uncertainty

- Uncertain inputs
- Missing data
- Noisy data
- Uncertain knowledge
- >1 cause $\rightarrow>1$ effect
- Incomplete knowledge of
causality
Probabilistic effects
Probabilistic reasoning only gives probabilistic results (summarizes uncertainty from various sources)

States and Observations

- Agents don't have a continuous view of world - People don't either!
- We see things as a series of snapshots:
- Observations, associated with time slices - $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots$
- Each snapshot contains all variables, observed or not $\mathbf{X}_{\mathrm{t}}=$ (unobserved) state variables at time t ; observation at t is \mathbf{E}_{t}
- This is world state at time t

Uncertainty and Time

- The world changes
- Examples: diabetes management, traffic monitoring
- Tasks: track changes; predict changes
- Basic idea:
- For each time step, copy state and evidence variables
- Model uncertainty in change over time (the Δ)
- Incorporate new observations as they arrive

Uncertainty and Time

- Basic idea:
- Copy state and evidence variables for each time step
- Model uncertainty in change over time
- Incorporate new observations as they arrive
- $\mathbf{X}_{\mathrm{t}}=$ unobserved/unobservable state variables at time t : BloodSugar, StomachContents
- $\mathbf{E}_{\mathrm{t}}=$ evidence variables at time t :

MeasuredBloodSugar $_{t}$, PulseRate $_{t}$, FoodEaten $_{t}$

- Assuming discrete time steps

States (more formally)

- Change is viewed as series of snapshots
- Time slices/timesteps
- Each describing the state of the world at a particular time
- So we also refer to these as states
- Each time slice/timestep/state is represented as a set of random variables indexed by t :

1. the set of unobservable state variables \mathbf{X}_{t}
2. the set of observable evidence variables \mathbf{E}_{t}

Observations (more formally)

- Time slice (a set of random variables indexed by t):

1. the set of unobservable state variables \mathbf{X}_{t}
2. the set of observable evidence variables \mathbf{E}_{t}

- An observation is a set of observed variable instantiations at some timestep
- Observation at time $t: \mathbf{E}_{\mathrm{t}}=\mathrm{e}_{\mathrm{t}}$
- (for some values e_{t})
- $\mathbf{X}_{\mathrm{a}: \mathrm{b}}$ denotes the set of variables from \mathbf{X}_{a} to \mathbf{X}_{b}

Transition and Sensor Models

- So how do we model change over time?

- Transition model
- Models how the world changes over time

This can get exponentially large...

Specifies a probability distribution..

- Over state variables at time t
- Given values at previous times $\leftrightarrows \mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{0: \mathrm{t}-1}\right)$
- Sensor model
- Models how evidence (sensor data) gets its values
- E.g.: BloodSugar ${ }_{t} \rightarrow$ MeasuredBloodSugar $_{t}$

Stationary Process

- Infinitely many possible values of t
- Does each timestep need a distribution?
- That is, do we need a distribution of what the world looks like at t_{3}, given t_{2} AND a distribution for t_{16} given t_{15} AND ..
- Assume stationary process:
- Changes in the world state are governed by laws that do not themselves change over time
- Transition model $P\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$ and sensor model $P\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$ are time-invariant, i.e., they are the same for all t

Markov Assumption(s)

- Markov Assumption
\mathbf{X}_{t} depends on some finite (usually fixed) number of previous \mathbf{X}_{i} 's
- First-order Markov process: $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{0 \mathrm{ta}-1}\right)=\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$ $k^{\text {th }}$ order: depends on previous k time steps

- Sensor Markov assumption: $\mathrm{P}\left(\mathbf{E}_{\mathrm{t}} \mid \mathbf{X}_{0: t}, \mathbf{E}_{0: t-1}\right)=\mathrm{P}\left(\mathbf{E}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}}\right)$ Agent's observations depend only on actual current state of the world

13

Examples

- Filtering: What is the probability that it is raining today, given all of the umbrella observations up through today?
- Prediction: What is the probability that it will rain the day after tomorrow, given all of the umbrella observations up through today?
- Smoothing: What is the probability that it rained yesterday, given all of the umbrella observations through today?
- Most likely explanation: If the umbrella appeared the first three days but not on the fourth, what is the most likely weather sequence to produce these umbrella sightings?

Recursive Estimation

1. Project current state forward $(t \rightarrow t+1)$
2. Update state using new evidence $\mathbf{e}_{\mathrm{t}+1}$
$\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}+1}\right)$ as function of $\mathbf{e}_{\mathrm{t}+1}$ and $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$:
$\mathrm{P}\left(\mathbf{X}_{\mathrm{t}}+1 \mid \mathbf{e}_{1: \mathrm{t}+1}\right)=\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}}, \mathbf{e}_{\mathrm{t}+1}\right)$

Recursive Estimation

- One-step prediction by conditioning on current state X:

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} \underbrace{P\left(X_{t+1} \mid x_{t}\right)}_{\begin{array}{c}
\text { transition } \\
\text { model }
\end{array}} \underbrace{P\left(x_{t} \mid e_{1: t}\right)}_{\begin{array}{c}
\text { current } \\
\text { state }
\end{array}}
$$

- ...which is what we wanted!
- So, think of $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathrm{e}_{1: t}\right)$ as a "message" $f_{1: t+1}$

Carried forward along the time steps

- Modified at every transition, updated at every new observation
- This leads to a recursive definition:

$$
f_{1: t+1}=\alpha \text { FORWARD }\left(f_{1: t}, \mathrm{e}_{\mathrm{t}+1}\right)
$$

Filtering

- Maintain a current state estimate and update it - Instead of looking at all observed values in history
- Also called state estimation
- Given result of filtering up to time t, agent must compute result at $t+1$ from new evidence $\mathbf{e}_{\mathrm{t}+1}$:

$$
\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}+1}\right)=f\left(\mathbf{e}_{\mathrm{t}+1}, \mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)\right)
$$

\ldots for some function f.

Recursive Estimation

- $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}+1}\right)$ as a function of $\mathbf{e}_{\mathrm{t}+1}$ and $\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$:
$P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$ dividing up evidence $=\alpha P\left(e_{t+1} \mid X_{t+1}, \underline{e_{1: Z}}\right) P\left(X_{t+1} \mid e_{1: z}\right)$ Bayes rule $=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \quad$ sensor Markov assumption
- $\mathrm{P}\left(\mathbf{e}_{\mathrm{t}+1} \mid \mathbf{X}_{1: t+1}\right)$ updates with new evidence (from sensor)
- One-step prediction by conditioning on current state X :

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
$$

Group Exercise: Filtering

$$
P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{X_{t}} P\left(X_{t+1} \mid X_{t}\right) P\left(X_{t} \mid e_{1: t}\right)
$$

on Day $0, U_{1}=$ true, and $U_{2}=$ true?

Reasoning Under Uncertainty

- How do we reason under uncertainty and with inexact knowledge?
- Heuristics
- Mimic heuristic knowledge processing methods used by experts
- Empirical associations
- Experiential reasoning based on limited observations

Probabilities

- Objective (frequency counting)
- Subjective (human experience)

What is Decision Theory?

- Mathematical study of strategies for optimal decision-making
- Options involve different risks
- Expectations of gain or loss
- The study of identifying:
- The values, uncertainties and other issues relevant to a decision
- The resulting optimal decision for a rational agent

Decision Making Under Uncertainty

- Many environments have multiple possible outcomes
- Some outcomes may be good; others may be bad
- Some may be very likely; others unlikely
- What's a poor agent to do?

Rational Agents

- Rationality (an overloaded word).
- A rational agent...
- Behaves according to a ranking over possible outcomes
- Which is:
- Complete (covers all situations)
- Consistent
- Optimizes over strategies to best serve a desired interest
- Humans are none of these.

Satisficing

- Satisficing: achieving a goal sufficiently
- Achieving the goal "more" does not increase utility of resulting state
- Portmanteau of "satisfy" and "suffice"

Win a baseball game by I point now, or 2 points in another inning?
Full credit for a search is $\leq 3 \mathrm{~K}$ nodes visited. You're at 2 K . Spend an hour making it IK?
Do you stop the coin flipping game at $1-0$, or continue playing, hoping for 2-0? At the end of semester, you can stop with a B. Do you take the exam?
You're thirsty. Water is good. Is more water better?

Value Function

- Provides a ranking of alternatives, but not a meaningful metric scale
- Also known as an "ordinal utility function"
- Sometimes, only relative judgments (value functions) are necessary
- At other times, absolute judgments (utility functions) are required

Rational Preferences

- Preferences of a rational agent must obey constraints Transitivity $\quad(A>B) \wedge(B>C) \Rightarrow(A>C)$
- Monotonicity $(A>B) \Rightarrow[p>q \Leftrightarrow[p, A ; 1-p, B]>[q, A ; 1-q, B])$
- Orderability $\quad(A>B) \vee(B>A) \vee(A \sim B)$
- Substitutability $(A \sim B) \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C])$

Continuity $\quad(A>B>C \Rightarrow \exists p[p, A ; 1-p, C] \sim B)$

- Rational preferences give behavior that maximizes expected utility
- Violating these constraints leads to irrationality
- For example: an agent with intransitive preferences can be induced to give away all its money.

Expected Utility

- X is state reached after doing an action A under uncertainty
- $\mathrm{U}(\mathrm{s})$ is the utility of a state \leftarrow desirability
- $\mathrm{EU}(a \mid \mathbf{e})$: The expected utility of action A, given evidence, is the average utility of outcomes (states in S), weighted by probability an action occurs:

$$
\mathrm{EU}[\mathrm{~A}]=\mathrm{S}_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}} \mid \mathrm{A}\right) \mathrm{U}\left(\mathrm{x}_{\mathrm{i}}\right)
$$

Expected Utility

- Goal: find best of expected outcomes
- Random variable X with:
- n values $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$
- Distribution ($\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$)
- X is the state reached after doing an action A under uncertainty
- state $=$ some state of the world at some timestep
- Utility function $\mathrm{U}(\mathrm{s})$ is the utility of a state, i.e., desirability

One State/Two Actions Example

One State/One Action Example

- We start out in state 0 . What's the utility of taking action A1?

MEU Principle

- A rational agent should choose the action that maximizes agent's expected utility
- This is the basis of the field of decision theory
- The MEU principle provides a normative criterion for rational choice of action
- ...AI is solved!

Not Quite...

- Must have a complete model of:
- Actions

Utilities
States

- Even if you have a complete model, decision making is computationally intractable
- In fact, a truly rational agent takes into account the utility of reasoning as well (bounded rationality)
- Nevertheless, great progress has been made in this area We are able to solve much more complex decision-theoretic problems than ever before

Money

- Money does not behave as a utility function
- That is, people don't maximize expected value of dollar assets.
- People are risk-averse:

Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV(L)) Want to bet $\$ 1000$ for a 20% chance to win $\$ 10,000$? $[20 \%(\$ 10,000)+80 \%(\$ 0)]=\$ 2000>[100 \%(\$ 1000)]$

- Expected Utility Hypothesis
rational behavior maximizes the expectation of some function $u \ldots$ which in need not be monetary

Maximizing Expected Utility

- Utilities map states to real numbers. Which numbers? - People are very bad at mapping their own preferences
- Standard approach to assessment of human utilities:
- Compare a state A to a standard lottery $L p$ that has "best possible prize" u^{\top} with probability p
"worst possible catastrophe" u^{\perp} with probability ($1-p$) - adjust lottery probability p until $A \sim L p$
$p=0.9999999 \longrightarrow$ Win nothing
pay $\$ 30$
$p=0.000001$ Instant death

Actual Utility Scales

- Micromorts: one-millionth chance of death
- Useful for:
- Russian roulette
- Paying to reduce product risks, etc.
- QALYs: quality-adjusted life years
- Useful for:
- Medical decisions involving substantial risk

