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Decision Making Under 
Uncertainty 

AI CLASS 10 (CH. 15.1-15.2.1, 16.1-16.3) 

Cynthia Matuszek – CMSC 671 
Material from Marie desJardin, Lise Getoor, Jean-Claude 

Latombe, Daphne Koller, and Paula Matuszek 
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Today’s Class 

•  Making Decisions Under Uncertainty 
• Tracking Uncertainty over Time 

• Decision Making under Uncertainty 
• Decision Theory 

• Utility 
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•  The world is not a well-defined place. 

•  Sources of  uncertainty 
•  Uncertain inputs: What’s the temperature?  
•  Uncertain (imprecise) definitions: Is Trump a good 

president? 
•  Uncertain (unobserved) states: What’s the top card? 

•  There is uncertainty in inferences 
•  If  I have a blistery, itchy rash and was gardening all 

weekend I probably have poison ivy 
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Introduction Sources of  Uncertainty 

Probabilistic reasoning only gives probabilistic results 
(summarizes uncertainty from various sources) 

•  Uncertain outputs 
•  All uncertain: 

•  Reasoning-by-default 

•  Abduction & induction 

•  Incomplete deductive 
inference  

•  Result is derived 
correctly but wrong in 
real world 

•  Uncertain inputs 
•  Missing data 

•  Noisy data 

•  Uncertain knowledge 
•  >1 cause à >1 effect 

•  Incomplete knowledge of  
causality 

•  Probabilistic effects 
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Reasoning Under Uncertainty 

•  People constantly make decisions anyhow. 
•  Very successfully! 

•  How? 

•  More formally: how do we reason under uncertainty 
with inexact knowledge? 

•  Step one: understanding what we know 
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PART I: MODELING 
UNCERTAINTY OVER TIME 
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States and Observations 

•  Agents don’t have a continuous view of  world 
•  People don’t either! 

•  We see things as a series of  snapshots: 

•  Observations, associated with time slices 
•  t1, t2, t3, …

•  Each snapshot contains all variables, observed or not 
•  Xt = (unobserved) state variables at time t; observation at t is Et  

•  This is world state at time t 
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Temporal Probabilistic Agent 

8 

environment 
agent 

? 

sensors 

actuators 

t1, t2, t3, … 

Uncertainty and Time 

•  The world changes 
•  Examples: diabetes management, traffic monitoring 

•  Tasks: track changes; predict changes 

•  Basic idea:  
•  For each time step, copy state and evidence variables 

•  Model uncertainty in change over time (the Δ) 

•  Incorporate new observations as they arrive 
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•  Basic idea:  
•  Copy state and evidence variables for each time step 

•  Model uncertainty in change over time 

•  Incorporate new observations as they arrive 

•  Xt = unobserved/unobservable state variables at time t:  
BloodSugart , StomachContentst 

•  Et = evidence variables at time t:  
MeasuredBloodSugart , PulseRatet , FoodEatent 

•  Assuming discrete time steps 
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Uncertainty and Time 

States (more formally) 

•  Change is viewed as series of  snapshots 
•  Time slices/timesteps 

•  Each describing the state of  the world at a particular time 
•  So we also refer to these as states 

•  Each time slice/timestep/state is represented as a 
set of  random variables indexed by t: 
1.  the set of  unobservable state variables Xt  

2.  the set of  observable evidence variables Et 
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Observations (more formally) 

•  Time slice (a set of  random variables indexed by t): 
1.  the set of  unobservable state variables Xt  

2.  the set of  observable evidence variables Et 

•  An observation is a set of  observed variable 
instantiations at some timestep 

•  Observation at time t: Et = et  
•  (for some values et) 

•  Xa:b denotes the set of  variables from Xa to Xb 
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Transition and Sensor Models 

•  So how do we model change over time? 

•  Transition model 
•  Models how the world changes over time 
•  Specifies a probability distribution…  

•  Over state variables at time t 
•  Given values at previous times 

•  Sensor model 
•  Models how evidence (sensor data) gets its values 
•  E.g.: BloodSugart à MeasuredBloodSugart 
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P(Xt | X0:t-1) 

This can get 
exponentially 
large…

Markov Assumption(s) 

•  Markov Assumption:  
•  Xt depends on some finite (usually fixed) number of  previous Xi’s 

•  First-order Markov process: P(Xt|X0:t-1) = P(Xt|Xt-1) 
•  kth order: depends on previous k time steps 

•  Sensor Markov assumption: P(Et|X0:t, E0:t-1) = P(Et|Xt) 
•  Agent’s observations depend only on actual current state of  the world 
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Stationary Process 

•  Infinitely many possible values of  t 
•  Does each timestep need a distribution? 

•  That is, do we need a distribution of  what the world looks like at 
t3, given t2 AND a distribution for t16 given t15 AND …  

•  Assume stationary process: 
•  Changes in the world state are governed by laws that do 

not themselves change over time 

•  Transition model  P(Xt|Xt-1) and sensor model P(Et|Xt) 
are time-invariant, i.e., they are the same for all t 
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Complete Joint Distribution 

•  Given: 
•  Transition model:  P(Xt|Xt-1) 
•  Sensor model:   P(Et|Xt) 
•  Prior probability:   P(X0) 

•  Then we can specify a complete joint distribution  
of  a sequence of  states: 

•  What’s the joint probability of  instantiations? 
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P(X0,X1,...,Xt,E1,...,Et ) = P(X0 ) P(Xi | Xi−1)P(Ei | Xi )
i=1
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Weather has a 30% chance 
of  changing and a 70% 
chance of  staying the same. 

Example 

Fully worked out HMM for rain: www2.isye.gatech.edu/~yxie77/isye6416_17/Lecture6.pdf 

Inference Tasks 

•  Filtering or monitoring: P(Xt|e1,…,et): 
•  Compute the current belief  state, given all evidence to date 

•  Prediction: P(Xt+k|e1,…,et): 
•  Compute the probability of  a future state 

•  Smoothing: P(Xk|e1,…,et): 
•  Compute the probability of  a past state (hindsight) 

•  Most likely explanation: arg maxx1,..xtP(x1,…,xt|e1,…,et) 
•  Given a sequence of  observations, find the sequence of  states that is 

most likely to have generated those observations 
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Examples 

•  Filtering: What is the probability that it is raining today, 
given all of  the umbrella observations up through today? 

•  Prediction: What is the probability that it will rain the day 
after tomorrow, given all of  the umbrella observations up 
through today? 

•  Smoothing: What is the probability that it rained yesterday, 
given all of  the umbrella observations through today? 

•  Most likely explanation: If  the umbrella appeared the first 
three days but not on the fourth, what is the most likely 
weather sequence to produce these umbrella sightings? 
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Filtering 

•  Maintain a current state estimate and update it 
•  Instead of  looking at all observed values in history 

•  Also called state estimation 

•  Given result of  filtering up to time t, agent must 
compute result at t+1 from new evidence et+1:  

   P(Xt+1 | e1:t+1) = f(et+1 ,  P(Xt | e1:t)) 

   … for some function f. 
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Recursive Estimation 

1.  Project current state forward (t à t+1) 

2.  Update state using new evidence et+1 

   P(Xt+1 | e1:t+1) as function of  et+1 and P(Xt | e1:t): 

   P(Xt+1 | e1:t+1) = P(Xt+1 | e1:t,et+1) 
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Recursive Estimation 

•  P(Xt+1 | e1:t+1) as a function of  et+1 and P(Xt | e1:t): 

•  P(et+1 | X1:t+1) updates with new evidence (from sensor) 

•  One-step prediction by conditioning on current state X: 
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P(Xt+1 | e1:t+1) = P(Xt+1 | e1:t,et+1)
=α P(et+1 | Xt+1,e1:t ) P(Xt+1 | e1:t )
=α P(et+1 | Xt+1) P(Xt+1 | e1:t )

dividing up evidence

Bayes rule

sensor Markov assumption

=α P(et+1 | Xt+1) P(Xt+1 | xt ) P(xt | e1:t )
xt

∑

Recursive Estimation 

•  One-step prediction by conditioning on current state X: 

•  …which is what we wanted! 

•  So, think of  P(Xt | e1:t) as a “message” f1:t+1 
•  Carried forward along the time steps 

•  Modified at every transition, updated at every new observation  

•  This leads to a recursive definition: 
  f1:t+1 = α FORWARD(f1:t, et+1) 

23 

=α P(et+1 | Xt+1) P(Xt+1 | xt ) P(xt | e1:t )
xt

∑
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What is the  probability of  rain on 
Day 2, given a uniform prior of  rain 
on Day 0, U1 = true, and U2 = true? 

€ 

P(Xt+1 | e1:t+1) = α P(et+1 | Xt+1) P(Xt+1 | Xt ) P(Xt | e1:t )
X t

∑

Group Exercise: Filtering 
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PART II: DECISION MAKING  
UNDER UNCERTAINTY  

Decision Making Under Uncertainty 

•  Many environments have multiple possible 
outcomes 

•  Some outcomes may be good; others may be bad 

•  Some may be very likely; others unlikely 

•  What’s a poor agent to do? 
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Reasoning Under Uncertainty 

28 

•  How do we reason under uncertainty and with 
inexact knowledge? 
•  Heuristics 

•  Mimic heuristic knowledge processing methods used by experts 

•  Empirical associations 
•  Experiential reasoning based on limited observations 

•  Probabilities 
•  Objective (frequency counting) 

•  Subjective (human experience) 

•  Decision Theory 
•  Normative: how should agents make decisions? 

•  Descriptive: how do agents make decisions? 

•  Utility and utility functions 
•  Something’s perceived ability to satisfy needs or wants 

•  A mathematical function that ranks alternatives by utility 

Decision-Making Tools 

Thirsty!	

≻

What is Decision Theory? 

•  Mathematical study of  strategies for optimal  
decision-making 
•  Options involve different risks  

•  Expectations of  gain or loss 

•  The study of  identifying: 
•  The values, uncertainties and other issues relevant to a 

decision 

•  The resulting optimal decision for a rational agent 

Decision Theory 

•  Combines probability and utility à Agent that makes 
rational decisions (takes rational actions) 
•  On average, lead to desired outcome 

•  First-pass simplifications: 
•  Want most desirable immediate outcome (episodic) 
•  Nondeterministic, partially observable world 

•  Definition of  action:  

•  An action a in state s leads to outcome s’, RESULT: 
•  RESULT(a) is a random variable; domain is possible outcomes 
•  P(RESULT(a) = s’ | a, e)) 
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•  Expected Value 
•  The predicted future value of  a variable, calculated as: 

•  The sum of  all possible values 

•  Each multiplied by the probability of  its occurrence 

 

Expected Value 

A	$1000	bet	for	a	20%	chance	to	win	$10,000	
[20%($10,000)	+	80%($0)]	=	$2000	

•  Satisficing: achieving a goal sufficiently 
•  Achieving the goal “more” does not  

increase utility of  resulting state 

•  Portmanteau of  “satisfy” and “suffice” 

Satisficing 

Win a baseball game by 1 point now, or 2 points in another inning?

Full credit for a search is ≤3K nodes visited.  You’re at 2K. Spend an hour 
making it 1K?

Do you stop the coin flipping game at 1-0, or continue playing, hoping for 2-0?

At the end of semester, you can stop with a B. Do you take the exam?

You’re thirsty.  Water is good. Is more water better?

? 

b a c 
{a,b,c} 

à  decision that is 
    best for worst case 

? 

b a c 
{a(pa), b(pb), c(pc)} 

à  decision that maximizes 
    expected utility value 

Non-deterministic model Probabilistic model

~ Adversarial search

Non-deterministic vs.  
Probabilistic Uncertainty 
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Value Function 

•  Provides a ranking of  alternatives, but not a 
meaningful metric scale 

•  Also known as an “ordinal utility function” 

•  Sometimes, only relative judgments (value 
functions) are necessary 

•  At other times, absolute judgments (utility 
functions) are required 
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Rational Agents 

•  Rationality (an overloaded word). 

•  A rational agent… 
•  Behaves according to a ranking over possible outcomes  

•  Which is: 
•  Complete (covers all situations) 

•  Consistent 

•  Optimizes over strategies to best serve a desired interest 

•  Humans are none of  these. 

•  An agent chooses among: 
•  Prizes (A, B, etc.) 
•  Lotteries (situations with uncertain prizes and probabilities) 

 

•  Notation:  
•  A ≻ B   A preferred to B 
•  A ∼ B   Indifference between A and B 
•  A ≻∼ B   B not preferred to A  

Preferences 

L 
A 

B 

p 

p-1 
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•  Preferences of  a rational agent must obey constraints  
•  Transitivity          (A ≻ B) ∧	(B ≻ C) ⇒ (A ≻ C) 
•  Monotonicity     (A ≻ B) ⇒ [p > q ⇔ [p, A; 1 – p, B] ≻ [q, A; 1 – q, B]) 
•  Orderability        (A ≻ B) ∨ (B ≻ A) ∨ (A ∼ B) 
•  Substitutability   (A∼B) ⇒ [p,A; 1 – p, C]∼[p,B; 1 – p,C] ) 
•  Continuity          (A ≻ B ≻ C ⇒ ∃p [p,A; 1−p,C]∼B ) 

•  Rational preferences give behavior that maximizes expected 
utility 

•  Violating these constraints leads to irrationality  
•  For example: an agent with intransitive preferences can be induced to 

give away all its money. 

Rational Preferences Expected Utility 

•  Goal: find best of  expected outcomes 

•  Random variable X with: 
•  n values x1,…,xn 
•  Distribution (p1,…,pn) 

•  X is the state reached after doing an action A under 
uncertainty 
•  state = some state of  the world at some timestep  

•  Utility function U(s) is the utility of  a state, i.e., 
desirability 
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Expected Utility 

•  X is state reached after doing an action A under 
uncertainty 

•  U(s) is the utility of  a state ß desirability 

•  EU(a|e): The expected utility of  action A, given 
evidence, is the average utility of  outcomes (states in 
S), weighted by probability an action occurs: 

               EU[A] = Si=1,…,n p(xi|A)U(xi) 
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s0 

s3 s2 s1 

A1 

0.2 0.7 0.1 
100 50 70 

U(A1, S0) = 100 × 0.2 + 50 × 0.7 + 70 × 0.1 
               = 20 + 35 + 7 
               = 62 

One State/One Action Example 
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• We start out in 
   state 0. What’s the  
   utility of  taking  
   action A1? 

s0 

s3 s2 s1 

A1 

0.2 0.7 0.1 
100 50 70 

A2 

s4 
0.2 0.8 

80 

•  U (A1, S0) = 62 

One State/Two Actions Example 
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62 

•  U (A2, S0) = ? 

•  U (S0) = maxa{U(a,S0)}  
               = 74 

•  U (A2, S0) = 74 
s0 

s3 s2 s1 

A1 

0.2 0.7 0.1 
100 50 70 

A2 

s4 
0.2 0.8 

80 

•  U (A1, S0) = 62 – 5 = 57 
•  U (A2, S0) = 74 – 25 = 49 
•  U (S0) = maxa{U(a, S0)}  
              = 57 

-5 -25 

Introducing Action Costs 
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MEU Principle 

•  A rational agent should choose the action that 
maximizes agent’s expected utility 

•  This is the basis of  the field of  decision theory 

•  The MEU principle provides a normative criterion 
for rational choice of  action  

•  …AI is solved! 
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Not Quite… 

•  Must have a complete model of: 
•  Actions 
•  Utilities 
•  States 

•  Even if  you have a complete model, decision making is 
computationally intractable 

•  In fact, a truly rational agent takes into account the 
utility of  reasoning as well (bounded rationality) 

•  Nevertheless, great progress has been made in this area 
•  We are able to solve much more complex decision-theoretic 

problems than ever before 
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•  Money does not behave as a utility function 
•  That is, people don’t maximize expected value of  dollar assets. 

•  People are risk-averse: 
•  Given a lottery L with expected monetary value  

EMV(L), usually U(L) < U(EMV(L)) 

•  Expected Utility Hypothesis 
•  rational behavior maximizes the expectation of  some 

function u… which in need not be monetary 

Money 

Want	to	bet	$10	for	a	20%	chance	to	win	$100?	
[20%($100)+80%($0)]	=	$20	>	[100%($10)]		

Want	to	bet	$1000	for	a	20%	chance	to	win	$10,000?	
[20%($10,000)+80%($0)]	=	$2000	>	[100%($1000)]		

Money Versus Utility 

•  Money ± Utility 
•  More money is better, but not always in a linear 

relationship to the amount of  money 

•  Expected Monetary Value 

•  Risk-averse: U(L) < U(SEMV(L)) 

•  Risk-seeking: U(L) > U(SEMV(L)) 

•  Risk-neutral: U(L) = U(SEMV(L)) 
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•  Utilities map states to real numbers. Which numbers?  
•  People are very bad at mapping their own preferences 

•  Standard approach to assessment of  human utilities: 
•  Compare a state A to a standard lottery Lp that has  

 “best possible prize” u⊤ with probability p  
 “worst possible catastrophe” u⊥ with probability (1−p)  

•  adjust lottery probability p until A ∼ Lp  

Maximizing Expected Utility 

p=0.9999 

p=0.0001 

L 

Win $10,000 

Win nothing 
pay $30 ≻ 

p=0.500      

p=0.500 

L 

Win $10,000 

Win nothing 
pay $30 ≻ 

p=0.0001 

p=0.9999 

L 

Win $10,000 

Win nothing 
pay $30 ∼ 

p=0.9999999 

p=0.000001 

L 

Win nothing 

Instant death 
pay $30 ∼ 

Actual Utility Scales 

•  Micromorts: one-millionth chance of  death  
•  Useful for: 

•  Russian roulette 

•  Paying to reduce product risks, etc.  

•  QALYs: quality-adjusted life years 
•  Useful for: 

•  Medical decisions involving substantial risk 


